
Michael Bond
Kathryn McKinley

The University of Texas at Austin

October, 2008

Presented by: Maria Martin
Concurrency and Memory Management Seminar,
winter term 2010
University of Salzburg, Department of Computer
Science

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 (what?) A memory leak:

 (why?) computer program consumes
memory

 (how?) they are unable to release it back to
the operating system

 (result): out of memory

 (what?) A memory leak:

 (why?) computer program consumes
memory

 (how?) is unable to release it back to the
operating system

 (result): out of memory

MEMORY LEAKS ARE A REAL PROBLEM

FIXING THEM IS HARD

 Managed languages do not eliminate them
▪ Type safety and garbage collection (reliability)

 Managed languages do not eliminate them
▪ Type safety and garbage collection (reliability)

Live

ReachableDead

 Managed languages do not eliminate them
▪ Type safety and garbage collection (reliability)

Live

ReachableDead
Programers

ignore
pointers to
objects the

program will
never use

again

 Managed languages do not eliminate them
▪ Type safety and garbage collection (reliability)

Live
Dead

 No immediate symptoms (reproduce, fix, find)

 Escape developers detection (tools for leaks
detection)

 Slow & crash real programs (memory exhausted)

Live
Dead

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 DEVELOPERS

Eliminate bad effects

Don’t
slow

Don’t
crash Information

Time

 USERS: ILLUSION FIX

Not a
replacement

 Predicts that stale objects (not used for a
while) are likely leaks  disk

 The application try to access an object on
disk, it activates it main memory

Stale objects
(disks)

In-use objects
(main memory)

Stale objects (likely leaks)

Activate objects

 Melt leak tolerance:
transfers likely leaked objects to disk

 Melt leak tolerance:
transfers likely leaked objects to disk

 freeing physical and virtual memory

 much larger than memory delays exhaustion

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Primary objective: illusion

 Invariants:

 Stale space: separate stale objects from in-use
ones (disk)

 Accesses to stale space:
▪ Collector moves objects

▪ Application actives objects

 Each collection, objects the program
has not accessed since the last one, will
be stale ones

 Collector marks objects as stale every
collection

 Each collection, objects the program has
been accessed, will be unmarked

 Compiler and its instrumentation
unmarks objects every collection

roots

A

E

B

C

F

D Look for
marked

references,
instead of

marked objects

roots

C,D not accessed
since the last
collection, all their
incoming
references are stale

A

E

F

D

B

C

C,D are stale objects

stale space

roots

A

E

F

D

B

C

in-use space

Heap nearly full 
move stale objects to

disk

roots

in-use space stale space

A

E

B

F

C

D

Heap nearly full 
move stale objects to

disk

roots

in-use space stale space

A

E

B

F

C

D

Stale to in-use references  problematic

roots

in-use space stale space

A

E

B

F

C

D

Stale to in-use references  problematic

would violate the

invariants while

updating their

outgoing references

roots

in-use space stale space

A

E

B

F

C

D

BstubBscion

Stub (stale space)-scion (in-use space) pairs for each in-
use object referenced by at least one stale object

roots

in-use space stale space

A

E

B

F

C

D

BstubBscion

scion
space

B  Bscion

scion
table

ensure each

in-use object

has only ONE

stub-scion pair

roots

in-use space stale space

A

E

B

F

C

D

BstubBscion

scion
space

B  Bscion

scion
table

necessary?

roots

in-use space stale space

A

E

B

F

C

D

BstubBscion

scion
space

B  Bscion

scion
table

necessary?

