
Embedded Software Engineering Course

Winter 2005/2006

reMOTEable Project

Alois Hofstätter, Bernhard Kast, Horst Stadler

February 10, 2006

1

Embedded Software Engineering - reMOTEable CONTENTS

Contents

1 Introduction 3
1.1 Our Hardware . 3
1.2 Existing Solutions . 3
1.3 Our Goal . 3
1.4 TinyOS . 4

2 Design thoughts 4
2.1 Virtual Machine . 4

2.1.1 Architecture . 4
2.1.2 Code- and Datasegment partitioning . 4
2.1.3 Slots and Scheduling . 6
2.1.4 Translator . 6

2.2 Agent . 6
2.2.1 Route Acquiring Agent . 7
2.2.2 Data Collecting Agent . 8

2.3 Transport Protocol and Routing . 8
2.3.1 Neighbour Discovery Protocol . 8
2.3.2 Agent Transport Protocol . 8

3 Further Ideas 9
3.1 USB communication . 9
3.2 reFODESY . 9
3.3 Routing algorithm . 9

4 Implementation Status 9
4.1 Virtual Machine . 9
4.2 Agents . 10
4.3 CapCall �Send to all neighbour motes� . 10

A Route Acquiring Agent Example 10

B References 12

2 Hofstätter, Kast, Stadler

Embedded Software Engineering - reMOTEable

1 Introduction

1.1 Our Hardware

5 pieces of Telos mote IV Rev A (2k RAM, 60k ROM)

Figure 1: Telos mote IV

1.2 Existing Solutions

• Agilla

� Existing agent system

� Strong mobility

� Too high hardware requirements

• Mate

� Not an agent system

� A mote reprogramming system

• Sensorware

� Too high hardware requirements

� Weak mobility

⇒ These solutions are not suitable, we need our own system

1.3 Our Goal

Our system will be an agent system with multiple agents in one network and it should also provide strong
mobility, this means it should not fail if changes in the network structure happen. The motes should be
able to communicate with each other and if needed with PCs too. We plan to inject a new agent into a
running system via the PC. The �nal system should be able to handle data collection agents (like sensor
networks).

3 Hofstätter, Kast, Stadler

Embedded Software Engineering - reMOTEable 1.4 TinyOS

1.4 TinyOS

TinyOS supports our hardware very well and we use its functionality. TinyOS is event based and organized
as a layered system. The functionalities are divided into components an can be combined as needed. Those
components communicate with each other using events and commands. TinyOS uses a FIFO scheduling
schema. Task can be interrupted by events or commands but not by other tasks.Each task as to be �nished
before another task can be started. The programming language is called nesC and is similar to the well
known C language. nesC does not support dynamic memory allocation nor function pointers. We used
the TinyOS version 1.x.

2 Design thoughts

To get an �exible, hardware and OS independent agent system we decided to design our own language and
therefor we needed to implement a virtual machine. Even we would restrict the agent system to TinyOS
platforms a VM would be necessary anyway because TinyOS does not provide dynamic memory allocation
or function pointers. The agents should be given the ability to jump from one mote to the next by a radio
interface. In fact we had to design and implement some kind of routing algorithm.

2.1 Virtual Machine

We designed the language and its architecture with respect to save memory. So the memory is divided
into 4 bit blocks (half-byte alignment) and each block can be addressed. The length of the commands
is variable, but is always a multiple of 4 bit even if some bits are unused. We decided to use 4 bit for
command number and optional the following for arguments. To break the limitations of a small number
of commands we classi�ed the commands into basic ones and high level commands. High level commands
can be called with the capability command (capcall). This is used to allow a agent to be sent over the
radio interface, to read sensors or to switch leds. The capcall has two arguments, which speci�es a package
number (4 bit) and its function (4 bit). Functions which have similar functionality are grouped together
into packages. For example all functions which have something to do with the leds are in package number
15. The available commands are listed in Table 2.

