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Abstract

We present a layered end-to-end approach for the
design and implementation of embedded software
on a distributed platform. The approach com-
prises a high-level modeling and simulation layer
(Simulink), a middle-level programming and valida-
tion layer (SCADE/Lustre) and a low-level execu-
tion layer (TTA). We provide algorithms and tools to
pass from one layer to the next: a translator from
Simulink to SCADE/Lustre, a set of real-time and
code-distribution extension to SCADE/Lustre, and im-
plementation tools for decomposing a SCADE/Lustre
program into tasks, scheduling the tasks as a multi-
period multi-processor scheduling problem and dis-
tributing the tasks on the execution platform along
with the necessary “glue” code.

1 Introduction

Designing safety-critical control systems requires a
seamless cooperation of tools at several levels — mod-
eling and design tools at the control level, development
tools at the software level and implementation tools at
the platform level. When systems are distributed, the
choice of the platform is even more important and the
implementation tools must be chosen accordingly. A
tool-box achieving such a cooperation would allow im-
portant savings in design and development time as well
as safety increases and cost effectiveness.

In the course of several European IST projects —
SafeAir, Next-TTA and Rise, such a goal has been pro-
gressively approached and partially prototyped. This
paper reports the achievements up to now. The devel-
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opments were based on the following choice of tools at
the different levels: Simulink at the control design level,
SCADE/Lustre at the software design level and TTA
at the distributed platform level. Why such a choice?

SCADE/Lustre

TTA

Simulink

Figure 1: A design approach in three layers.

Simulink: The choice of Simulink is very natu-
ral, since it is considered a de-facto standard in control
design, in domains such as automotive or avionics.

SCADE/Lustre: SCADE (Safety Critical Ap-
plication Development Environment) is a tool-suite
based on the synchronous paradigm and the Lustre [7]
language. Its graphical modeling environment is en-
dowed with a DO178B-level-A automatic code genera-
tor which makes it able to be used in highest criticality
applications. Besides, a simulator and model checkers
come along with the tool as plug-ins. It has been used
in important European avionic projects (Airbus A340-
600, A380, Eurocopter) and is also becoming a de-facto
standard in this field.

TTA: TTA (Time Triggered Architecture) [12]
supports distributed implementations built upon a syn-
chronous bus delivering to every computing unit a
global fault-tolerant clock. It is currently used in a
number of automotive and avionics applications. Fur-
thermore, it ideally matches the synchronous paradigm
and can be seen as well adapted to our framework.

Although SCADE/Lustre can be seen as a strict sub-
set of Simulink (the discrete-time part) and a num-
ber of code generators for Simulink exist (e.g., Real-
Time Workshop, dSpace), we still believe it is impor-
tant to add the extra layer (SCADE/Lustre) between
Simulink and TTA. One simple reason is that impor-
tant companies already use SCADE/Lustre in their
tool-chain. The level-A qualified code generator is also
a crucial aspect that makes certification considerably
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easier. Another reason is that powerful analysis tools
such as model-checkers and test generators are avail-
able for SCADE/Lustre, but not for Simulink. Fi-
nally, Simulink was initially conceived as a simulation
tool, whereas SCADE/Lustre was initially conceived
as a programming tool. These different origins be-
come apparent when we examine the (weak) typing
features of Simulink, its lack of modularity sometimes,
and its multiplicity of semantics (depending on user-
controlled “switches” such as the simulation method).
On the contrary, SCADE/Lustre was designed from the
very beginning as a programming language and has the
above features. Therefore, it can serve as a reliable
middle layer which filters-out Simulink ambiguities and
enforces a strict programming discipline, much needed
in safety critical applications.

In the rest of the paper we describe the work done
at each of the three layers. First, the translation
of Simulink to SCADE/Lustre. Second, extensions
to SCADE/Lustre for specifying code distribution
and real-time constraints. Third, implementation of
SCADE/Lustre on the distributed time-triggered plat-
form TTA. Related work is discussed at the end.