At first: we

just need scions

But: in-use objects

may become stale

later

roots

in-use space stale space

scion
space

B  Bscion

scion
table

A

E

F

C

D

BstubBscion

B

copies B into

the stale space

roots

in-use space stale space

scion
table

A

E

F

C

D

Bstub

B

Looks up the stub location

in the scion and points the

stub to stale B. delates scion

roots

in-use space stale space

scion
space

scion
table

A

E

F

C

D

Bstub

B

roots

in-use space stale space

scion
space

scion
table

A

E

F

C

D

Bstub

B

1- copy C into in-use space

2- replaces stale C

with a stub

3- allocates a scion

4- links them all together

(retaining references)

roots

in-use space stale space

scion
space

C Cscion

scion
table

E

F

Cstub

D

A

Bstub

B

C

Cscion

roots

in-use space stale space

scion
space

C Cscion

scion
table

F

Cstub

D

A

Bstub

B

Cscion
E

C

roots

in-use space stale space

scion
space

C Cscion

scion
table

F

Cstub

D

A

Bstub

B

Cscion
E

C

Follows Cstub to Cscion to

C in the in-use space

And update references

INACTIVE
MARK
STALE

MOVE &
MARK
STALE

WAIT

Heap not nearly full

Heap full or
nearly full

80%

Heap full or
nearly full

Start

Expected heap
fullness

Heap not
nearly full

After
marking

Unexpected
heap fullness

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Implemented in Jikes RVM 2.9.2

 Melt design compatible with any tracing
collector

 i.e., for the demonstration is used generational
copying collector

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Benchmarks
(to measure overhead):
 DaCapo, SPECjbb2000, SPECjvm98

 Platform
(where execution was experimented):
 Dual-core Pentium 4

 Results
 6% overhead on average

 Evaluation: How well tolerates growing leaks
by running them longer and maintaining
program performance?

 10 leaks founded

 5 tolerated

 2 tolerated but with high overhead (activating
many stale objects)

 3 doesn’t significally help

Leak Melt’s effect

Eclipse “Diff” Tolerates until 24-hr limit (1,000X longer)

Eclipse “Copy-Paste” Tolerates until 24-hr limit (194X longer)

JbbMod Tolerates until 20-hr crash (19X longer)

ListLeak Tolerates until disk full (200X longer)

SwapLeak Tolerates until disk full (1,000X longer)

MySQL Some highly stale but in-use (74X longer)

Delaunay Mesh Short-running

DualLeak Heap growth is in-use (2X longer)

SPECjbb2000 Heap growth is mostly in-use (2X longer)

Mckoi Database Thread leak: extra support needed (2X longer)

Leak Melt’s effect

Eclipse “Diff” Tolerates until 24-hr limit (1,000X longer)

Eclipse “Copy-Paste” Tolerates until 24-hr limit (194X longer)

JbbMod Tolerates until 20-hr crash (19X longer)

ListLeak Tolerates until disk full (200X longer)

SwapLeak Tolerates until disk full (1,000X longer)

MySQL Some highly stale but in-use (74X longer)

Delaunay Mesh Short-running

DualLeak Heap growth is in-use (2X longer)

SPECjbb2000 Heap growth is mostly in-use (2X longer)

Mckoi Database Thread leak: extra support needed (2X longer)

Leaky program: has live
leaks for improving

longevity and performance
significantly

0

64

128

192

256

0 200 400 600 800 1000

R
e

a
ch

a
b

le
 m

e
m

o
ry

 (
M

B
)

Iteration

 Conclusions comparing reachable memory
for first 1000 iterations:

 Jikes RVM and Sun JVM fill the heap as the leak
grows

 Melt starts moving stale objects (80% full) and
keeps memory usage fairly constant between 100
and 130 MB

Crash quickly

Stay constant

Shows the
time each

iteration takes

 Grow linearly over iterations and have large
magnitudes

 In-use objects constant over iterations
 Scions grows linearly over time (small)
 Objects activated increase linearly

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Finding bugs before deployment is hard

 Melt:

 Finding bugs before deployment is hard

 Melt:

 Requires time & space proportional to in-use
memory

 Preserves safety (activating stale objects on
disk)

 Finding bugs before deployment is hard

 Melt:

 Requires time & space proportional to in-use
memory

 Preserves safety (activating stale objects on
disk)

 Developers  time
 Users  illusion

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Publishers follow-on work called Leak
Pruning that reclaims (i.e., deletes) memory
that seems to be leaked, instead of moving it
to disk:

http://www.cse.ohio-
state.edu/~mikebond/papers.html#leak-
pruning

March 2009

http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html

Maria.MartinCiviac@sbg.ac.at

THANK YOU