2.1.1 Architecture

The virtual machine provides four multi purpose registers, four �ags to indicate a division by zero, an
over�ow, a remainder �ag for divisions and a compare �ag the allow branches. All these information
always stays with the agent.

Type Capacity Addressing size
Register 8 bit 2 bit
Address (DS,CS) 4 bit 8 bit
Value 8 bit

Table 1: Architecture types and their sizes

2.1.2 Code- and Datasegment partitioning

The maximum size of the CS and DS altogether is 416 Half-Bytes, because the maximum size of an agent
is 432 Half-Bytes and 16 Half-Bytes are needed for the registers, the program counter and the �ags. The
432 Half-Byte limit results from the maximum radio packet payload size (54 Half-Bytes) and the maximum
sequence number (3 bit → 8 values) of radio transport packet. We decided that this limits are su�cient
for a embedded agent system. However the size of the CS or DS can't exceed the size of 256 Half-Bytes,
because the CS and DS size counter has a limited length of 8 bit (→ 256 values). See Figure 2

4 Hofstätter, Kast, Stadler

Embedded Software Engineering - reMOTEable 2.1 Virtual Machine

Nr Name Parameter 1 Parameter 2 Description Length(bit)
0 xor register 1 register 2 bitwise XOR; register 1 =

register 1 XOR register 2
4 + 2 + 2

1 and register 1 register 2 bitwise AND; register 1 =
register 1 AND register 2

4 + 2 + 2

2 or register 1 register 2 bitwise OR; register 1 =
register 1 OR register 2

4 + 2 + 2

3 cmp register 1 register 2 set compare-�ag 1 if regis-
ter1 == register2

4 + 2 + 2

4 jmpt (absolute) ad-
dress

Jump true 4 + 8

5 jmpf (absolute) ad-
dress

Jump false 4 + 8

6 add register 1 register 2 register 1 = register 1 +
register 2; note can be
used as "mov reg1,reg2"

4 + 2 + 2

7 sub register 1 register 2 register 1 = register 1 -
register 2; note can be
used to set register to 0

4 + 2 + 2

8 div register register register = register / regis-
ter; rest will be saved on a
speci�c position =⇒ mod
is also provided

4 + 2 + 2

9 mul register register register = register * regis-
ter

4 + 2 + 2

10 mov register value (byte) register = value 4 + (2) + 2 + 8
11 load register address register = address 4 + (2) + 2 + 8
12 store address register address = register 4 + 8 + (2) + 2
13 capcall value 1 value 2 call method(value 2) from

capability(value 1)
4 + 4 + 4

14 <reserved> reserved for future use
15 exit <none> <none> exit agent 4

Table 2: Commands of the Virtual Machine

Package number Function number Description

0 Radio link
0 send agent to mote in register 0
1 send agent to all neighbour motes

15 Leds
0 toggle red led
1 toggle green led
2 toggle blue led
3 switch red led on
4 switch green led on
5 switch blue led on
6 switch red led o�
7 switch green led o�
8 switch blue led o�
9 show value of register 0 with the leds

Table 3: Capcalls

5 Hofstätter, Kast, Stadler

Embedded Software Engineering - reMOTEable 2.2 Agent

Figure 2: Agent memory layout

2.1.3 Slots and Scheduling

At this state of our implementation we support to run four agents �at the same time�. Each agent has its
own Virtual Machine slot. The number of simultaneously running agents is restricted by the RAM size of
our motes. The scheduling is just a simple Round Robin algorithm. Each round executes one command
of each agent.

2.1.4 Translator

To ease our work we created a tool for translating human readable assembler code into reMOTEable VM
code. This tool was written in Java 1.5 and has a graphical user interface and a command line interface.
The command line tool requires a input �le and writes the generated statements to an output �le. The
graphical tool can use an input �le or can be used like an text editor. This tool is very very helpful
especially in respect to jump labels. For an example see Figure 3 and Figure 4 show a screen shot of the
graphical tool.

