Tolerating Memory Leaks

Michael Bond
Kathryn McKinley

The University of Texas at Austin

October, 2008

[HE UN

TFAAS

Presented by: Maria Martin

Concurrency and Memory Management Seminar,
winter term 2010

University of Salzburg, Department of Computer
Science

HUNIVERSITKT
SALZBURG

Outline

Introduction to the problem (why?)
Leak tolerance: Melt

Tolerating memory leaks
Implementation

Results

Conclusion

Related work

Outline

Introduction to the problem (why?)

Introduction

(what?) A memory leak:

(why?) computer program consumes
memory

(how?) they are unable to release it back to
the operating system

(result): out of memory

Introduction

(what?) A memory leak:

(1 MEMORY LEAKS ARE A REAL PROBLEM
n

FIXINGTHEM IS HARD
(

operating system

(result): out of memory

Managed languages do not eliminate them
Type safety and garbage collection (reliability)

Managed languages do not eliminate them
Type safety and garbage collection (reliability)

Dead Reachable
S~

Managed languages do not eliminate them
Type safety and garbage collection (reliability)

Dead Reachable

Managed languages do not eliminate them
Type safety and garbage collection (reliability)

avﬁapeg&

Dead

No immediate symptoms (reproduce, fix, find)

Escape developers detection (tools for leaks
detection)

Slow & crash real programs (memory exhausted)

Dead

Outline

Leak tolerance: Melt

Leak tolerance goal

USERS: ILLUSION FIX DEVELOPERS
R —
—

Melt movements

Predicts that stale objects (not used for a
while) are likely leaks = disk

The application try to access an object on
disk, it activates it 2 main memory

Melt movements

Stale objects (likely leaks)

In-use objects
(main memory)

Activate objects Stale objects
(disks)

Melt

Melt leak tolerance:
transfers likely leaked objects to disk

Melt

Melt leak tolerance:
transfers likely leaked objects to disk

freeing physical and virtual memory
much larger than memory = delays exhaustion

Outline

Tolerating memory leaks

Tolerating Memory Leaks

Primary objective: illusion
Invariants:

Stale space: separate stale objects from in-use
ones (disk)

Accesses to stale space:
Collector moves objects
Application actives objects

#1: identify stale objects

Each collection, objects the program
has not accessed since the last one, will
be stale ones

Collector marks objects as stale every
collection

#1: identify stale objects

Each collection, objects the program has
been accessed, will be unmarked

Compiler and its instrumentation
unmarks objects every collection

#1: identify stale objects

roots

|:> in-use space

Look for
marked
references,
instead of
marked objects

#1: 1dentify stale objects

C,D not accessed
since the last

: collection, all their
A Incoming

v references are stale

roots

- C,D are stale objects

#2: Stale Space

roots

"

— in-use space stale space

#2: Stale Space

roots

"

— in-use space stale space

#2: Stale Space

Stale to in-use references = problematic

roots

A in-use space stale space

#2: Stale Space

Stale to in-use references = problematic

roots

would violate the
invariants while
updating their
outgoing references

— in-use space stale space

#2: Stub-scion pairs

Stub (stale space)-scion (in-use space) pairs for each in-
use object referenced by at least one stale object

roots

A
v

.

in-use space stale space

#2: Scion table

scion scion
table B>B

scion Space
roots . i T ‘ ‘

ensure each

in-use object
has only ONE
stub-scion pair

— in-use space stale space

#2 :Stub-Scion Pairs

<o [B>e necessary?

table

scion Space
roots
. . S
-_—
.
e

A in-use space stale space

#2 :Stub-Scion Pairs

scion scion

table B Bicion space

necessary?

At first: we
Jjust need scions
But: in-use objects
may become stale
ylater

— In-use space

stale space

: Scion-Referenced Object Becomes Stale

copies B into

scion N scion the stale space
table B2 Bycion space

roots

——

— in-use space stale space

#2 : Scion-Referenced Object Becomes Stale

roots

scion
table

Looks up the stub location
in the scion and points the
stub to stale B. delates scion

In-use space

stale space

#3: Activating Stale objects

scion scion
table Space
roots
N
N

.

