TinyOS:
Embedded Software for

!'_ Wireless Sensor Networks

Sinem Colerl
Anshuman Sharma

i Outline

= Motivation for Sensor Networks

= Motivation for TinyOS

= Development Environment for TinyOS
= Scheduling in TinyOS

= Event-driven Sensing

= Communication

= Conclusion

i Outline

= Motivation for Sensor Networks

= Motivation for TinyOS

= Development Environment for TinyOS
= Scheduling in TinyOS

= Event-driven Sensing

= Communication

= Conclusion

i Motivation for Sensor Networks

= Primary function

= Sample environment for sensory information
= Propagate or process data

= Applications
» Traffic density measurements in highways
»« Determination of duration of traffic lights

= Car detection in parking garages

= Environment monitoring
= Light, temperature

Hardware Platform

s Current networked sensor

= Two board sandwich

= Main board with radio comm.
4MHz, 8 bit MCU (ATMEL)
512 bytes RAM, 8K ROM, 512 bytes EEPROM
Small co-processor unit, serial port, LED outputs
900 MHz radio (RF Monolithics)

= Sensor Board
Light, temperature, magnetic field

s Future networked sensors

= Communication, computation and MEMS devices
IN microscopic scale chips

i Outline

= Motivation for TinyOS

= Development Environment for TinyOS
= Scheduling in TinyOS

= Event-driven Sensing

= Communication

i Motivation for TinyOS

= Requirements shaping the design of
networked sensors

= Small physical size
= Constrains storage

= Low power consumption
= Constrains processing, communication

= Concurrency Intensive operation

= Sampling sensor, streaming data from or into
network, processing data simultaneously

i Motivation for TinyOS (cont...)

= Diversity In design and usage

= Requires efficient modularity
= Application specific devices, not general
purpose

« Important to assemble just the software
components to synthesize app. from hardware
components

TinyOS

Simple component based OS

= Subset of components used for particular application

= Components are reentrant cooperating state machines
Efficient modular composition

= Overhead of modularity eliminated by static info
Maintains high level of concurrency in limited
space

= Refusing requests for memory inside the application
Uses power efficiently

= Spending unused CPU cycles in sleep
= Turning radio off when not is use

‘L Outline

s Development Environment for TinyOS
= Scheduling in TinyOS

= Event-driven Sensing

= Communication

= Conclusion

‘L Complete TinyOS application

s Scheduler

= Graph of components

»« Each component has
= Interface(.comp)

= Internal Implementation(.c) (eg. VHDL,
Verilog)

Complete TinyOS
i application:Component

= Interface comprises of synchronous
commands and asynchronous events

=« Upper Interface
= Commands it implements
= Events it signals

= Lower Interface
« Commands it uses
= Events it handles

= Internal Storage
= Structured into a fixed-size frame

= Internal Concurrency
« Light-weight threads — tasks

_______________>
_______________>

5 g
E &
5 8
VAV

Counter Component

Internal Tasks

Internal State

>

2 3

mI
2 Er Er
8 32 g2
[|
Commands

OCKD>
wD>

COUNTER_CL

EVENT
COUNTER_QUTP
COVWPLETE

Tl
<
M
)
—+
0]

Component Interface

[1 COUNTER. conp/ /
TOS_MODULE COUNTER,

ACCEPTS{
char COUNTER_START(voi d);
char COUNTER_I NI T(voi d);

b

USES{

) Cha]r NTER SUB CLOCK | NI T(char
interval, char scal e

char COUNTER SUB_OUTPUT | NI T();
char COUNTER _QUTPUT(i nt val ue);

¥

HANDLES{
voi d COUNTER_CLOCK EVENT(voi d);

char COUNTER_OUTPUT_COWPLETE(char
success) ;

¥

S| GNALS{
b

Complete TinyOS
i application:Component Entities

= Command
= Function call across component boundaries
= Can post tasks, call commands

= Returns status
=« Way of managing limited storage

= Example
= Sending packet
= Sampling sensor

Complete TinyOS
‘L application:Component Entities

s Event
=« Up-call for notification of action
« Interrupt at the lowest level

»« Can post tasks, call commands, signal
events
= Example

= Receiving packet
= Clock interrupt

Complete TinyOS
‘L application:Component Entities

s Task

= Way to incorporate arbitrary computation

»« Can post tasks, call commands, signal
events
= Example

= Encoding a byte
= Performing CRC check

Complete TinyOS
i application:Component Entities

s Fixed-size frame

= Internal storage

= Eliminates the overhead of dynamic
memory

« Determines memory requirement in
compile time

= Example
= State of component
= Packet to be sent

i Description of Application

= Describes the wiring of the interfaces
= 1-1 wiring
=« Events to multiple components

= Multiple components to the same
command

= Efficient modularity
»« Optimization by static info

‘L Example Application Desc.

