
1

SoccerBot: Software architecture of a camera-vision
equipped robot featuring real-time object

recognition.
Georg Klima∗, Krystian Szczurek∗, Peter Wild∗

∗Department of Computer Science
University of Salzburg, A-5020 Salzburg, Austria
Email: {gklima, szczurek, pwild}@cosy.sbg.ac.at

Abstract— SoccerBotis a semi-autonomous robot based on a
Lego R© MindstormsTM (RCX) chassis and a web camera as the
main sensory system for navigation. Motivated by soccer-playing
robots we construct a robot able to recognize and catch a ball
distinguishable from the environment by its color and shape.
For computation intensive real-time image processing and object
recognition, an external computer (notebook/PC) is used, which
then transmits its navigation commands via an IR link to the
RCX. Control software on notebook/PC is written in Java using
Giotto for exact specification of timing behavior.

After an architectural overview, we visualize the PC-RCX
communication layer and introduce used embedded controller
software on RCX. Subsequently, we present the used algorithms
for object recognition, i.e. a Split-and-Merge algorithm using a
homogenity criteria comparing colors in HSV color space for
image segmentation and a best-fit search using CIE lab colors
including a shape-test and color-test for object classification. A
controller implemented as a finite state automaton for navigation
is illustrated and finally, we give an outlook on future develop-
ments.

I. I NTRODUCTION

The construction of autonomous robots being able to play
soccer has been interdisciplinary research work for a couple
of years in artificial intelligence, image processing, electron-
ics and mechanical engineering. Competitions like RoboCup
(http://www.robocup.org ) exist, to promote develop-
ment and constitute a platform of challenge for working
groups. One of the most important tasks facing these groups is
the robust and real-time capable localization of the ball within
the playing field.

A. Problem definition

Typically all objects in a soccer game, i.e. ball, players
and goal have different colors and thus seem to be easily
distinguishable. However, their unambiguous localization is
yet an insufficiently solved problem, as [1] points out, since
most approaches require long calibration phases. The goal
for our project was to provide an adequate design and im-
plementation solution to equip a robot with software able to
locate and catch such a ball within a playing field. While
some AI approaches focus on intelligent controllers and use
simple object recognition techniques, we provide accurate
object classification under variant lighting conditions. Thus,
the controller can be implemented as a simple state automaton.

Fig. 1. SoccerBot: 2-independent-wheel-drive LegoR© MindstormsTM robot
mounted with LogitechR© QuickCamR© Pro 5000.

Fig. 2. Original concept consisting of two subsystems (RCX and PC).

Second, there is often less focus on software architecture and
the selection of adequate embedded software approaches. We
decided to use Giotto for an exact specification of timing
behavior.

Timing constraints are set a priori according to predefined
requirements. Thesereal-time requirements are empirically
determinable as follows:

• a reaction-timeof less than300 ms, i.e. not more that
300 ms pass from the detection of the ball by the camera
sensor until motor actuators react.

• an image processing rateof at least10 fps, as suggested
by [1].

Besides, to obtain reliable object recognition the following
quality requirements exist:

• an accuracy of at most 1 false classification in 100
processed frames.

• robustnessagainst changes in lighting.
Unfortunately, despite a fast implementation we are not yet



2

Camera

JMF

Image-acquisition

Segmentation

Object recogintion

Chassis / RCX

BrickOS

Drive

RCXDrive

Controller

G
io

tt
o

LNP

Fig. 3. Two-stacked layered architecture with separated timing code (Giotto).

capable of executing the object recognition task within the
processing environment of LegoR© MindstormsTM . For this
reason we decided to swap out computation to an external
computer and use an architecture illustrated in Figure 2.
However, as hardware is becoming smaller and faster, we
believe this external computing power could be replaced by
an on-board sub-notebook or tablet PC. In the following, we
report on software architecture and initial setup.

B. Architectural overview

The software ofSoccerBot(see Figure 1) is built based
on a modular layer-oriented architecture to support future
additions and a strict separation of different functionalities. On
PC we completely rely onJavacode, on RCX the embedded
controller thread is written inC.

