
Universit�t
Salzburg

Schedule-Carrying Code

Thomas A. Henzinger, Christoph M. Kirsch, and
Slobodan Matic

2 Universit�t
Salzburg

Contents

Giotto
Schedule Carrying Code
Real Time Programming
Elements of Formal Models for Real Time Systems
Giotto Model, FLET, Tool Chain
E Code and S Code
The E Machine and S Machine
E Code and S Code Instructions and Interpreters
Simplified Flight Control Example
Generating vs Checking SCC

3 Universit�t
Salzburg

Giotto

Giotto is a formal model/ high level programming language
for RTS based on FLET and periodic tasks.

Advantages:
Separation of functional and timing concerns
Value and time determinism
Predictability
Platform-independence
Multi-modal support (mode switching)
Compossability

4 Universit�t
Salzburg

Schedule Carrying Code

SCC is real time code annotated with the description of a
schedule, which witnesses the schedulability of the code.

Advantages
Produced by the compiler
Produced once and revalidated and executed with each
use, on a given platform.
More efficient
More flexible
It is easier to prove time safety.
Reuse of proofs

5 Universit�t
Salzburg

Models for Real Time Programming

6 Universit�t
Salzburg

Elements of Formal Models for Real Time
Systems

Components and connectors
Functional and control description of components
Time issues
Environment behavior description
Processing issues
Verification technique
Complexity

7 Universit�t
Salzburg

Giotto Model

8 Universit�t
Salzburg

FLET – Task Execution Model

active

d drunning runningpreempted

Logical

Physical time

(Fixed) Logical Execution Time

release start suspend resume complete terminate

release termination

9 Universit�t
Salzburg

FLET – Communication Between Tasks

10 Universit�t
Salzburg

Giotto Tool Chain

11 Universit�t
Salzburg

E Code

E code
Reactive/ timing code
Manages the release times and deadlines of software
tasks in reaction to environment events

E code is:
Portable
Predictable
Composable

12 Universit�t
Salzburg

S Code

S code
Proactive/ scheduling code
Manages the execution of released tasks on available
CPUs

S code is:
Universal – any scheduling strategy
Verifiable – fast time safety checking
Supports distribution

13 Universit�t
Salzburg

The E Machine and S Machine

Tasks are preemptive, user level code, with non-negligible WCETs
Drivers are system level code, with negligible WCETs
E Machine monitors input events through triggers
S Machine monitors input events through timeouts

14 Universit�t
Salzburg

E Code Instructions

Call(d)
Schedule(t)
Future(g,a)

The E machine maintains a queue of trigger bindings (g,a,s).

If (c,a)
Return

The execution is time safe if once released, a task t completes:
Before any driver accessed a port of t
Before t is released again

15 Universit�t
Salzburg

E Code Interpreter

while ProgramCounter ≠┴ do
i := Instruction(ProgramCounter)
if call(d) = i then

if driver d accesses a port of a task t that has been released but not completed
then throw a time-safety exception else execute d

else if schedule(t) = i then
if task t has already been released but not yet completed
then throw a time-safety exception else emit a signal on the release port of t

else if future(g, a) = i then
append the trigger binding (g, a, s) to TriggerQueue, where s is the current
state of the input ports that occur in g

end if
ProgramCounter := Next (ProgramCounter)

end while

16 Universit�t
Salzburg

S Code Instructions

Transient instructions:
Call(d)
Fork(a)

The execution is time sharing if only one task is dispatched to the CPU.
The S machine maintains a set of thread instances (t, b, h, a, s).

Timed instructions:
Dispatch(t,h,a) with 2 possible outcomes. S machine proceeds with:

The next instruction (t completes, or has not been released)
S code at address a (h expires)

Idle(h)