2.2 Agent

The agent consists of a code segment and its size. The code segment is readonly and can't be accessed
by the agent. Moreover the agent provides a data segment and its size. This segment can be read and
written by the agent. The �ags are set by the related commands. The program counter is increased by
each command, except the two jump commands, which can set the program counter to the absolute given
address. Most of the basic commands and most of the capability calls operate with the four registers. The
mote to mote communication is provided via capability calls to the agent. For routing concerns the agent

6 Hofstätter, Kast, Stadler

Embedded Software Engineering - reMOTEable 2.2 Agent

mov 0 0
mov 2 1
:start1
mov 1 10
:start2
sub 1 2
capcall 15 1
cmp 1 0
jmpf start2
capcall 15 2
cmp 0 0
jmpt start1
capcall 15 0
exit

Figure 3: Short agent code example

Figure 4: Screenshot of the Translator GUI

itself has to worry about. If an agent wants to get to a speci�c mote, which can be speci�ed by its address
or special capabilities, it can �nd the route itself (provide an own routing algorithm) or it can use a route
acquiring agent, which is implemented on each mote. This route acquiring agent tries to �nd the needed
destination and can be activated by a capability call.

2.2.1 Route Acquiring Agent

To get the route to the destination the route acquiring agent (RAA) �rst sends itself to all neighbours of
the current mote and saves the origin mote address in its path list in the data segment. In the next step
the RAA sends itself to all neighbours of the current mote, except to those in its path list. As before the
address of the current mote is added to the path list. This step is repeated till the destinations is found or
the RAA has already visited all current neighbour motes. The agents which reach the destination travel
back to the origin mote using the collected path and provides the path to the calling agent. This algorithm
�nds all existing routes. If a RAA has no further unvisited motes (it found a dead end or a loop) it will
terminate. We are aware of the issue, that this method evolves much tra�c if all motes are in the same
communication zone. We didn't �nd a satisfying solutions with agents for this problem till now.

7 Hofstätter, Kast, Stadler

Embedded Software Engineering - reMOTEable 2.3 Transport Protocol and Routing

2.2.2 Data Collecting Agent

This agent would be a possible application for sensoring networks. Suppose that some motes are spread
over an area to collect data every minute. If the memory of the agent is full it needs to transfer the data
to a master, which may be connected to a database. At this point the agent creates a copy of itself with
an free memory. So the agent can send itself to the master, including the collected data and stay on the
mote collecting further data.

2.3 Transport Protocol and Routing

In this section the necessary technics for the mote to mote communication and the routing is described.

Figure 5: Network Model

2.3.1 Neighbour Discovery Protocol

If an agent wants send itself to another mote the actual mote has to know which motes are in its commu-
nication area. Therefor we designed a neighbour discovery protocol. The main concept is based on request
and answer strategy. To discover its neighbours a mote sends an discovery request and all motes, which
receive this broadcast request answer with an unicast response. The sender of each response is written to
a local neigbours list and a corresponding time-to-life value is set. A timer decrements this time-to-life
value to zero. If a value reaches zero the entry is obsolete. The reason for this design is to have caching,
because periodic alive signals would be redundant and would stress the already limited resources.

A discovery protocol request packet can be distinguished from other packets, by it's destination address
(broadcast address).

Name bits
Source 4
Destination 4

Table 4: Neighbour discovery packet

2.3.2 Agent Transport Protocol

This protocol is reliable, unicast and used to send an agent from one mote to another within the com-
muncation zone. It contains no routing information. If an agent should travel along a route, the route
information is contained in the agent and it has to care about the routing itself. The discovery protocol
packets can be distinguished from a transport protocol packet by it's length (Transport Protocol 2 Byte;
Discovery Protocol = 1 Byte). TinyOS allows a maximum packet size of 58 Half-Bytes. 4 Half-Bytes are
used for the header (see Figure 6) so we can transfer 54 Half-Bytes of an agent per packet. The session ID