1) Two-stacked layered architecture:Figure 3 illustrates
two stacks, one for the acquisition and processing of the
camera image and another for PC-RCX communication. The
camera is controlled viaJava Media Framework(JMF). An
Image-acquisitiontool extracts a buffered352 × 288 RGB
image, which is then cropped to a256 × 256 image and
segmented into regions by aSegmentationprocess. These
regions provide the base for object classification within the
Object Recognitionlayer. On the bottom of the second stack
BrickOS running on RCX hosts an embedded controller thread
(Drive), which controls the motors and reads bumper sensor
values. Communication with the accordingRCXDrive layer
on the PC is done usingLego Network Protocol(LNP)
messages. The central component within this architecture is
the Controller which generates navigation commands.

2) Separate timing code:We do also clearly separate
functionality from timing code. This is done using the high-
level language Giotto for control software development. Giotto
(see [2]) offers programming models for time-triggered appli-
cations introducing theembedded software modelas a new
programming paradigm and features exact specification of
timing behavior, i.e. when sensors are read or actuators are
written. Thus, functional code is clearly separated but linked
to and supervised by the Giottotiming program compiled
to E code. By defining real-time interactions of periodically
executedtasks with the environment, we get the following
benefits:

• Giotto semantics implyfixed logical execution times
(FLET), i.e. sensors are read only at the beginning,
actuators are written at the end of a task’s period.

• environment-determinedness, i.e. value and time of
actuator updates are predictable as a consequence of

Object 
RecognitionD1

Controller

D2

D3
D4

Camera_Sensor

Bumper_Sensor RCXDrive_Actuator

Fig. 4. Giotto model for pursuit modemain.

FLET. E code is also verifiedtime-safeby the Giotto
compiler.

• composability, since the compiler maintains compliance
with logical semantics.

This, we believe, makes our system flexible and determin-
istic. Next, we present the Giotto timing program in detail.

C. Giotto model

ConsiderSoccerBotin pursuit modemain, illustrated in
Figure 4. Having access to both sensors, theCameraSensor
and BumperSensor, SoccerBottries to catch the ball. There
are two tasks, both given in Java code: the image processing
taskObject Recognition, and the navigation taskController.

While theObject Recognitiontask processes camera images
every 100 ms and provides recognized object information
to the control task. The latter extracts navigation commands
following simple control laws, and writes the result to the
actuatorRCXDriveActuator. This actuator is actually a stub,
since navigation commands are transmitted through an IR
link to the RCX. The control task is executed once within
the period of100 ms. Since it requires output of theObject
Recognitiontask it operates on input that is already100 ms
old. Together with a communication delay of another estimated
100 ms, until the embedded controller receives the navigation
command message, we fulfill the requirement of300 ms
reaction-time.

Additional modes areinit anddeinit for hardware initializa-
tion and shutdown, respectively. Here is the Giotto description
of timing behavior:

mode init() period 500{
exitfreq 1 do main(ExitInit_Driver);
taskfreq 1 do Init();

}
mode main() period 100 {

actfreq 1 do RCXDrive(RCXDrive_Driver);
exitfreq 1 do deinit(ExitMain_Driver);
taskfreq 1 do ObjectRecognition(

ObjectRecognition_Driver
);

taskfreq 1 do Controller(Controller_Driver);
}
mode deinit() period 500{

taskfreq 1 do DeInit();
}.



3

RCX / IR

BrickOS

Drive

LNP

RCXDrive

RCXDriveJOSX - LNP

PC / IR Tower

Fig. 5. Communication stack implemented on both PC and RCX.

II. PC-RCX COMMUNICATION

RCXDrive, the communication layer forSoccerBotenables
bi-directional communication between RCX and PC. It offers a
set of communication primitives using thejosxstack, which is
provided as a part ofleJOS, a Java based replacement firmware
for the RCX micro-controller. Using a subset of the available
operations, we provide the following functionality:

• sending of Drive-commands, which set the direction and
speed for the actual movement ofSoccerBotand

• receiving Bumper-events, which are released whenever
SoccerBothas physical contact with the ball through its
front-mounted fork.

The communication stack is implemented on both platforms,
one for the RCX and the other for the PC. In order to keep
out of compatibility issues we use LNP, supported by both,
BrickOSand josx (see Figure 5).

RCXDrive is used to emulate sensors and actuators on the
PC. Actually the motors are seen as actuators in terms of
Giotto as well as the bumper, which is seen as a sensor.

Since SoccerBotis meant to be an embedded real-time
system, the following requirements for communication exist:

• reliability : we used LNP integrity messages for commu-
nication, thus eliminating the problem of message loss or
message integrity corruption due to bad connectivity.

• dependable low latency: we modifiedjosx to achieve an
actual communication delay of less than100 ms.