2 Overview of the three layers

For completeness of the paper, we briefly describe
Simulink, SCADE/Lustre and TTA.

2.1 A short description of Simulink
Simulink is a module of Matlab for modeling data flow
transfer laws. The Simulink notation and interface
are close to the control engineering culture and knowl-
edge. The user does not need any particular knowl-
edge of software engineering. The control laws are
designed with mathematical tools. The validation is
made through frequency analysis and simulation. For
more details, the reader can look at the MathWorks
web site (www.mathworks.com). Most important fea-
tures of Simulink, which also affect the translation to
SCADE/Lustre, are described in Section 3.

2.2 A short description of SCADE/Lustre
SCADE is a graphical environment commercialized by
Esterel Technologies. It is based on the synchronous
language Lustre. A Lustre program essentially defines
a set of equations:

x1 = f1(x1, ..., xn, u1, ..., um)
x2 = f2(x1, ..., xn, u1, ..., um)

...

where xi are internal or output variables, and ui are
input variables. The variables in Lustre denote flows.
A flow is a pair (v, τ), where v is an infinite sequence

of values and τ is an infinite sequence of instants. A
value has a type. All values of v have the same type,
which is the type of the flow. Basic types in Lustre are
boolean, integer and real. Composite types are defined
by tuples of variables of the same type (e.g., (x, y),
where x and y are integers). An instant is a natural
number. If τ = 0, 2, 4, · · · , then the understanding is
that the flow is “alive” (and, therefore, its value needs
to be computed) only on the even instants. The se-
quence τ can be equivalently represented as a boolean
flow, b0, b1, · · · , with the understanding that τ is the
sequence of indices i such that bi = true.

The functions fi are made up of usual arithmetic op-
erations, control-flow operators (e.g., if then else),
plus a few more operators, namely, pre, ->, when and
current.

pre is used to give memory (state) to a program. More
precisely, pre(x) defines a flow y, such that the value
of y at instant i is equal to the value of x at instant
i− 1 (for the first instant, the value is undefined).

-> initializes a flow. If z = x->y, then the value of
z is equal to the value of x at the first instant, and
equal to the value of y there-after. The operator ->
is typically used to initialize a flow the value of which
is undefined at the first instant (e.g., a flow obtained
by pre). For example, a counter of instants is defined
by the equation x = 0->(pre(x) + 1), instead of x =
pre(x) + 1, which leaves it undefined.

when is used to sample a flow, creating a flow which
lives less frequently than the original flow: x when b,
where x is a flow and b is a boolean flow which lives at
the same instants as x, defines a flow y which lives only
when b is true, and has the same value as x on those
instants.

current is used to extend the life of a sampled flow y,
to the instants of the flow which originally gave birth
to y, by the usual sample-and-hold rule: current(y),
where y is a flow sampled from x, is a flow x′ which
leaves on the same instants as x, has the value of y
on the instants when y is alive, and keeps its previous
value during the instants when y is not alive.

Structure is given to a Lustre program by declaring and
calling Lustre nodes, in much the same way as, say, C
functions are declared and called. Here is an example
of node declaration in Lustre:

node A(b: bool; i: int; x: real)
returns (y: real);
var j: int;

z: real;
let

j = if b then 0 else i;
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z = B(j, x);
y = if b then pre(z) else C(z);

tel.

A is a node taking as inputs a boolean flow b, an integer
flow i and a real flow x and returning a real flow y. A
uses internal flows j and z (with usual scope rules).
The body of A is declared between the let and tel
keywords. A calls node B to compute z and node C
to compute y (conditionally). B and C are declared
elsewhere.

Clock calculus: Given a flow x = (v, τ), τ is
called the clock of x, and is denoted clock(x). The
clock calculus is a typing mechanism which ensures that
the Lustre program has a well defined meaning. For
example, we cannot add two variables x and y, unless
they have the same clock (i.e., they are alive at the
same instants): otherwise, what would the result of
x + y be on an instant where x is alive and y is not
alive?