17 Universit�t
Salzburg

S Code Interpreter

while ProgramCounter ≠┴ do
i := Instruction(ProgramCounter)
ProgramCounter := Next (ProgramCounter)
if call(d) = i then

if driver d accesses a port of a task t that has been released but not completed
then throw a time-safety exception else execute d

else if dispatch(t, h, a) = i then
if there is a thread instance in ThreadSet with a non-idle task then

throw a time-sharing exception
else

insert the thread instance (t, ProgramCounter, h, a,ReferenceTime) into
ThreadSet and set ProgramCounter to ┴

end if
else if idle(h) = i then

insert the thread instance (idle, ┴, h, ProgramCounter ,ReferenceTime) into
ThreadSet and set ProgramCounter to ┴

else if fork(a) = i then
insert the thread instance (idle, ┴, true, a,s) into ThreadSet, where s is the current
value of the system clock

end if
end while

18 Universit�t
Salzburg

Example - Simplified Flight Control
Giotto

start hover {
mode hover() period 120ms {

exitfreq 3 do cruise(switch);
taskfreq 1 do pilot();
taskfreq 2 do control();
taskfreq 3 do lieu(); }

mode cruise() period 120ms {
exitfreq 2 do hover(switch);
taskfreq 1 do pilot();
taskfreq 2 do control();
taskfreq 4 do move(); }

C0: if(switch, H0+ 1)
schedule(pilot)
schedule(control)
schedule(move)
future(30ms, C30)
return[c0]

C30: schedule(move)
future(30ms, C60)
return[c30]

C60: if(switch, H60)
schedule(control)
schedule(move)
future(30ms, C90)
return[c60]

C90: schedule(move)
future(30ms, C0)
return[c90]

E Code

H0: if(switch, C0 + 1)
schedule(pilot)
schedule(control)
schedule(lieu)
future(40ms, H40a)
return[h0]

H40a: if(switch, H40b)
schedule(lieu)
future(20ms, H60)
return[h40]

H40b: future(20ms, C60)
return

H60: schedule(control)
future(20ms, H80a)
return[h60]

H80a: if(switch, H80b)
schedule(lieu)
future(40ms, H0)
return[h80]

H80b: future(10ms, C90)
return

19 Universit�t
Salzburg

Simplified Flight Control - E code

Hover

0ms 40ms 60ms 80ms 120ms

Cruise

0ms 120ms60ms30ms 90ms

if(switch, C0 + 1)
schedule(pilot)
schedule(control)
schedule(lieu)
future(40ms, H40a)
return[h0]

H80a: if(switch, H80b)
schedule(lieu)
future(40ms, H0)
return[h80]

H80b: future(10ms, C90)
return

E-CODE

FLET

H40a: if(switch, H40b)
schedule(lieu)
future(20ms, H60)
return[h40]

H40b: future(20ms, C60)
return

Pilot

Control Control

schedule(control)
future(20ms, H80a)
return[h60]

Lieu Lieu Lieu

Pilot

Control Control

Move Move Move Move

if(switch, H0 + 1)
schedule(pilot)
schedule(control)
schedule(move)
future(30ms, C30)
return[c0]

if(switch, H60)
schedule(control)
schedule(move)
future(30ms, C90)
return[c60]

FLET

schedule(move)
future(30ms, C60)
return[c30]

schedule(move)
future(30ms, C0)
return[c90]

20 Universit�t
Salzburg

Simplified Flight Control - S Code Variants - RM

end

released

Hover mode
(RM scheduling)

0ms 40ms 60ms 80ms 120ms

Pi

Contr

Lieu Lieu Lieu

lotPilot

Lieu

Control Contr

end

released olpre end olpre

preempted

end

end

end

Rate Monotonic

RM: dispatch(lieu, +4)
dispatch(control , +3)
dispatch(pilot, +2)
idle()
fork(RM)
return

21 Universit�t
Salzburg

Simplified Flight Control - S Code Variants - EDF

Earliest-deadline-first

EDF0/60: dispatch(lieu, +4)
dispatch(control , +3)
dispatch(pilot, +2)
idle()
fork(EDF40/80)
return

EDF40/80: dispatch(control, +4)
dispatch(lieu, +3)
dispatch(pilot, +2)
idle()
fork(EDF0/60)
return

idle

rel

preempted

end endend

end

released

Hover mode
(EDF scheduling)