Modifications of josx include:
• refactoring the josx stack using JavaDataInput and

DataOutput interfaces for the transmission of primitive
data types: Originallyjosx’ top most layer used Java
streams to communicate messages, even if the used driver
for the infrared tower supports packet assembling over the
underlying serial infrared protocol.

• extending packet size: Originally the size of packages
was limited to2 bytes RX/1 byte TX. However, the more
resource limited RCX can send and receive messages with
a length of at least 240 bytes.

We emulate LegoR© MindstormsTM actuators and sensors on
the PC. Hardware sensors are usually event-triggered. Thus,
the connection between PC and RCX is event-triggered too.
However, in Giotto, sensor emulating software components are
polled in a timed fashion. Therefore mechanisms exist to queue
events. This conversion from event-triggered to time-triggered
events is illustrated in Figure 6.

A. Communication at PC: RCXDrive layer

RCXDrive on the PC side communicates with RCX. Func-
tions provided by the layer-interface are as follows:

RCX
Bumper

PC Controller
Eventtriggered

IR

Timetriggered

Fig. 6. Event-triggered / Time-triggered communication.

• setPower(byte power) sets the speed for driving
straight or the strength of a curve or turn.

• sendCommand(byte command) sends a command
to be executed by RCX.

• getBumper() returns a boolean with the state of the
bumper since the last query.

Both the RCX and the PC use the following commands:

#define CMD_FORWARD 0
#define CMD_LEFT 1
#define CMD_RIGHT 2
#define CMD_TURN_LEFT 3
#define CMD_TURN_RIGHT 4
#define CMD_STOP 5
#define CMD_REVERSE 6
#define CMD_EXIT 7

B. Communication at RCX: Drive layer

The Drive layer running on RCX handles communication
using operating system routines ofBrickOS. There is an
embedded controller on the RCX to receive and execute
commands, as well as to generate bumper-events, whenever
SoccerBothits the ball. Independent, parallel threads for mo-
tor control, communication and handling/generating bumper-
events exist.

Plain straight driving is always a problem with the mechani-
cal configuration we are using, because of the two independent
wheels. This, however, is solved by the camera sensor, which
supersedes all other inputs. As a further improvement we are
planning to use rotational sensors for both wheels. This way,
we can measure wheel rotations and correct the discrepancy
between the left and right wheel.

III. O BJECT RECOGNITION TASK

The object recognition task acquires image data from a
video stream and performs segmentation and object recogni-
tion. It operates on the following ports:

• Input port: 352 × 288 24-bit still camera image
(BufferedImage port ).

• Output port: best-matching region classifying the ball, if
the ball is visible (Region port ).

In order to provide the controller task with necessary in-
formation, two steps are carried out: First, asegmentation
step dividing the image into regions using aSplit-and-Merge
algorithm with homogenity criteria inHSV color space. Sec-
ond, the actualobject recognition for the localization of the
ball. This step is executed using closest color-distance to a
threshold inCIE Lab color space, acolor-testand an aspect
ratio shape-test. While the first part is a rather time consuming
step (estimatedworst case execution time- WCET: 80 ms),
object recognition can be carried out fast (estimated WCET:
10 ms).



4

Merge

Split

Grouping

1 2

13 14

17 18
4

R

1 2 3 4

13 14 17 18

Fig. 7. Split-and-Mergealgorithmic steps: Split, Merge and Grouping.

Fig. 8. (a) original256 × 256 24-bit picture, (b) result after Merge: 748
regions, (c) result after Grouping: 19 regions.

A. Segmentation using Split-and-Merge

Split-and-Merge is a region-based segmentation algorithm
by Horowitz and Pavlidis (see [3]), that divides a square image
into regions and mergeshomogeneousregions recursively,
using quadtrees. The intrinsic idea is to extract semantic
segments, calledregions, since pixels are too fine grained
to carry object information. Regions in the image-domain
often correspond to or have a link to objects in the real-
world-domain. Each region is expected to behomogeneous
with respect to ahomogenity criteria. This criteria is mainly
responsible for the quality of segmentation. Our slightly mod-
ified version of Split-and-Merge consists of 3 steps which are
presented in Figure 7:

• Split: Initial segmentation (full subdivision);
• Merge: if 4 homogeneous sub-regions may be merged to

a region fulfilling thehomogenity criteriaH(r), they are
merged;

• Grouping: if 2 neighboring regions (even at different
levels) may be merged to a region fulfilling theuniformity
criteria U(r), they are merged.