8 Hofstätter, Kast, Stadler

Embedded Software Engineering - reMOTEable

and the source address are taken into account to assign an arriving packet to the correct virtual machine
slot. So it's possible to transfer more than one agent form a mote A to another mote B at the same time.
To transport agents with a size bigger than the payload of one packet a sequence number is used. To
identi�y the last packet a �last packet bit� was introduced. Due to the reliability of the transport protocol,
acknowledgments are needed. An acknowledgment con�rms the arrival of the package and free resources
(slots) to run the agent on the receiver mote. The ACK also carries the address of the communication
partner, the sequence number and the session ID to assign this ACK to the sent packet. Both motes need
a timeout. The sender needs it to retransmit a data packet. After a small number of retransmissions the
whole transfer is cancelled. The receiver uses the timeout to free the allocated slot in case of a broken
communication .

Figure 6: Transport protocol packet

3 Further Ideas

3.1 USB communication

Via the Java communication API (javax.comm) a connection between a mote and a PC can be established.
This can be used to collect data from a mote / mote network or to inject new agents into the running
virtual machine. The reMOTEable translator can be enhanced to allow direct uploads of the agent code
to the mote.

3.2 reFODESY

As a proof of concept the �Fog Detection System� (FoDeSy) project of the past ESE course could be
reimplemented with this technique.

3.3 Routing algorithm

The used routing algorithm is very simple, but has some drawbacks. So it would be interesting to �nd
and experiment with other algorithms, which are useable for our agent concept.

4 Implementation Status

4.1 Virtual Machine

• Basic commands: implemented and working

9 Hofstätter, Kast, Stadler

Embedded Software Engineering - reMOTEable 4.2 Agents

• CapCalls:

� The �Leds�, �Neighbour Discovery�, �Send to one neighbour mote� CapCalls are working

� �Sensors� , �Send to all neighbour motes� CapCalls are not fully implemented or buggy

• Neighbour Discovery Protocol

� Request works

� Response works

� Caching works

• Transport Protocol

� Send part works

� ACK part works

• Scheduling works

• Timeouts for receiving and sending

4.2 Agents

• Various test agents

• Self-Sending agent

• RAA (incomplete CapCall)

4.3 CapCall �Send to all neighbour motes�

If an agent wants to be sent to more than one destinations at the same time, it will be done by the mote
as followed. The mote will send the agent to the �rst mote and it will continue sending the agent to the
second mote after the agent was successfully sent to the �rst mote. We did it this way to avoid high data
usage for the ACK management. This can easily be realized by using the �Send to one neighbour mote�
CapCall.

A Route Acquiring Agent Example

Suppose mote 1 sends a RAA to �nd mote 4. The red lines represent a searching RAA and the blue lines
represent a successfull RAA on its way back.

Step 1 (left) and Step 2 (right)

10 Hofstätter, Kast, Stadler

Embedded Software Engineering - reMOTEable

Step 3 (left) and Step 4 (right)

Step 5 (left) and Step 6 (right)

Step 7 (left) and Step 8 (right)

Step 9 (left) and Step 10 (right)

11 Hofstätter, Kast, Stadler

Embedded Software Engineering - reMOTEable

Step 11 (left) and Step 12 (right)

B References

Philip Levis, David Culler. Mate: A Tiny Virtual Machine for Sensor Networks.
http://www.cs.wustl.edu/�lu/cs537s/Papers/mate.pdf

Chien-Liang Fok, Gruia-Catalin Roman, Chenyang Lu.
�Rapid Development and Flexible Deployment of Adaptive Wireless Sensor Network Applications� In Pro-
ceedings of the 24th International Conference on Distributed Computing Systems (ICDCS'05), Columbus,
Ohio, June 6-10, 2005, pp. 653-662.
http://www.cs.wustl.edu/mobilab/projects/agilla/index.html

http://www.moteiv.com/products-tmotesky.php

http://www.tinyos.net/

12 Hofstätter, Kast, Stadler