0ms 40ms 60ms 80ms 120ms

Pi

Contr ol

Lieu Lieu Lieu

lotPilot

Lieu

Control Contr olreleased

rel

end

22 Universit�t
Salzburg

Simplified Flight Control - S Code Variants

Non-Preemptive S Code for the cruise mode

Is time safe if w(move) + w(control) ≤ 30ms and 2 · w(move) + w(pilot) ≤60ms

NP0: dispatch(move)
dispatch(control)
idle()
fork(NP30)
return

NP30: dispatch(move)
dispatch(pilot, NP60)
idle()
fork(NP60)
return

NP60: dispatch(pilot)
dispatch(move)
idle()
fork(NP90)
return

NP90: dispatch(control)
dispatch(move)
idle()
fork(NP0)
return

23 Universit�t
Salzburg

SCC Rules

An SCC program is a pair (E, S) consisting of an E
program that shares a set of tasks with an S program

Rules
if there is an enabled thread instance that contains a
completed task, then the S machine must handle that
thread instance before the E machine handles any
enabled triggers
if there is an enabled trigger binding, then the E machine
must handle that trigger binding before the S machine
handles any expired timeouts.

24 Universit�t
Salzburg

Generating vs Checking SCC

Use path-insensitive program analysis to check SCC, based on
abstract semantics.
Searching the state space is exponential.
Checking the Time Safety is simpler for Giotto generated and
simplified SCC.

It is NP hard to generate non-preemptive or distributed
schedules for Giotto programs.

But simple Giotto generated SCC program can be checked in
time linear with the size of the E code and frequency of events.

25 Universit�t
Salzburg

Time Safety Checking

We can use classical Time Safety Checking for known
algorithms.

EDF schedulability of a single mode can be checked by
solving a utilization equation.

For multimode Giotto programs, if each mode in isolation
is time-safe under EDF scheduling, then the whole
program is time-safe under EDF

It can be proved in linear size with the Giotto program
that a SCC program corresponds to a certain algorithm.

26 Universit�t
Salzburg

Optimality for schedulers

A set of tasks is schedulable or feasible if all deadlines
are met by some algorithm.

A scheduling algorithm A is optimal among a category of
scheduling algorithms if:

Any systems that A cannot schedule cannot be
scheduled by any other scheduling algorithms in the
same category

27 Universit�t
Salzburg

Optimal Scheduling Algorithms

Rate Monotonic Scheduling (RM)
Priority = rate = 1/period
Tasks with smaller periods have higher priorities
Optimal among all fixed-priority algorithms

Earliest Deadline First (EDF)
Priority = absolute deadline
Tasks with earlier deadlines have higher priorities
Optimal dynamic (varying priority) scheduling algorithm

28 Universit�t
Salzburg

Processor Utilization - Time Safety Check

The processor utilization factor is the fraction of the
processor time spent in the execution of the task set:

Ci – computation time, WCET
Ti – period

Time safety check: for a given algorithm A, we can
compute the least upper bound Ulub (A)

If U > 1 no scheduling algorithms can guarantee the schedulability
If U ≤ Ulub(A) the tasks are schedulable by algorithm A

This condition sufficient but not necessary:
If Ulub(A) <U ≤ 1, nothing can be said on the feasibility of the task
set.

∑
=

=
n

i i

i

T
CU

1

29 Universit�t
Salzburg

Processor Utilization -Time Safety Check
EDF Utilization Bound

Ulub=1
TSC: U ≤ 1
EDF is optimal among all algorithms

RM Utilization Bound
for n tasks:
Ulub(2) = 0.828

TSC: U ≤ Ulub

How do we test schedulability for RM when Ulub<U ≤ 1?

)12()(/1
lub −= nnnU

693.02ln)(lim lub ==
∞→

nU
n

	Contents
	Giotto
	Schedule Carrying Code
	Models for Real Time Programming
	Elements of Formal Models for Real Time Systems
	Giotto Model
	FLET – Task Execution Model
	FLET – Communication Between Tasks
	Giotto Tool Chain
	E Code
	S Code
	The E Machine and S Machine
	E Code Instructions
	E Code Interpreter
	S Code Instructions
	S Code Interpreter
	Example - Simplified Flight Control
	Simplified Flight Control - E code
	Simplified Flight Control - S Code Variants - RM
	Simplified Flight Control - S Code Variants - EDF
	Simplified Flight Control - S Code Variants
	SCC Rules
	Generating vs Checking SCC
	Time Safety Checking
	Optimality for schedulers
	Optimal Scheduling Algorithms
	Processor Utilization - Time Safety Check
	Processor Utilization -Time Safety Check