Sometimes there is no clear distinction between homogenity
and uniformity criteria, as many predicates may be used for
both.

The result of this segmentation procedure is a list of regions,
each containing the following typical information:

• average color to perform color-tests for object recogni-
tion,

• central coordinate for the location of a region within the
image,

• width and height for aspect ratio shape-tests,
• size (given as the number of contained pixels) for disre-

gard of small regions.

A typical example of the Split-and-Merge algorithm using
a 256× 256 image as input is illustrated in Figure 8.

1) Homogenity criteria:Many possible criteria exist for the
homogenity of regions. We call a predicateH(r) on the set
of regions ahomogenity criteria. If it evaluates to true, the
region is calledhomogeneous.

Some popular examples are:

• Min-Max-Difference: a regionr is called homogeneous
if the difference between maximummaxr and minimum
grey valueminr within r lies below a threshold.

H(r) = true ⇔ maxr −minr ≤ thresh

• Color-Variance: the sum of variances of red, green and
blue image channels lies below a threshold.

H(r) = true ⇔ σ2
r + σ2

g + σ2
b ≤ thresh

However, many problems arise, like the choice of suitable
thresholds, noise within images and unsatisfying results for
different conditions in lighting. Such predicates often create
few large, but many small regions. The criteria used in our
algorithm performs a check between all pairs of quadtree
sub-regions whether the average colors inHSV-spaceof both
regions aresimilar according to matrices by Volker Rehrmann
[4]. Therefore another predicateD is induced to check similar-
ity between two colors in HSV spacec1 = (h1, s1, v1), c2 =
(h2, s2, v2):

D(c1, c2) :=
{

true, for c1 similar to c2

0 otherwise.

D((h1, s1, v1), (h2, s2, v2)) = true ⇔

|h1 − h2| < huet ∧ |s1 − s2| < satt ∧ |v1 − v2| < valt

with

huet = hue tab(min(s1, s2),max(v1, v2)),

satt = sat tab(min(s1, s2),max(v1, v2)),

valt = val tab(min(s1, s2),max(v1, v2)).

The homogenity criteria operating on quadtree regions is
applied bottom-up starting at the maximum quadtree hierarchy
level. Leth be the function assigning to each quadtree region
r its hierarchy level0 ≤ h(r) ≤ n and let c be the
function mapping regions to their average color values. Then
the homogenity criteria is defined as follows:

H(r) = true ⇔

∀r1, r2 : (h(r) < h(r1) = h(r2) ≤ n) ⇒ D(c(r1), c(r2)).

2) Uniformity criteria: As uniformity criteria we use a dif-
ferent predicateU(r). Let Q(r) denote a predicate indicating,
whether a regionr is a maximum homogeneous quadtree
region, i.e.r is exactly represented by a quadtree node that
is homogeneous and can not be merged. Furthermore, let
Rmin ⊂ r be the biggest (and uppermost, leftmost if it is
not unique) quadtree region withinr. For example, in Figure
7, Rmin is region 1 in case of the bigger group, and region
14 for the smaller one.

U(r) = true ⇔



5

R

1 2 3 4

13 14 17 18

0

1 2

3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

hierarchy = 0 hierarchy: 1 hierarchy: 2

array representation

Fig. 9. Array representation of a quadtree.

r =
⋃
i

Ri, Q(Ri) ∧D(c(Ri), c(Rmin)).

Experimental results [1], [5] have shown thatHSV-space
has better stability against changes in lighting. Additionally,
the induced criteria can be calculated fast.

3) Implementation:To allow an efficient implementation,
we introduce an enumeration scheme for quadtrees. Starting at
the root node we assign each possible quadtree node a unique
number. The root node is assigned 0, then we enumerate each
hierarchy level from top left to bottom right as illustrated in
Figure 9. Letp denote the function assigning a linear position
to each quadtree. If we identify each quadtree node by the
triple (h, x, y) whereh is the node’s hierarchy level,x is the
row number andy is the column number (both starting at0)
thenp(h, x, y) is calculated as follows:

p(h, x, y) =
1− 4h

1− 4
+ x + y · 2h

Modelling quadtrees via arrays reduces overhead, as no
dynamic memory allocation for tree nodes is needed. Besides,
a useful property reducing calculations is the mapping of
quadtree nodes with low hierarchy levels to small linear
positions.

See [6] for a more detailed observation of color segmenta-
tion techniques including Split-and-Merge.