All input variables have the same clock, which is
called the basic clock, denoted basic, and given by
the sequence of instants 0, 1, 2, · · · or equivalently the
boolean flow true, true, true, · · · .

A simplified version of the clock calculus of Lustre
is shown in Table 1. By convention, clock(basic) =
basic. If the constraints on clocks are not satisfied,
then the program is rejected by the Lustre compiler.

Partial order: A Lustre program defines a par-
tial order on xi (denoted by →), expressing variable
dependencies at each instant: if xi → xj , then xj de-
pends on xi, that is, in order to compute the value of
xj at a given instant, we need the value of xi at that
instant. The partial order is well-defined, since the
compiler ensures that there are no cyclic dependencies
on the variables xi: all cycles must contain at least one
pre operator, which means that the dependency is not
on the same instant, but on previous instants.

2.3 A short description of TTA
TTA [12] (Time Triggered Architecture) is a dis-
tributed, synchronous, fault-tolerant architecture. It
includes a set of computers (TTA nodes) connected
through a bus. Each TTA node is equipped with a
network card implementing the time triggered proto-
col [13] (TTP). TTP provides a number of services to
the nodes, including clock synchronization, group mem-
bership and faulty node isolation.

The programs running on each TTA node use the TTP
controller to communicate with programs running on
other nodes. Communication is time triggered. This
means that there is an a-priori global schedule speci-

fying which TTA node will transmit which message at
what time. This schedule, called message description
list (MEDL), is constructed off-line and loaded on each
TTP controller before operation starts. The MEDL
ensures that no two TTA nodes transmit at the same
time (given the correct functioning of the clock syn-
chronization protocol). Therefore, no on-line arbitra-
tion is required (contrary, for example, to the CAN
bus).

The TTP controller and the CPU of the TTA node are
linked through the computer-network interface (CNI):
this is essentially a shared memory where the con-
tents of each message are stored. The programs run-
ning on a TTA node read/write on the CNI indepen-
dently of the TTP controller, which reads and writes
according to the MEDL (i.e., when it is time for this
node to send/receive a message, the TTP controller will
read/write the corresponding part of the CNI).

The MEDL describes the operation of the bus in the
global, common time axis, which is produced by the
clock synchronization protocol. Time is divided into
cycles, rounds and slots (Figure 2). Cycles are re-
peated as long as the system runs, in exactly the same
way. Each cycle contains a number of rounds and each
round a number of slots. Rounds have the same dura-
tion, whereas slots within a round may have different
durations. Each slot is assigned to a TTA node, mean-
ing that (only) this node transmits during that slot.
Within a slot, a node transmits a frame, which contains
one or more messages. The messages are broadcasted,
meaning every other node can read them. The differ-
ence between rounds is that the frames of a given slot
need not be the same among different rounds of a cy-
cle. For example, if slot 1 is assigned to node A, A may
transmit frame X in slot 1 of round 1 and frame Y in
slot 1 of round 2. However, operation among different
cycles is identical (i.e., A will transmit X in slot 1 of
round 1 of cycle 1, of cycle 2, of cycle 3, and so on).

3 Simulink to SCADE/Lustre

In our approach, we start with a Simulink model, con-
sisting of two parts: a discrete-time part describing the
controller and a continuous-time (or perhaps discrete-
time) part containing the environment in which the
controller is supposed to operate. Modeling both the
controller and the environment is of course essential for
studying the properties of the controller by simulation.
Once the designer is happy with the results, the imple-
mentation of the controller can start. The first step in
our approach is to translate the controller part of the
Simulink model to SCADE/Lustre.

In this section we describe this translation. We begin
by pointing out the main differences of the two lan-
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expression e clock(e) constraints comments
input x basic
x+ y clock(x) clock(x) = clock(y) similarly for −, ->, if then else, etc
pre(x) clock(x)
x when b b clock(x) = clock(b), b boolean

current(x) clock(clock(x))

Table 1: Clock calculus of Lustre.