In-use space

stale space

#3: Activating Stale objects

roots

scion
table

scion
space

l1- copy C into in-use spad&
2- replaces stale C

with a stub
3- allocates a scion
4- links them all together
(retaining references) .

bl |

in-use space stale space

#3: Application Accesses Stale

Object

scion C 9 C scion
table scion space
roots
y
||
.
e
.
e

A in-use space stale space

#3: Application Accesses Stale

Object

scion C 9 C scion
table scion space
roots
y
||
.
.
.
e

A in-use space stale space

#3: Application Accesses Stale

Object

roots

scion
table

C>C

scion

scion
space

Follows Cstub to Cscion to
C in the in-use space
And update references

In-use space

stale space

State Melt diagram

Expected heap

fullness
MARK
Start INACTIVE Unexpected STALE
heap fullness
After
Heap full or marking Heap not
nearly full nearly full
Heap not nearly full
MOVE &
MARK WAIT
STALE Heap full or

nearly full
80%

Outline

Implementation

Implementation: VM issues

Implemented in Jikes RVM 2.9.2

Melt design compatible with any tracing
collector

i.e., for the demonstration is used generational
copying collector

Outline

Results

Performance Evaluation

Benchmarks
(to measure overhead):

DaCapo, SPECjbb200oo, SPECjvmg8

Platform
(where execution was experimented):

Dual-core Pentium 4

Results
6% overhead on average

Tolerating Leaks

Evaluation: How well tolerates growing leaks

by running them longer and maintaining
program performance?

10 leaks founded
5 tolerated

2 tolerated but with high overhead (activating
many stale objects)

3 doesn’t significally help

Tolerating Leaks

Leak

Melt's effect

Eclipse “Diff”

Tolerates until 24-hr limit (1,000X longer)

Eclipse “Copy-Paste”

Tolerates until 24-hr limit (194X longer)

JbbMod

Tolerates until 20-hr crash (19X longer)

ListLeak Tolerates until disk full (200X longer)
SwaplLeak Tolerates until disk full (1,000X longer)
MySQL Some highly stale but in-use (74X longer)

Delaunay Mesh

Short-running

DualLeak

Heap growth is in-use (2X longer)

SPECjbb2000

Heap growth is mostly in-use (2X longer)

Mckoi Database

Thread leak: extra support needed (2X longer)

Tolerating Leaks

Leak Melt’s effect

Eclipse “Diff” Tolerates until 24-hr limit (1,000X longer)
Eclipse “Copy-Paste” | Tolerates/ il 24-hr limit (194X longer)
JbbMod Tolerate. =>-hr crash (19X longer)
ListlLeak Leaky program: has live | longer)
SwaplLeak leaks for improving)X longer)
MySQL longevity and performance | (74X longer)
Delaunay Mesh significantly

DualLeak Heap growth is in-use (2X longer)
SPECjbb2000 Heap growth is mostly in-use (2X longer)
Mckoi Database Thread leak: extra support needed (2X longer)

Eclipse Diff: Reachable Memory

===(Unmodified) Jikes RVM Sun VM e==]|ikes RVM + Melt

)
s 192
>
S
o
g
€ 128
9
o)
©
-
@
o 64
2
0
0 200 400 600 800 1000

Iteration

Eclipse Diff: Reachable Memory

Conclusions comparing reachable memory
for first 2000 iterations:

Jikes RVM and Sun JVM fill the heap as the leak
grows

Melt starts moving stale objects (80% full) and

keeps memory usage fairly constant between 100
and 130 MB

Eclipse Diff: Reachable Memory

256
=—(Unmodified) |ikes RVM Sun]VM ==]ikes RVM + Melt

g 19
=
-
o
5
o
2
©
=
U

s 64
o

0

0 10000 20000 30000 40000 50000 60000

Iteration

Eclipse Diff: Performance

=—(Unmodified) |ikes RVM Sun]VM ==]ikes RVM + Melt
5
4 @

0 200 400 600 800 1000

Iteration

Time (s)

M

Eclipse Diff leak with Melt

Grow linearly over iterations and have large

magnitudes
—=Stale to in-use refs Objects made stale
3,000,000,000
Ry
2,000,000,000 anl
1,000,000,000 / -
0 -
0 10000 20000 30000 40000 50000 60000

Iteration

Eclipse Diff leak with Melt

In-use objects constant over iterations
Scions grows linearly over time (small)
Objects activated increase linearly

—=Qbjects in in-use space ===Scions Objects activated
(cumulative)
3,000,000

2,000,000

1,000,000 W_‘a
0 e — e e —

0 10000 20000 30000 40000 50000 60000

Iteration

Outline

Conclusion

Conclusion

Finding bugs before deployment is hard
Melt:

Conclusion

Finding bugs before deployment is hard
Melt:

Requires time & space proportional to in-use
memory

Preserves safety (activating stale objects on
disk)

Conclusion

Finding bugs before deployment is hard
Melt:

Requires time & space proportional to in-use
memory

Preserves safety (activating stale objects on
disk)

Developers = time
Users = illusion

Outline

Related work

Related work

Publishers follow-on work called Leak
Pruning that reclaims (i.e., deletes) memory
that seems to be leaked, instead of moving it
to disk:

http://www.cse.ohio-
state.edu/~mikebond/papers.html#leak-
pruning

March 2009

http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html

THANK YOU

Maria.MartinCiviac@sbg.ac.at