B. Object recognition

For the localization of the ball, the task of the object
recognition is to find the region with the closestcolor-distance
to a thresholdin CIE Labcolor space, for which the following
properties hold:

• its shape-testis positive:0.5 ≤ height/width ≤ 2.5,
• its color-test is positive:D(creg, cthres) = true.
CIE Lab color space is useful, since Euclidian distances

betweenCIE Lab colors are near the perceptual measure of
color difference.

IV. CONTROLLER TASK

The controller task is responsible for navigatingSoccerBot
according to information obtained by the object recognition

searchLeft searchRight

goForwardgoLeft goRight

stop

FL

FC

FR
NF

FC

FRFL
FC

NF

FRFL

FC

Bump

Bump
Bump

BumpBump

Fig. 10. Finite state machine: NF = notFound , FL = foundLeft , FC =
foundCenter and FR = foundRight . The initial state (searchLeft )
is marked with a thicker border. TheBump event occurs, whenSoccerBot
touches the ball.

30% 40% 30%

foundLeft foundCenter foundRight

Fig. 11. Scene subdivision into left, center and right strip.

task. Basically, it is a finite-state automaton (see Fig. 10) with
the following states:

• stop : SoccerBotdoesn’t move,
• searchLeft : turns left at a spot,
• searchRigh : turns right at a spot,
• goLeft : drives forward doing a light left curve,
• goRight : driver forward doing a light right curve,
• goForward : drives straight forward.

The object recognition task returns a region representing the
ball, if it has been found, else it returnsnull . When the ball is
not found (notFound ), thenSoccerBotinitially starts to turn
either left or right, depending on the previous state. If on the
other hand the ball is found, then thex-coordinate of the ball’s
center is used to decide where to go next. Therefore, the scene
is divided into three vertical strips: the left (foundLeft ),
center (foundCenter ) and right (foundRight ) strip (see
Fig. 11). The left and right strip each take up 30% of the
scene, while the center one takes the remaining 40%. If, for
instance, the ball’s center is found within the right strip, then
SoccerBotwould change into thegoRight state (we refer to
Fig. 10 for details).

The rather simple task of the current controller is to locate
the ball by turning around its axis and heading for it, when
found, until the ball is reached. ThenSoccerBotstops. This
controller can easily be replaced with a more sophisticated
one, e.g. with one for playing soccer.

V. SUMMARY AND OUTLOOK

We managed to construct a robot - theSoccerBot- based on
LegoR© MindstormsTM , which is able to recognize and catch
a ball. All software parts are structured in a modular way,
which has the advantage of being able to replace parts without



6

having to redesign the entire robot. Using an improved Split-
and-Merge algorithm, we can recognize objects, such as a ball,
even under changing lighting conditions. We provide a Giotto
timing program with a time-triggered controller, which meets
predefined temporal constraints. Further work will incorporate
the development of a controller performing more complex
tasks. Furthermore, we are planning to improve and extend the
object recognition layer. Extensions include a color-threshold
adaptation within the Split-and-Merge algorithm to improve its
robustness and the integration of Hough Transformation within
the object recognition layer in order to be able to recognize
objects more accurately.

A. Hough Transformation

The Hough TransformationHT [7], [8] is a widely used
method for finding parameterized shapes, especially lines,
circles, ellipses etc. within images. Its main advantage is a
high robustness against noise, as well as the ability to find the
seeked shape, even if parts of it are missing or occluded. In
its standard form though, it is not applicable forSoccerBot,
because of its relatively long execution time as well as high
memory requirements (especially for detecting arbitrarily sized
circles). Although the algorithm for finding straight lines could
be adjusted to meet our temporal constraints, still it only
returns a collection of unbounded lines, which would need
to be grouped to build more complex objects.

As our main target was to find a ball, we concentrated on
the circular Hough Transformation (CHT) to detect circles
within an image. The first step of the HT is to convert the
input RGB image into gray-scale (we use the standard NTSC
color to gray-scale conversion). Then, the grey-scale image
is converted into a binary image using the Laplacian edge
detector. A separate 2D accumulator is needed for every circle
radius, thus the range of queried radii is an important factor
for speed and memory requirements. In order to improve
speed, we only take radii in steps of 2 pixels and use one
2D accumulator for all radii, accepting the drawback of less
accuracy.

With this configuration, a352×288 image takes about250
ms. Thus, our predefined requirements are not met. But we
still have some ideas of how to improve speed and how to
incorporate HT into our project.

