

Composable Code
Generation for
Distributed Giotto

Tom Henzinger, Christoph Kirsch, and Slobodan Matic

presented by Rainer Trummer

Compositionality Seminar WS 2007

Department of Computer Sciences

University of Salzburg

Motivation

 Automotive software
 Suppliers develop software components
 Manufacturer integrates components

 Mass production: optimality

 Compositional design
 Scale down problem
 Reuse components

 Preserve desired properties by composition

Real Time + Composability

 Giotto framework
 Purely software time-triggered paradigm
 Concurrency abstraction: Logical Execution Time
 Enables compositional design of hard real-time systems

 Distributed platform
 Realized by distributed compilation of components
 Individually compiled components merged to final program

 Merge & Verification
 Automatic check if components meet specification

Giotto Framework

 Task instance
 Period defines start and stop times
 Output available at stop time

mode m1() period 8
{
 actfreq 2 do MixPlayer();
 taskfreq 1 do Analyzer(Mixer);
 taskfreq 2 do Mixer(Generator);
 taskfreq 1 do Generator();
}

0 84

Analyzer

Mixer

Generator

 Giotto program
 Executes a periodic set of LET tasks
 Set of tasks and periods may change upon mode switches

Giotto Abstraction

Giotto Implementation

 Embedded Machine - E code
 Environment interaction
 Task release

 Scheduling Machine - S code
 Task execution
 Communication schedule

E and S Machine

Es,h(m1, 0):
call(copy[MixSound])
call(copy[StringSound])
release(1; Mixer; 1)
release(1; [MixSound])
future(4, Es,h(m1, 1))

Ss,h(m1, 0):
idle(1)
call(InDrv2)
dispatch(Mixer; 2)
idle(3)
dispatch([MixSound]; 4)

Schedule-Carrying Code

Distributed Compilation

Distributed Code Generation

Distributed Code Generation
Step 1

Distributed Code Generation
Step 2

Distributed Code Generation
Step 3

Distributed Code Generation

 Supplier s on host h gets

 Component specification
 E code module Es,h

 Timing interface
 Set of time intervals Ts,h

 where s may use h
 where s may send

 Integrator ensures interface feasibility

Specification

Es,h(m1, 0):
call(copy[MixSound])
call(copy[StringSound])
release(1; Mixer; 1)
release(1; [MixSound])
future(4, Es,h(m1, 1))

0

22 ,hsT

2 3

23 ,hsT

1

11,hsT

4

 Integrator receives

 S code module Ss,h

 Even with interfaces EDF optimal

 Task Implementation
 Usually written in different language

 Merged SCC module
 Time-safe if no driver accesses a released task before

completion
 Complies with timing interface if all tasks executed in time

intervals

Integration

Ss,h(m1, 0):
idle(1)
call(InDrv2)
dispatch(Mixer; 2)
idle(3)
dispatch([MixSound]; 4)

Verification

 Giotto program G
 n : bound on all numbers in G
 gs,h : size of Giotto component implemented by

 supplier s on host h

 Correctness
To check if a distributed SCC program P correctly
implements Giotto program G it is enough to check

 if each Ps,h complies to Ts,h and is time-safe

 Complexity
If a given Ps,h complies to Ts,h and is time-safe can be
checked in

O(gs,h n) time

 Module modification
 Interaction - Es,h

 Schedule - Ss,h

 Duration - wcet

Verification

O(gs,h n)

 PCs running RT-Linux, Ethernet
 TDMA on top of software-based synchronization, 2.86Mb/s
 Every 4ms 44 samples (11kHz) processed and transmitted
 Overhead 3.7%: synchronization 25µs, virtual machine 12µs

Implementation
 Distributed audio mixer application

 File read, processed, analyzed, and reproduced
 Two hosts and three suppliers

Conclusions

 Timing interfaces
 Used to distribute code generation for Giotto programs

and distributed target platforms

 Component integration
 Performed by individually checking interface compliance

and time safety of each component

 Timing requirements
 Guaranteed without solving scheduling problem: burden is

shifted to generation of timing interfaces

