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Motivation

 In shared-memory multiprocessing multiple 
threads are executed concurrently

 Communication and synchronization is done 
via data structures in shared-memory

 Thus these data structures have to be  

◦ efficient

◦ scalable

◦ correct

[1]
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Introduction

 Moir and Shavit provide an overview of the 
challenges of designing concurrent data 
structures 
and

 a summary of relevant work for some 
important data structures.

 Popular data structures have been chosen to 
illustrate key design issues

[1]
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Designing Concurrent DS

 Concurrent DS Challenges

 Performance

 Blocking

 Nonblocking

 Measuring Complexity

 Proofing Correctness 

 Locks, Barriers, Transactions

[1]
7



Concurrent DS Challenges

 Threads, executed concurrently on different 
processors/cores are influenced by

◦ Scheduling

◦ Page Faults

◦ Interrupts 

◦ etc.

 Performance is influenced by

◦ Memory layout

◦ Processor layout

◦ Layout of data in memory

 Hard to design and verify a correct DS 
implementation

[1]
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Example: Shared Counter

 fetch-and-inc

◦ Return value and increment counter by one

 Straight forward implementation does not 
comply with concurrency (bad interleaving)

◦ x = counter;
counter+=1;
return x;

 The use of a mutex solves the problem but 
creates many more

[1]
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Concurrent DS 
Performance

 Amdahls Law

◦ n… Number of Proccessors

◦ p… Fraction of job that can be parallelized

 Example:
If only 10% of an application can not be 
implemented in parallel speedup is only 5.3 
on a machine with 10 processors

[1],[3]
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Concurrent DS 
Performance

 Memory Contention

◦ Multiple threads attempting to access the same 
location in shared memory

◦ In a cache-coherent system this means heavy loads

 If data location is locked by a thread which 
is delayed (waits on I/O or whatever) all 
other threads have to wait too

[1]
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Concurrent DS 
Blocking

 Memory contention can be reduced using a 
fine-grained locking scheme

◦ Different parts of a DS can be accessed 
concurrently

 Operations can be spread out in time

◦ Backoff algorithm

◦ Combining trees

[1]
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Concurrent DS 
Blocking

 Combining trees

◦ Join concurrent operations

◦ Winner transfers combined result/value to DS

◦ Local spinning of losers in a cash-coherent 
multiprocessor system

◦ Speedup of O(P/log(P)) with P as the number of 
threads

 Combining trees drawbacks

◦ False sharing

◦ Do not scale on low loads

◦ Delays threads failed to combine

[1]
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Concurrent DS 
Blocking

 Blocking DS can scale if there is a good 
balance between using enough blocking to 
maintain correctness, while minimizing 
blocking in order to allow concurrent 
operations to proceed in parallel

[1]
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Concurrent DS 
Nonblocking

 Nonblocking progress conditions

◦ Wait-freedom guarantees that an operation will 
complete after a finite number of its own steps not 
influenced by others

◦ Lock-freedom guarantees that one of the 
concurrent operations completes after a finite 
number of steps

◦ Obstruction-freedom means that an operation 
completes in a finite number of own steps after 
interference form other operations stopped

[1]
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Concurrent DS 
Nonblocking

 Implementation of lock free fetch-and-inc

◦ Atomic instructions provided by hardware or OS
 CAS (Compare and Swap)

 LL/SC (Load-linked/Store-conditional)

◦ As CAS and LL/SC are universal they can be 
adopted to any DS if atomicity is provided

 Drawbacks

◦ Sequential bottleneck

◦ More difficult to handle because a lock can prevent 
other threads from interfering

[1]
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Concurrent DS 
Measuring Complexity

 Idealized models do not reflect the real-
world behavior of the DS because it is 
dominated from 

◦ Cost of contention

◦ Cache behavior

◦ Cost of universal synchronization

◦ Arrival rates

◦ Backoff delys

◦ Memory layout, etc.

