

Flat Combining and
the Synchronization-Parallelism Tradeoff

Danny Hendler, Ben-Gurion University
Itai Incze, Tel-Aviv University
Nir Shavit, Tel-Aviv University

Moran Tzafrir, Tel-Aviv University

SPAA '10 Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures

Hannes Payer, University of Salzburg, January 2011

Research Problem

 Performance of concurrent data structures

 Traditionally: provide parallelism via fine
grained synchronization
 It has been shown in several studies that finely

synchronized data structures outperform data
structures protected by a single global lock

 Is the above assumption true in general?

Answer

 No, because of synchronization overhead!

Flat Combining - General Idea

 Ingredients:
 Original data structure
 Global lock
 Publication list and mapping of threads to thread-

local publication records

 A thread performs a data structure operation in
the following way

1) Acquire a global lock

2) Learn about all concurrent access requests

3) Perform the combined requests of all pending
requests

Flat Combining - Details

Flat Combining - Details

1) Write data structure operation and paraments
(if any) to be applied to the shared data
structure in the thread-local publication record

2) Check if global lock is taken
 If so, spin on the publication record waiting for a

response to the invocation.
 Once in a while check if the lock is still taken
 If response is available in the publication record:

reset the thread-local publication record to null and
return response

Flat Combining - Details

3) If global lock is not taken, attempt to acquire it
and become a combiner.
 Otherwise return to 2)

4) Execute scanCombineApply()
 Is specific for different data structures
 Scan over publication list, comine requests, and

return results of the invocations
 Guaranteed to be Wait-free
 Release the global lock

Flat Combining - Details

 Publication list can grow and shrink dynamically
 Multiple ways to do this but they require

synchronization operations

 A static publication list size offers the best
performance

Flat Combining Queue and Stack

 ScanCombineApply()
 Queues and stacks have an inherent sequential

bottleneck that is difficult to overcome
 A temporary list is used to combine pending

requeusts
 A non-empty temporary list is in the end

concatenated with the original data structure

Flat Combining Skiplist

 ScanCombineApply()
 Each node consists of a key and a list
 RemoveSmallestK()

workload is comparable to a single removel
 CombinedAdd()

sort pending requeusts and perform just a single
pass through the list

Flat Combining Correctness

 Linearizability
 Correctness condition of shared data structures
 Each operation takes effect instantaneously at

some (linearization) point between its invocation
and response

 Proof: show that a linearization can be found for
each execution on the data structure

Flat Combining Correctness

 Proof outline:
 The global lock serializes all data structure

operations
 Since there is just a single combiner thread at each

point in time, operations are ordered sequentially
 Threads are blocked unless their data structure

operation is applied

Flat Combining Progress

 Flat combining is starvation free
 ScanCombineApply is wait-free

 Proof outline:
 The data structure operation of a single thread is

performed by a current combiner thread or by a
subsequent combiner thread

Experimental Setup

 128-way Enterprise T5140 server machine
running Solaris

 2-chip Niagara system, each chip has 8 cores
that multiplex 8 hardware threads each and
share an L2 cache

 Hoard memory allocator to reduce system jitter

Performance Evaluation

Performance Evaluation

Performance Evaluation

Why does Flat Combining work?

 Reduces synchronization overhead on shared
data structure

 Reduces the overall cache invalidation traffic on
the data structure

 Locality
 Items are cached
 Take advantage of re-ordering of operations

and applying them at the same point in time

Performance Evaluation

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

