
TinyOS:
Embedded Software for 

Wireless Sensor Networks

Sinem Coleri
Anshuman Sharma



Outline

� Motivation for Sensor Networks
� Motivation for TinyOS
� Development Environment for TinyOS
� Scheduling in TinyOS
� Event-driven Sensing
� Communication
� Conclusion



Outline

� Motivation for Sensor Networks
� Motivation for TinyOS
� Development Environment for TinyOS
� Scheduling in TinyOS
� Event-driven Sensing
� Communication
� Conclusion



Motivation for Sensor Networks

� Primary function
� Sample environment for sensory information
� Propagate or process data

� Applications
� Traffic density measurements in highways
� Determination of duration of traffic lights
� Car detection in parking garages
� Environment monitoring

� Light, temperature



Hardware Platform

� Current networked sensor
� Two board sandwich

� Main board with radio comm.
� 4MHz, 8 bit MCU (ATMEL)
� 512 bytes RAM, 8K ROM, 512 bytes EEPROM
� Small co-processor unit, serial port, LED outputs
� 900 MHz radio (RF Monolithics)

� Sensor Board
� Light, temperature, magnetic field

� Future networked sensors
� Communication, computation and MEMS devices 

in microscopic scale chips



Outline

� Motivation for Sensor Networks
� Motivation for TinyOS
� Development Environment for TinyOS
� Scheduling in TinyOS
� Event-driven Sensing
� Communication



Motivation for TinyOS

� Requirements shaping the design of 
networked sensors
� Small physical size

� Constrains storage
� Low power consumption

� Constrains processing, communication
� Concurrency intensive operation

� Sampling sensor, streaming data from or into 
network, processing data simultaneously



Motivation for TinyOS (cont…)

� Diversity in design and usage
� Requires efficient modularity

� Application specific devices, not general 
purpose

� Important to assemble just the software 
components to synthesize app. from hardware 
components



TinyOS

� Simple component based OS
� Subset of components used for particular application
� Components are reentrant cooperating state machines

� Efficient modular composition
� Overhead of modularity eliminated by static info

� Maintains high level of concurrency in limited 
space
� Refusing requests for memory inside the application

� Uses power efficiently
� Spending unused CPU cycles in sleep
� Turning radio off when not is use



Outline

� Motivation for Sensor Networks
� Motivation for TinyOS
� Development Environment for TinyOS
� Scheduling in TinyOS
� Event-driven Sensing
� Communication
� Conclusion



Complete TinyOS application

� Scheduler
� Graph of components

� Each component has
� Interface(.comp)
� Internal Implementation(.c) (eg. VHDL, 

Verilog)



Complete TinyOS 
application:Component

� Interface comprises of synchronous 
commands and asynchronous events
� Upper Interface

� Commands it implements
� Events it signals

� Lower Interface
� Commands it uses
� Events it handles

� Internal Storage
� Structured into a fixed-size frame

� Internal Concurrency
� Light-weight threads – tasks



Component Interface

Counter Component

C
O
U
N
T
E
R
_
O
U
T
P
U
T

C
O
U
N
T
E
R
_
S
U
B
_
O
U
T
P
U
T

_
I
N
I
T

C
O
U
N
T
E
R
_
S
U
B
_
C
L
O
C
K

_
I
N
I
T

C
O
U
N
T
E
R
_
C
L
O
C
K
_

E
V
E
N
T

C
O
U
N
T
E
R
_
O
U
T
P
U
T
_

C
O
M
P
L
E
T
E

Internal State

C
O
U
N
T
E
R
_
S
T
A
R
T

C
O
U
N
T
E
R
_
I
N
I
T

Internal Tasks

Commands Events

//COUNTER.comp//

TOS_MODULE COUNTER;

ACCEPTS{

char COUNTER_START(void);

char COUNTER_INIT(void);

};

USES{

char COUNTER_SUB_CLOCK_INIT(char
interval, char scale);

char COUNTER_SUB_OUTPUT_INIT();

char COUNTER_OUTPUT(int value);

};

HANDLES{

void COUNTER_CLOCK_EVENT(void);

char COUNTER_OUTPUT_COMPLETE(char
success);

};

SIGNALS{

};



Complete TinyOS 
application:Component Entities

� Command
� Function call across component boundaries
� Can post tasks, call commands
� Returns status 

� Way of managing limited storage

� Example
� Sending packet
� Sampling sensor



Complete TinyOS 
application:Component Entities

� Event
� Up-call for notification of action
� Interrupt at the lowest level
� Can post tasks, call commands, signal 

events
� Example

� Receiving packet
� Clock interrupt



Complete TinyOS 
application:Component Entities

� Task
� Way to incorporate arbitrary computation
� Can post tasks, call commands, signal 

events
� Example

� Encoding a byte
� Performing CRC check



Complete TinyOS 
application:Component Entities

� Fixed-size frame
� Internal storage
� Eliminates the overhead of dynamic 

memory
� Determines memory requirement in 

compile time 
� Example

� State of component
� Packet to be sent



Description of Application

� Describes the wiring of the interfaces
� 1-1 wiring
� Events to multiple components
� Multiple components to the same 

command

� Efficient modularity
� Optimization by static info



Example Application Desc.

