Flat Combining and
the Synchronization-Parallelism Tradeoff

Danny Hendler, Ben-Gurion University
Itai Incze, Tel-Aviv University
Nir Shavit, Tel-Aviv University
Moran Tzafrir, Tel-Aviv University

SPAA 10 Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures

Hannes Payer, University of Salzburg, January 2011

Research Problem

Performance of concurrent data structures

Traditionally: provide parallelism via fine
grained synchronization

It has been shown in several studies that finely
synchronized data structures outperform data
structures protected by a single global lock

Is the above assumption true in general?

No, because of synchronization overhead!

Flat Combining - General Idea

Ingredients:

Original data structure
Global lock

Publication list and mapping of threads to thread-
local publication records

A thread performs a data structure operation in
the following way

Acquire a global lock
Learn about all concurrent access requests

Perform the combined requests of all pending
requests

Flat Combining - Details

Algorithm 1: Flat Combining Generic Structure

1 shared object O, int lock init 0

2 shared array combine[l..maxT| of int init |
Input: <opcode,params>

3 combine[PID]=<opcode,params>

4 while true do

3 if (lock=1) V (test-and-set(lock)=1) then

6 yield()

7 if (resp=combine[PID])#<opcode,params>
then return resp

8 else

9 ScanCombineApply(combine, O, ¢)
10 int response=combine[PID]

11 lock=0

12 return response

Flat Combining - Details

Write data structure operation and paraments
(if any) to be applied to the shared data
structure in the thread-local publication record

Check if global lock is taken

If so, spin on the publication record waiting for a
response to the invocation.

Once in a while check if the lock is still taken

If response is available in the publication record:
reset the thread-local publication record to null and
return response

Flat Combining - Details

If global lock is not taken, attempt to acquire it
and become a combiner.

Otherwise return to 2)
Execute scanCombineApply()

|s specific for different data structures

Scan over publication list, comine requests, and
return results of the invocations

Guaranteed to be Wait-free
Release the global lock

Flat Combining - Details

Publication list can grow and shrink dynamically

Multiple ways to do this but they require
synchronization operations

A static publication list size offers the best
performance

Flat Combining Queue and Stack

ScanCombineApply()

Queues and stacks have an inherent sequential
bottleneck that is difficult to overcome

A temporary list is used to combine pending
requeusts

A non-empty temporary list is in the end
concatenated with the original data structure

Flat Combining Skiplist

ScanCombineApply()

Each node consists of a key and a list

RemoveSmallestK()
workload is comparable to a single removel

CombinedAdd()
sort pending requeusts and perform just a single
pass through the list

Flat Combining Correctness

Linearizabillity
Correctness condition of shared data structures

Each operation takes effect instantaneously at
some (linearization) point between its invocation
and response

Proof: show that a linearization can be found for
each execution on the data structure

y insert(A,) insert(A,) remove(A;)
_______________________ — __ fe—
1775 is 20 30733 23 Xime

Flat Combining Correctness

Proof outline:

The global lock serializes all data structure
operations

Since there is just a single combiner thread at each
point in time, operations are ordered sequentially

Threads are blocked unless their data structure
operation is applied

Flat Combining Progress

Flat combining is starvation free
ScanCombineApply is wait-free
Proof outline:

The data structure operation of a single thread is
performed by a current combiner thread or by a
subsequent combiner thread

Experimental Setup

128-way Enterprise T5140 server machine
running Solaris

2-chip Niagara system, each chip has 8 cores
that multiplex 8 hardware threads each and
share an L2 cache

Hoard memory allocator to reduce system jitter

Performance Evaluation

SPARC T2 - QUEUE - Throughput
50% ENQ; 50% DEQ

== fc
16000 -m= michael scott
14000 v Basket
< combin tree
- oyama
10000 X oyama combin
=+ log sync

ops/ms
oo
o
o
o

4 8 12 16 24 32 40 48 56 64
threads

Performance Evaluation

SPARC T2 -QUEUE - CAS Success

50% ENQ; 50% DEQ
10.000
<

1.000 —g_ﬂ-_@_%_) = Ny

0.100

== fc

-l michael scott
0.010 V- Basket

<l combin tree
0.001 ‘O-oyama

X oyama combin

=+ |og sync
0.000 95y

1 2 4 8 12 16 24 32 40 48 56 64
threads

cas/op

Performance Evaluation

SPARC T2 - QUEUE -L2 cache-miss
50% ENQ; 50% DEQ
100.000

== fc = u]]

- michael scott [

V- Basket

< combin tree

- oyama

X oyama combin
1.000 4«Jog sync

10.000

cache-miss /op

(=]
-
o
o

) 1|

1 2 4 8 12 16 24 32 40 48 56 64
threads

Why does Flat Combining work?

Reduces synchronization overhead on shared
data structure

Reduces the overall cache invalidation traffic on
the data structure

_ocality

tems are cached

Take advantage of re-ordering of operations
and applying them at the same point in time

Performance Evaluation

SPARC T2 - QUEUE - Throughput as function of Read/Write delay
Constant 56 threads; 50% ENQ; 50% DEQ

16000
== fc
14000 - michael scott
V- Basket
12000 <1 combin tree
10000 - oyama
2 X- oyama combin
£ 8000
-; ¢+ log sync
Q
S 6000
4000
2000 v/ v v v =V
i e = = = e = e = = =
0 64 128 192 256 320 384

read/write delay

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

