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MEMORY LEAKS ARE A REAL PROBLEM

FIXING THEM IS HARD
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 No immediate symptoms (reproduce, fix, find)

 Escape developers detection (tools for leaks 
detection)

 Slow & crash real programs (memory exhausted)

Live
Dead
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 DEVELOPERS

Eliminate bad effects

Don’t 
slow

Don’t 
crash Information

Time

 USERS: ILLUSION FIX

Not a 
replacement



 Predicts that stale objects (not used for a 
while) are likely leaks  disk

 The application try to access an object on 
disk, it activates it main memory



Stale objects
(disks)

In-use objects
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Stale objects (likely leaks)

Activate objects
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 freeing physical and virtual memory

 much larger than memory delays exhaustion
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 Primary objective: illusion

 Invariants:

 Stale space: separate stale objects from in-use 
ones (disk)

 Accesses to stale space:
▪ Collector moves objects

▪ Application actives objects



 Each collection, objects the program 
has not accessed since the last one, will 
be stale ones

 Collector  marks objects as stale every 
collection



 Each collection, objects the program has 
been accessed, will be unmarked

 Compiler and its instrumentation 
unmarks objects every collection
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 Implemented in Jikes RVM 2.9.2

 Melt design compatible with any tracing 
collector

 i.e., for the demonstration is used generational 
copying collector
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 Benchmarks 
(to measure overhead):
 DaCapo,  SPECjbb2000,  SPECjvm98

 Platform
(where execution was experimented):
 Dual-core Pentium 4

 Results
 6% overhead on average



 Evaluation: How well tolerates growing leaks
by running them longer and maintaining
program performance?

 10 leaks founded

 5 tolerated

 2 tolerated but with high overhead (activating
many stale objects)

 3 doesn’t significally help



Leak Melt’s effect

Eclipse “Diff” Tolerates until 24-hr limit (1,000X longer)

Eclipse “Copy-Paste” Tolerates until 24-hr limit (194X longer)

JbbMod Tolerates until 20-hr crash (19X longer)

ListLeak Tolerates until disk full (200X longer)

SwapLeak Tolerates until disk full (1,000X longer)

MySQL Some highly stale but in-use (74X longer)

Delaunay Mesh Short-running

DualLeak Heap growth is in-use (2X longer)

SPECjbb2000 Heap growth is mostly in-use (2X longer)

Mckoi Database Thread leak: extra support needed (2X longer)
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SwapLeak Tolerates until disk full (1,000X longer)

MySQL Some highly stale but in-use (74X longer)

Delaunay Mesh Short-running

DualLeak Heap growth is in-use (2X longer)

SPECjbb2000 Heap growth is mostly in-use (2X longer)

Mckoi Database Thread leak: extra support needed (2X longer)

Leaky program: has live
leaks for improving

longevity and performance 
significantly
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 Conclusions comparing reachable memory
for first 1000 iterations: 

 Jikes RVM and Sun JVM fill the heap as the leak
grows

 Melt starts moving stale objects (80% full) and 
keeps memory usage fairly constant between 100 
and 130 MB



Crash quickly

Stay constant



Shows the
time each

iteration takes



 Grow linearly over iterations and have large 
magnitudes



 In-use objects constant over iterations
 Scions grows linearly over time (small)
 Objects activated increase linearly
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 Melt:

 Requires time & space proportional to in-use 
memory

 Preserves safety ( activating stale objects on 
disk)

 Developers  time
 Users  illusion
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 Publishers follow-on work called Leak 
Pruning that reclaims (i.e., deletes) memory 
that seems to be leaked, instead of moving it 
to disk: 

http://www.cse.ohio-
state.edu/~mikebond/papers.html#leak-
pruning

March 2009
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