1) Improvement of HT:Instead of using the Laplacian edge
detector, the Canny edge detector could be used for the grey-
scale to binary conversion, as it also returns direction and
magnitude of the found edges. Using this information can
reduce the steps within the HT significantly. Work in this field
is currently in progress.

B. Improvements of Split-and-Merge

Currently, we are using static matrices for homogenity
and uniformity tests. An improvement would be to adopt
the matrices at runtime, depending on the current lighting
condition. Suchadaptive matricescould easily be derived
multiplying the original matrices with different empirically
determined factors. Another approach is to adopt matrices in
case a ball can not be found.

Furthermore, we are planning to replace the manual cali-
bration step by an automated one. In such a case, the initial
threshold is calculated iteratively and updated every time we
can be absolutely sure, that the recognized region exactly
matches the ball. Such a test could be performed using the
introduced CHT.

1) Integration of HT into Split-and-Merge:One of the main
ideas is to find regions likeable to be the ball using Split-and-
Merge and pass that part of the image to the CHT-algorithm
to verify the quality of the found object. A quality of the
circle can be obtained as a by-product of the CHT by using
the accumulator value: a perfect circle returns a maximum
accumulator value. The ratio between the current value and
the maximum value returns good quality measurement. As
only a sub-image has to be analyzed and the range of radii is
also restricted, we suppose that the time consumption will not
exceed our requirements.

Another possibility is to take advantage of the fact, that
Split-and-Merge creates a segmented image. Out of this image,
edges can be extracted easily, which could further be processed
by the CHT. The question is, which impact will the loss of
original edge information have on the quality of the CHT.

ACKNOWLEDGMENT

The authors would like to thank the academic supervisor
of this project, Prof. Christoph Kirsch, for his support and
guidance.

A lot of thanks deserve to go to Prof. Helmut Mayer for
supervising Emma2Object, a parallel project of the authors,
for the local robolab group. Many ideas for the design of our
robot grew out of this project.

REFERENCES

[1] T. Erdmann and V. Rehrmann, “Farbbildverarbeitung für
fußballspielende Roboter,” in Workshop Farbbildverarbeitung,
no. 6, 2000, Berlin. [Online]. Available: http://www.uni-koblenz.
de/∼lb/publications/Erdmann2000FFF.pdf

[2] T. Henzinger, C. Kirsch, and B. Horowitz, “Giotto: A time-triggered
language for embedded programming,”Proceedings of the IEEE, vol. 91,
no. 1, pp. 84–99, January 2003. [Online]. Available: http://www.cs.
uni-salzburg.at/∼ck/publications/journals/ProcIEEE03-Giotto.pdf

[3] S. Horowitz and T. Pavlidis, “Picture segmentation by a tree traversal
algorithm,” JACM, vol. 23, no. 2, pp. 368–388, April 1976.

[4] V. Rehrmann and L. Priese, “Fast and Robust Segmentation of
Natural Color Scenes,” in3rd Asian Conference on Computer Vision
(ACCV’98), ser. LNCS, R. T. Chin and T.-C. Pong, Eds., no.
1351. Springer Verlag, 1998, pp. 598–606. [Online]. Available:
http://www.uni-koblenz.de/∼lb/publications/Rehrmann1998FAR.pdf

[5] C. Lange, “Untersuchung von Algorithmen zur visuellen
Roboterlokalisierung,” Master’s thesis, Universitaet Bielefeld,
2000, Bielefeld. [Online]. Available: http://www.techfak.uni-bielefeld.
de/∼clange/diplom.pdf

[6] L. Priese, “Vergleich von Farbsegmentierungstechniken,” in9.
Heidelberger Bildverarbeitungsforums, 3. Nov. 1998. Verband
Deutscher Maschinen- und Anlagenbau e.V., Frankfurt, 1998. [Online].
Available: http://www.uni-koblenz.de/∼lb/publications/Priese1998VVF.
pdf

[7] H. P.V.C., “Method and means for recognizing complex patterns,” USA
Patent US Patent #3 069 654, 1962.

[8] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” vol. 15, January 1972, pp. 1–15.

[9] M. L. Noga, L. Villa, P. Masetti, S. M. Moraco,et al., “BrickOS
Alternative LEGO Mindstorms OS.” [Online]. Available: http://brickos.
sourceforge.net/index.html

[10] J. Solorzanoet al., “leJOS.” [Online]. Available: http://lejos.sourceforge.
net/index.html