main_sub_init

counter_init

main_sub_start

counter_start

counter_sub_clock_init

clock_init

clock_event

clock_fire_event

counter_sub_output_init

int_to_leds_init

CLOCK INT_TO_LEDS

MAIN

COUNTER

counter_output

int_to_leds_output



Example Application Desc.
include modules{
MAIN;
COUNTER;
INT_TO_LEDS;
CLOCK;
};

MAIN:MAIN_SUB_INIT COUNTER:COUNTER_INIT 

MAIN:MAIN_SUB_START COUNTER:COUNTER_START

COUNTER:COUNTER_CLOCK_EVENT CLOCK:CLOCK_FIRE_EVENT
COUNTER:COUNTER_SUB_CLOCK_INIT CLOCK:CLOCK_INIT

COUNTER:COUNTER_SUB_OUTPUT_INIT INT_TO_LEDS:INT_TO_LEDS_INIT

COUNTER:COUNTER_OUTPUT INT_TO_LEDS:INT_TO_LEDS_OUTPUT



Outline

� Motivation for Sensor Networks
� Motivation for TinyOS
� Development Environment for TinyOS
� Scheduling in TinyOS
� Event-driven Sensing
� Communication
� Conclusion



Scheduling

� Events have higher priority
� Events preempt tasks
� Almost instantaneous event execution

� Not wait for long latency actions
� Small amount of work related to component 

state



Scheduling

� Tasks have lower priority
� Tasks do not preempt events or other 

tasks
� Scheduled by FIFO scheduler

� Circular buffer keeping pointer to posted tasks

� Handled rapidly without blocking or polling
� Unused CPU cycles in sleep state



� Initialize scheduler (init 
buffer that keeps tasks)

� Issues init command 
(initialize all other 
components)

� While(1){
� While(task buffer non-empty){

� Take the next task
� Execute it
� Remove the corresponding 

entry from buffer
� }

� sleep
� nop

� }

Hardware interrupt comes

Interrupt handler{
……
Signal event
…
Post task to buffer
}

Event handler{
…
…}

Put task to 
circular buffer

Puts the processor to sleep 
but leaves the peripherals 
operating so that any of them 
can wake up the system

Scheduling



Outline

� Motivation for Sensor Networks
� Motivation for TinyOS
� Development Environment for TinyOS
� Scheduling in TinyOS
� Event-driven Sensing
� Communication
� Conclusion



Event-Driven Sensing

� Clock interrupt
� Clock event handler starts ADC 

conversion 
� CPU continues execution or sleeps if 

nothing else to do
� Sensor interrupt at the end of conversion



Outline

� Motivation for Sensor Networks
� Motivation for TinyOS
� Development Environment for TinyOS
� Scheduling in TinyOS
� Event-driven Sensing
� Communication
� Conclusion



Communication

� Application Level Communication
� Lower Layer Communication



Application Level 
Communication

� Use TinyOS to construct a networking 
infrastructure
� Self-organized collection of devices
� Application Level Messaging
� Stack implementation

� Requires little storage and power



Tiny Active Messages

� Uses the Active Messages (AM) paradigm
� Overlapping communication and computation 

through lightweight procedure calls
� Message contains handler name to be 

invoked on a target node
� Handler does two things

� Extracts message from network
� Integrate data into computation or send response



Managing Packet Buffers

� Traditional OS do this in kernel
� Three main issues

� Encapsulation
� Data storage reuse
� Provision of input buffer



Managing Packet Buffers 
(cont…)

� Buffer provides holes for system specific 
encapsulation

� The only pointers carried across boundaries
� Send command causes transmit buffer to be 

“owned”
� Ownership tracking is app. specific
� The “done” event is sent to all components
� Buffer exchange between message handler 

and system



Lower Layer Communication

� Challenge is to move message from app 
storage to phy modulation of channel

� We need a cross layer “data pump”
� In the stack

� The upper component partitions data into subunits
� The lower component acks this and signals for the 

next delivery when ready
� Message layer is the packet pump
� byte-by-byte vs. bit-by-bit abstraction 



Lower Layer 
Communication(cont…)

� No controller hierarchy
� Higher level functions can still continue in 

parallel
� At the base we have a state machine that 

does bit timing
� RFM component abstracts the real time 

deadlines from higher layers
� Encoding of data at the same time as 

transmission
� Reception requires detection of data on 

channel



Outline

� Motivation for Sensor Networks
� Motivation for TinyOS
� Development Environment for TinyOS
� Scheduling in TinyOS
� Event-driven Sensing
� Communication
� Conclusion



Conclusion

� Effective approach for highly constrained 
devices

� Non-blocking, event driven model facilitates 
interleaving processor among multiple flows

� Incremental processing of messages at 
different levels

� Event and task logical concurrency used 
everywhere but in the hardware

� Extremely modular design gives way to 
experimentation