MAIN
main_sub_init main_sub_start
counter_init counter_start

COUNTER

counter_sub_clock_init

clock_init

clock_event counter_sub_output_init

clock_fire_event int_to_leds_init

CLOCK

counter_output

int to leds output

INT_TO_LEDS

‘L Example Application Desc.

include modules{
MAIN;

COUNTER;
INT_TO_LEDS;
CLOCK;

h

MAIN:MAIN_SUB_INIT COUNTER:COUNTER_INIT
MAIN:MAIN_SUB_START COUNTER:COUNTER_START

COUNTER:COUNTER_CLOCK_EVENT CLOCK:CLOCK_FIRE_EVENT
COUNTER:COUNTER_SUB_CLOCK_INIT CLOCK:CLOCK_INIT

COUNTER:COUNTER_SUB_OUTPUT_INIT INT_TO_LEDS:INT_TO_LEDS_INIT
COUNTER:COUNTER_OUTPUT INT_TO_LEDS:INT_TO_LEDS_OUTPUT

‘L Outline

= Scheduling in TinyOS
= Event-driven Sensing
= Communication

= Conclusion

i Scheduling

= Events have higher priority
= Events preempt tasks

= Almost Iinstantaneous event execution
= Not walt for long latency actions

= Small amount of work related to component
state

i Scheduling

= Tasks have lower priority

= Tasks do not preempt events or other
tasks

= Scheduled by FIFO scheduler
= Circular buffer keeping pointer to posted tasks

»« Handled rapidly without blocking or polling
=« Unused CPU cycles in sleep state

Scheduling

= [nitialize scheduler (init
buffer that keeps tasks)

= Issues init command
(initialize all other
components)

= While(1){
= While(task buffer non-e

= Take the next tas

= Execute it

Puts the processor to sleep
but leaves the peripherals
operating so that any of them
can wake up the system

Hardware interrupt comes Event handler{
v |
Interrupt W/ ..}
Signal event < |

Put task to

Post task to buffer)
circular buffer

1

‘L Outline

B
B

B

B

= Event-driven Sensing
= Communication

= Conclusion

i Event-Driven Sensing

= Clock interrupt

= Clock event handler starts ADC
conversion

= CPU continues execution or sleeps If
nothing else to do

= Sensor interrupt at the end of conversion

i Outline

B
B

B

B

= Communication
= Conclusion

‘L Communication

= Application Level Communication
= Lower Layer Communication

Application Level
i Communication

= Use TinyOS to construct a networking
iInfrastructure

= Self-organized collection of devices
=« Application Level Messaging

» Stack implementation
= Requires little storage and power

i Tiny Active Messages

= Uses the Active Messages (AM) paradigm

= Overlapping communication and computation
through lightweight procedure calls

= Message contains handler name to be
Invoked on a target node
= Handler does two things

= Extracts message from network
= Integrate data into computation or send response

i Managing Packet Buffers

s [raditional OS do this in kernel

= Three main issues
= Encapsulation
» Data storage reuse
= Provision of input buffer

Managing Packet Buffers
(cont...)

+

Buffer provides holes for system specific
encapsulation

The only pointers carried across boundaries

Send command causes transmit buffer to be
“owned”

Ownership tracking Is app. specific
The “done” event is sent to all components

Buffer exchange between message handler
and system

i Lower Layer Communication

= Challenge is to move message from app
storage to phy modulation of channel

= We need a cross layer “data pump”

= In the stack
= The upper component partitions data into subunits

= The lower component acks this and signals for the
next delivery when ready

= Message layer is the packet pump
= byte-by-byte vs. bit-by-bit abstraction

Lower Layer
Communication(cont...)

+

No controller hierarchy

Higher level functions can still continue In
parallel

At the base we have a state machine that
does bit timing

RFM component abstracts the real time
deadlines from higher layers

Encoding of data at the same time as
transmission

Reception requires detection of data on
channel

* Outline

s Conclusion

Conclusion

Effective approach for highly constrained
devices

Non-blocking, event driven model facilitates
Interleaving processor among multiple flows

Incremental processing of messages at
different levels

Event and task logical concurrency used
everywhere but in the hardware

Extremely modular design gives way to
experimentation