 Concurrent DS design is compared 
empirically by running them using micro-
benchmarks

[1]
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Concurrent DS 
Proofing Correctness

 As operations on sequential DS are executed 
one-at-a time correctness can be that the 
resulting sequence of operations respect 
sequential semantics

 For concurrent DS sequential consistency is 
a common condition

◦ The total order preserves the order of operations 
executed by each thread

[1]
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Concurrent DS 
Proofing Correctness cont.

 Linearizability

◦ DS is sequentially consistent

◦ Total ordering respects the real-time ordering 
among the executed operations

 Quiescent consistency

◦ No real-time ordering

◦ Every operation executed after a state without 
operations must be ordered after operations before 
that state

[1]
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Concurrent DS 
Key Mechanisms

 Locks

◦ Guarantee mutual exclusion

◦ Spinlocks

◦ Exponential backoff

◦ Queuelocks

◦ Abortable (queue)locks

◦ Preemption-save locks

◦ Reader-Writer locks

◦ Group mutual exclusion

[1]
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Concurrent DS 
Key Mechanisms cont.

 Barriers

◦ Collectively holds threads at a given point

◦ Counter with number of threads

◦ Spin on local memory

◦ Diffusing computation tree
 Threads are owners of nodes in a binary tree

 Waiting for the arrival of their children

 Root node releases all threads if all children are done

[1]
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Concurrent DS 
Key Mechanisms cont.

 Transactions

◦ Treat sections code that access multiple memory 
locations as atomic

◦ Relational databases

◦ Hardware-based transactional memory

◦ Software transactional memory

[1]
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Shared Counters and 
Fetch-and-Φ

 Combining trees 

◦ Blocking

 Counting Networks

◦ Acyclic networks constructed from balancers

◦ Tokens arrive at a balancer at arbitrary times and 
are output in a balanced way

◦ Only capable of reduced class of operations like 
fetch-and-inc

◦ Lineraizable only with drawbacks

◦ Lock-free, quiescent consistent

[1]
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Stacks and Queues

 Stacks

◦ A concurrent stack is a data structure linearizable
to a sequential stack that provides push and pop 
operations with the usual LIFO semantics

◦ Lock-based implementation based on sequential 
linked lists using a top pointer and a global lock

 Contention

 Sequential bottleneck

◦ Lock-based implementation using combining
 Does not scale on low loads

[1]
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Stacks and Queues

 Stacks cont.

◦ Lock-free implementation using CAS and a single-
linked list with top pointer

 Sequential bottleneck (top pointer)

 Faster than lock-based but does not scale under heavy 
load

 Queues

 Dequeues

[1]
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Stacks and Queues

 Queues

◦ A concurrent queue is a data structure linearizable
to a sequential queue that provides enqueue and 
dequeue operations with the usual FIFO semantics

◦ Lock-based implementation with separate locks for 
head and tail pointer of linked list

 Concurrent dequeue and enqueue

 Additional dummy element needed that head pointer 
never = tail pointer

[1]
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Stacks and Queues

 Queues cont.

◦ Lock-free CAS-based implementation with access to 
both ends of the queue using CAS in stead of locks

 Dummy node

 Operations can access already removed elements

[1]
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Stacks and Queues

 Dequeues

◦ A concurrent double-ended queue is a linearizable
concurrent data structure that generalizes 
concurrent stacks and queues by allowing pushes 
and pops at both ends

◦ Lock-based implementation as with queue

◦ NO lock-free implementation with concurrent 
operations on both ends known

[1]
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Pools, Linked Lists,
Hash Tables, Search Trees

 Similar to stacks and queues there exist 
lock-free and lock-based implementations  
for many other concurrent DS

 The named are covered in the survey but 
not discussed here because of the lack of 
time

[1]
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Priority Queues

 A concurrent priority queue is a data 
structure linearizable to a sequential priority 
queue that provides insert and delete-min 
operations with the usual priority queue 
semantics

 Lock-based implementation using fine 
grained locking organized like a heap

 Lock-free implementation using a concurrent 
skiplist

[1]
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