-

slot 1

round 1

slot 1 slot 1 slot 1

round 2
cycle 1 cycle 2

round 1 round 2

slot 4
slot 2 slot 3 slot 2 slot 3

slot 4 slot 4 slot 4
slot 2 slot 3slot 2 slot 3

Figure 2: Operation of a TTA bus in time.

guages and which subset of Simulink can be handled by
our translation. Then we present the main principles
of the translation and discuss two implementations.

We first fix some terminology, to be used in the se-
quel. For Simulink, we will use the term block for a
basic block (e.g., an adder, a discrete filter, a transfer
function, etc) and the term subsystem for a compos-
ite (a set of blocks or subsystems linked by signals).
The term system is used for the root subsystem. For
SCADE/Lustre, we will use the term operator for a ba-
sic operator (e.g., +, pre, etc) and the term node for a
composite.

3.1 Simulink and SCADE/Lustre
Both Simulink and SCADE/Lustre allow the represen-
tation of signals and systems, more precisely, multi-
periodic sampled systems. The two languages share
strong similarities, such as a data-flow model,1 similar
abstraction mechanisms (basic and composite compo-
nents) and graphical description. However, there are
several differences:

(1) SCADE/Lustre has a discrete-time semantics,
whereas Simulink has a continuous-time semantics. It
is important to note that even the “discrete-time li-
brary” Simulink blocks produce piece-wise constant
continuous-time signals2.

(2) SCADE/Lustre has a unique, precise semantics.
The semantics of Simulink depends on the choice of
a simulation method. For instance, some models are
accepted if one chooses variable-step simulation and
rejected if one chooses fixed-step, “auto”, or “multi-
threaded” simulation.

1The foundations of data-flow models were laid by Kahn [10].
Various such models are studied in [14].

2Thus, in general, it is possible to feed the output of a
continuous-time block into the input of a discrete-time block and
vice-versa.

(3) SCADE/Lustre is a strongly-typed system with ex-
plicit type set on each flow. In Simulink, explicit types
are not mandatory. A type-checking mechanism exists
in Simulink (some models are rejected due to type er-
rors) but, as with the execution semantics, it can be
modified by the user by setting some “flags”.

(4) SCADE/Lustre is modular in certain aspects,
whereas Simulink is not: for instance, a Simulink model
may contain implicit inputs (the sampling periods of a
system and its sub-systems, which are not always in-
herited).

3.2 Translation goals and limitations
Given the above differences, the goals and limitations
of our translation are the following:

(1) We only translate a discrete-time, non-ambiguous
part of Simulink. In particular, we do not translate
blocks of the continuous-time library, S-functions, or
Matlab functions. The Simulink model to be translated
is assumed to be (part of) the controller embedded in
a larger model (including the environment).

(2) The translation is faithful only with respect to the
following simulation method: “solver: fixed-step, dis-
crete” and “mode: auto”.

(3) The SCADE/Lustre program must be run at the
time period the Simulink model was simulated. Thus,
an outcome of the translation must be the period at
which the SCADE/Lustre program shall be run (i.e.,
the period of the basic clock). To know the period at
which the Simulink model was simulated, we assume
that for every external input of the model to be trans-
lated the sampling time is explicitly specified.

(4) We assume that the Simulink model to be trans-
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lated has the “Boolean logic signals” flag on3. Then,
a requirement on the translator is to perform exactly
the same type inference as Simulink. In particular, ev-
ery model that is accepted by Simulink must also be
accepted by the translator and vice versa.

(5) For reasons of traceability, the translation must pre-
serve the hierarchy of the Simulink model as much as
possible.

3.3 Overall translation scheme
First, type inference and clock inference are performed
on the Simulink model. The two steps are independent.
Then, the translation per-se is performed hierarchically
(bottom-up). We now elaborate on each of these steps.

