
Scalable Producer-Consumer Pools based on
Elimination-Diffraction Trees

Y. Afek G. Korland M. Natanzon N. Shavit

European Conference on Parallel Processing (Euro-Par) 2010

Presented by

Michael Lippautz

mlippautz@cs.uni-salzburg.at

Concurrency and Memory Management Seminar

Department of Computer Sciences, University of Salzburg

mailto:mlippautz@cs.uni-salzburg.at
http://cs.uni-salzburg.at
http://www.uni-salzburg.at

Contents

What is this about?

The parts
Balancer
Diffracting tree
Elimination
Elimination-diffraction (ED) tree

Benchmarks and results

Summary and Discussion

What is this about?

Problem
Provide a pool implementation that scales and performs well in low
and high contention scenarios.

Author’s solution
Build a lock-free distributed pool structure based on elimination
and diffraction paradigms.

The description is general, but the implementation is based on Java.

Further structure

1. Balancer

2. Diffracting tree

3. First step towards an elimination-diffraction (ED) tree

4. Elimination

5. ED tree

Balancer

Figure: Balancer [1]

◮ Single input wire

◮ Two output wires (top, bottom)

◮ Items arriving at input wire are sent to top or bottom output
wire

◮ Fair: Top wire count is the same or at most one more

Implementation: compareAndSet (toggle bit)

Diffracting tree

Figure: A diffracting tree Tree[3] [1]

”The Tree[k] network of width k is a binary tree of balancers
constructed inductively by taking two Tree[k/2] networks of
balancers and perfectly shuffling their outputs.” [2]

Diffracting tree

Step property (fairness)

In any quiescent state, for output wires y1...yn:

◮ Either ∀i , j : #yi = #yj
◮ Or ∃c : i ≤ c < j ∧#yi −#yj = 1

◮ (Other words:) Upper wires will always have number of items
as the bottom ones, or at most one more.

◮ Diffracting tree may be used to balance access to other data
structures.

Diffracting fairness - how?

◮ Diffracting tree is a counting tree

◮ Remember: Balancers are fair (CAS toggle)

◮ Each level gets a significance value: 2level

◮ Balancers may account for traversing with the level’s
significance

◮ Items traverse tree recursively

Diffracting fairness - how?

◮ toggle() returns toggle bit that was set before toggling

Example: Assume a toggles at B0 before b

◮ Outputwire for a = 20 · toggle(B0) + 21 · toggle(B1) = 0

◮ Outputwire for b = 20 · toggle(B0) + 21 · toggle(B2) = 1

B0

B1

B2

0

1

0

1

0

1

Significance: 20 Significance: 21

a

b

a

b

Diffracting tree – a first step

◮ Add lock-free queues to output wires of the tree

1

0

11

1

2

2

3

3 5

3

2

5

4 4

1

5

4

lock-free

balancer

lock-free queue

tail

wire 0

wire 1

head

Figure: Diffracting tree with queues as output [2]

Diffracting tree

Obvious drawbacks

◮ Lots of contention on the root balancer

◮ Also lots of contention on balancers further down the tree
(static size)

Elimination

Observation
An even number of traversals doesn’t change a balancers state.

Elimination array

◮ Two meeting pop ops will not touch the balancer

◮ Two meeting push ops will not touch the balancer

◮ A push and a pop will cancel out

Parameters: Array size, trials, timeout, slot index range

Putting it all together: ED tree
◮ Each balancer now has a producer & a consumer toggle

Example: 1, 2, 3, 4, 5 already in pool (toggles set accordingly)

B:pop()

C:pop()

A:push(6)

D:pop()

E:push(7)

511

elimination-

diffraction

balancer

1/2 width

elimination-diffraction

balancer

2

3

4

D:return(7)E: ok

C:return(1)

B:return(2)

A: ok

F:pop()

0

0

0

0

1

6

F:return(3)

Pusher’s

toggle-bit

Poper’s

toggle-bit

Figure: ED tree [2]

Benchmarks

◮ Producer/consumer benchmark

◮ Different queues get plugged into the ED tree

◮ Performance and scalability is compared against these queues

◮ Queues:
◮ Synchronous
◮ Blocking (Java: LinkedBlockingQueue)
◮ Non-blocking (Java: ConcurrentLinkedQueue; Michael-Scott

queue)

