Composable Code
Generation for
Distributed Giotto

Tom Henzinger, Christoph Kirsch, and Slobodan Matic

presented by Rainer Trummer

Compositionality Seminar WS 2007
Department of Computer Sciences
University of Salzburg

Motivation

Automotive software

2 Suppliers develop software components

2 Manufacturer integrates components
Mass production: optimality

Compositional design
9 Scale down problem

0 Reuse components
Preserve desired properties by composition

Real Time + Composability

Giotto framework

2 Purely software time-triggered paradigm

2 Concurrency abstraction: Logical Execution Time

2 Enables compositional design of hard real-time systems

Distributed platform
2 Realized by distributed compilation of components
2 Individually compiled components merged to final program

Merge & Verification
9 Automatic check if components meet specification

Giotto Framework

Giotto program
9 Executes a periodic set of LET tasks
0 Set of tasks and periods may change upon mode switches

mode ml () period 8

{ AudioSampler MixPlayer
actfreq 2 do MixPlayer () ;
taskfreq 1 do Analyzer(Mixer); l
taskfreq 2 do Mixer (Generator) ; .
taskfreq 1 do Generator () ; Generator Mixer Analyzer

Task instance | *
2 Period defines start and stop times o i i&
2 Qutput available at stop time . : L

Analyzer I

v

‘ Giotto Abstraction

’\/W\/\/\/\/\/\/Y\/\

Input Output

Fo—d B 1 L 4 1 4 L L1 1 L 1

Actuator
Driver

ol @ Task
I
I
)
Start Task Period

—
0)]
¢ @
©

Giotto Implementation

Actuator
Driver

Sensor
Driver

Iul_'_lLJIIIIIIIIIILJL|_||_||
| |
I I
I I
| |
| |
| |
« g

Start Task Period Stop

E and S Machine

| < |

Embedded Scheduling

Machine Task } Machine Hardware

* v

_’>
Environment
4‘_

3k £

Embedded Machine - E code E,,(m, 0):

call(copy[MixSound])

2 Environment interaction call(copy[StringSound])
release(1; Mixer; 1)
a Task release release(1; [MixSound])

future(4, E, ,(m, 1))

Scheduling Machine - S code S,.(m, 0):
. idle(1)
4 Task execution call(InDrv2)
dispatch(Mixer; 2)
2 Communication schedule idle(3)

dispatch([MixSound]; 4)

Schedule-Carrying Code

{ Giotto Code }

v

Giotto Compiler J

v

l |
E Code

SCC u

S Code
\ 4 \ 4
Embedded Scheduling
Machine Machine

Distributed Compilation

{ Giotto Code }

v

Distributed
Giotto Compiler

v

L |
u E Code SCC u S Code

+

y v |

To Integrator } From
Suppliers Suppliers

‘ Distributed Code Generation

Integrator Hosts
< >
= = =
["’;\f'.

\

Suppliers

‘ Distributed Code Generation

Step 1
Integrator

Specification
(E Code Module and Timing Interface)

‘ Distributed Code Generation

Step 2

(S Code and Task Implementation)

Suppliers

‘ Distributed Code Generation

Step 3
Integrator

Verification
(S Code vs. Specification)

‘ Distributed Code Generation

Integrator Hosts

2|

=3 v v
v v v
£ v £

Suppliers

Specification

Supplier s on host i gets

E ,(m, 0):
call(copy[MixSound])

2 Component specification
11 [StringSound])
E code module E_, release(1; Mixer; 1)

release(1; [MixSound])
future(4, Es,h(m, 1))

2 Timing interface

4
|
|
|
|
|
|

0]
|
|
o T. ,
Set of time intervals T, ' R
|. H
J where s may use h = Tsz,hz', .
| : |
J where s may send ! o
Y];éahzl |

Integrator ensures interface feasibility

Integration

Integrator receives

S, ,(m, 0):
a S code module S, idle(1)
o ’ _ call(InDrv2)
Even with interfaces EDF optimal dispatch(Mixer; 2)
idle(3)

dispatch([MixSound]; 4)

9 Task Implementation
Usually written in different language

2 Merged SCC module

Time-safe if no driver accesses a released task before
completion

Complies with timing interface if all tasks executed in time
intervals

Verification

Giotto program G
9 n :bound on all numbers in G

0 g, . size of Giotto component implemented by
supplier s on host A

Correctness

To check if a distributed SCC program P correctly
implements Giotto program ' it is enough to check

if each P , complies to 7,, and is time-safe

Complexity

If a given P, complies to T, , and is time-safe can be
checked in

O(g,,n) time

‘ Verification

" Module modification
9 Interaction - E_,

0 Schedule - §,,
9 Duration - wcet

O(gs,h n)

||

q

q

q

Implementation

Distributed audio mixer application
2 File read, processed, analyzed, and reproduced
2 Two hosts and three suppliers

P P

AudioSampler MixPlayer

Generator Mixer Analyzer

Py P P

PCs running RT-Linux, Ethernet

2 TDMA on top of software-based synchronization, 2.86Mb/s
9 Every 4ms 44 samples (11kHz) processed and transmitted
2 Overhead 3.7%: synchronization 25us, virtual machine 12us

Conclusions

Timing interfaces

2 Used to distribute code generation for Giotto programs
and distributed target platforms

Component integration

2 Performed by individually checking interface compliance
and time safety of each component

Timing requirements

9 Guaranteed without solving scheduling problem: burden is
shifted to generation of timing interfaces

