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Motivation

Automotive software

2 Suppliers develop software components

2 Manufacturer integrates components
Mass production: optimality

Compositional design
9 Scale down problem

0 Reuse components
Preserve desired properties by composition



Real Time + Composability

Giotto framework

2 Purely software time-triggered paradigm

2 Concurrency abstraction: Logical Execution Time

2 Enables compositional design of hard real-time systems

Distributed platform
2 Realized by distributed compilation of components
2 Individually compiled components merged to final program

Merge & Verification
9 Automatic check if components meet specification



Giotto Framework

Giotto program
9 Executes a periodic set of LET tasks
0 Set of tasks and periods may change upon mode switches

mode ml () period 8

{ AudioSampler MixPlayer
actfreq 2 do MixPlayer () ;
taskfreq 1 do Analyzer( Mixer ); l
taskfreq 2 do Mixer ( Generator ) ; .
taskfreq 1 do Generator () ; Generator Mixer Analyzer

Task instance | *
2 Period defines start and stop times o i i&
2 Qutput available at stop time . : L

Analyzer I

v



‘ Giotto Abstraction
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Giotto Implementation
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E and S Machine
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Embedded Machine - E code E,,(m, 0):

call( copy[MixSound] )

2 Environment interaction call( copy[StringSound] )
release( 1; Mixer; 1 )
a Task release release( 1; [MixSound] )

future( 4, E, ,(m, 1) )

Scheduling Machine - S code S,.(m, 0):
. idle( 1 )
4 Task execution call( InDrv2 )
dispatch( Mixer; 2 )
2 Communication schedule idle( 3 )

dispatch( [MixSound]; 4 )



Schedule-Carrying Code

{ Giotto Code }
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Distributed Compilation

{ Giotto Code }
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‘ Distributed Code Generation

Integrator Hosts
< >
= = =
[ "’;\f'.

\

Suppliers




‘ Distributed Code Generation

Step 1
Integrator

Specification
(E Code Module and Timing Interface)



‘ Distributed Code Generation

Step 2

(S Code and Task Implementation)

Suppliers



‘ Distributed Code Generation

Step 3
Integrator

Verification
(S Code vs. Specification)



‘ Distributed Code Generation

Integrator Hosts
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Specification

Supplier s on host i gets

E ,(m, 0):
call( copy[MixSound] )

2 Component specification
11 [StringSound] )
E code module E_, release( 1; Mixer; 1 )

release( 1; [MixSound] )
future( 4, Es,h( m, 1))

2 Timing interface
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Integration

Integrator receives

S, ,(m, 0):
a S code module S, idle( 1)
o ’ _ call( InDrv2 )
Even with interfaces EDF optimal dispatch( Mixer; 2 )
idle( 3 )

dispatch( [MixSound]; 4 )

9 Task Implementation
Usually written in different language

2 Merged SCC module

Time-safe if no driver accesses a released task before
completion

Complies with timing interface if all tasks executed in time
intervals



Verification

Giotto program G
9 n :bound on all numbers in G

0 g, . size of Giotto component implemented by
supplier s on host A

Correctness

To check if a distributed SCC program P correctly
implements Giotto program ' it is enough to check

if each P , complies to 7,, and is time-safe

Complexity

If a given P, complies to T, , and is time-safe can be
checked in

O(g,,n) time



‘ Verification

" Module modification
9 Interaction - E_,

0 Schedule - §,,
9 Duration - wcet
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Implementation

Distributed audio mixer application
2 File read, processed, analyzed, and reproduced
2 Two hosts and three suppliers

P P

AudioSampler MixPlayer

Generator Mixer Analyzer

Py P P

PCs running RT-Linux, Ethernet

2 TDMA on top of software-based synchronization, 2.86Mb/s
9 Every 4ms 44 samples (11kHz) processed and transmitted
2 Overhead 3.7%: synchronization 25us, virtual machine 12us




Conclusions

Timing interfaces

2 Used to distribute code generation for Giotto programs
and distributed target platforms

Component integration

2 Performed by individually checking interface compliance
and time safety of each component

Timing requirements

9 Guaranteed without solving scheduling problem: burden is
shifted to generation of timing interfaces