(Different queues provide different pool semantics. → Discussion)

Results (excerpt)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 50 100 150 200 250

T
h
ro

u
g
h
p
u
t

(×
 1

0
3
 o

p
/s

)

Number of threads

Resource Pool

LinkedBlockingQueue
ED-BlockingQueue

 0

 2000

 4000

 6000

 8000

 10000

 50 100 150 200 250

T
h
ro

u
g
h
p
u
t

(×
 1

0
3
 o

p
/s

)

Number of threads

Nonblocking Resource Pool

ConcurrentLinkedQueue
ED-Pool

Figure: Throughput over threads for blocking and non-blocking queues in
ED trees [2]

Results (excerpt)

 0

 2000

 4000

 6000

 8000

 10000

 0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(×
 1

0
3
 o

p
/s

)

Work

Nonblocking Resource Pool

ConcurrentLinkedQueue
ED-Pool

 0

 2000

 4000

 6000

 8000

 10000

 0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(×
 1

0
3
 o

p
/s

)

Work

Unfair Synchronous Queue

JDK-Sync-Queue
ED-Sync-Queue

Figure: Throughput over workload; different queues [2]

Results (excerpt)

Figure: Elimination rate by levels [2]

Summary

ED trees

◮ . . . are structures to distribute access to queues

◮ . . . are lock-free

◮ . . . apparently scale well against Java queues

Interlude: quiescent consistency

Informally

An implementation of a sequential specification is quiescent
consistent if method calls separated by a period of quiescence
appear to take effect their in real-time order.

Example:

r.write(7)

r.write(-3) r.read(-7)

Thread A

Thread B

Figure: This implementation is not quiescent consistent, because we
would expect either 7 or −3, not a mixture of both

Interlude: linearizability

Informally

An implementation of a sequential specification is linearizable if
method calls that overlap in time can take effect in arbitrary order
whereas method calls that do not overlap in time have to happen
in sequential order.

Example:

r.deq(a)

r.enq(a) r.enq(b) r.deq(b)

Thread A

Thread B

Figure: A linearizable implementation of a FIFO queue

Interlude: sequential specification pool
put

put(e)(p) = p · e

◮ A method call put on a pool p with an element e puts the
element into the sequence of elements of the pool.

get

get(e)(p) =







p if e = NULL, p = ε
(e1 . . . ei−1ei+1 . . . en) if e = ei , q = e1 . . . en
error otherwise

◮ A method call get on a pool p with an element e removes the
element e from the sequence of items in the pool, if the pool
is not empty.

◮ If the pool is empty, it returns NULL. The pool is not
changed.

Properties

The good

◮ Structure allows a dynamic number of threads

◮ Apparently performs and scales well (trusting figures)

The bad

◮ Lots of parameters (elimination)

◮ Not quiescent consistent (if used with non-blocking queues) 1

◮ Empty check not linearizable 1

◮ Semantic changes depending on plugged-in queue

1Considering the previously mentioned sequential spec.

Semantics – empty check

The arguments refer to the previously mentioned sequential
specification.

◮ Semantics of the empty check depends on queue

◮ Blocking queue: no empty check (dequeue returning NULL) at
all

◮ Non-blocking queue: empty check is not linearizable (not even
quiescent consistent)

Empty check: quiescent consitency, linearizability

B0

B1

B2

0

1

0

1

0

1

The following sequence can happen with non-blocking queues
plugged into the ED tree:

deq(NULL) enq(a) deq(NULL)

Not linearizable! Not quiescent consistent! 2

2Regarding the previously mentioned sequential specification.

References

M. Natanzon.

Building scalable producer-consumer pools based on

elimination-diffraction trees.

Master’s thesis, Tel Aviv University, July 2010.

Y. Afek, G. Korland, M. Natanzon, and N. Shavit.

Scalable producer-consumer pools based on elimination-diffraction trees.

In Proc. European Conference on Parallel Processing (Euro-Par), pages
151–162. Springer, 2010.

	What is this about?
	The parts
	Balancer
	Diffracting tree
	Elimination
	Elimination-diffraction (ED) tree

	Benchmarks and results
	Summary and Discussion