3.4 Type inference
There are three basic types in SCADE/Lustre: bool, int
and real. Each flow has a declared type and operations
between different types are not allowed: for example,
we cannot add an int with a real4. In Simulink, types
need not be explicitly declared. However, Simulink
does have typing rules: some models are rejected be-
cause of type errors. The objective of the type infer-
ence step is to find the type of each Simulink signal,
which will then be used as the type of the correspond-
ing SCADE/Lustre flow.

Simulink provides the following data types: boolean,
double, single, int8, uint8, int16, uint16, int32, uint32.
Informally, the type system of Simulink can be de-
scribed as follows. By default, all signals are double,
except when: either the user explicitly sets the type
of a signal to another type (e.g., by a Data Type Con-
verter block or by an expression such as single(23.4));
or a signal is used in a block which demands another
type (e.g., all inputs and outputs of Logical Operator
blocks are boolean).

We can formalize the above type system as follows.
First, denote by SimT the set of all Simulink types
and let SimNum = SimT − {boolean}. Then, every
Simulink block has a (polymorphic) type: some exam-
ples are shown in Figure 3. The type of a Simulink
subsystem (or the root system) A is defined given the
types of the subsystems or blocks composing A, using
a standard function composition rule. Type inference
is done using a standard fix-point computation on the
lattice shown in Figure 4.

Once the inference of Simulink types is performed,
these types are mapped to SCADE/Lustre types as
follows: boolean is mapped to bool; int8, uint8, int16,
uint16, int32 and uint32 are mapped to int; single and

3This flag yields a stricter type checking in Simulink, for in-
stance, logical blocks accept only boolean inputs.

4Predefined casting operators int2real or real2int can be used
if necessary.

double are mapped to real.
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Figure 4: The type lattice of Simulink.

3.5 Clock inference
As mentioned above, a SCADE/Lustre program has
a unique basic clock. “Slower” clocks are obtained
through the basic clock using the when operator. The
clock of every signal in SCADE/Lustre is implicitly cal-
culated by the compiler, which ensures that operations
involve only flows of the same clock5. Thus, clocks can
be seen as extra typing information.

Discrete-time Simulink signals may also contain timing
information, called “sample time”, consisting of a pe-
riod and an initial phase. The sample time of a signal
specifies when the signal is updated. A signal x with
period π and initial phase θ is updated only at times
kπ + θ, for k = 0, 1, 2, ..., that is, it remains constant
during the intervals [kπ+θ, (k+1)π+θ). Sample times
can be set in input signals and discrete-time blocks and
they also serve as an extra type system in Simulink:
some models are rejected because of timing errors.

Another timing mechanism of Simulink is by means of
“triggers”. Only subsystems (not basic blocks) can be
triggered. A subsystem can be triggered by a signal x
(of any type) in three ways, namely, “rising, falling” or
“either”, which specify the moment the trigger occurs
w.r.t. the direction with which x “crosses” zero (with
boolean true identified with 1 and false with 0). The
sample time of blocks and subsystems inside a triggered
subsystem cannot be set by the user: it is “inherited”
from the sample time T of the triggering signal. The
sample times of the input signals must be all equal to
T . The sample time of all outputs is also T . Thus,
in the example shown in Figure 5, the sample times of
s, x1, x2 and y are all equal.

In what concerns triggered subsystems, Simulink is as
modular as Lustre, where a node B called inside a
node A cannot construct a “faster” clock than the ba-
sic clock of A (i.e., the clock of its first input). How-
ever, Simulink allows the sample time of a subsystem
B embedded into a subsystem A to be anything. For

5Since checking whether two boolean flows are equal is gener-
ally undecidable, clock checking in SCADE/Lustre is syntactic.
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Constantα : α, α ∈ SimNum (1)
Adder : α× · · · × α→ α, α ∈ SimNum (2)

Relation : α× α→ boolean, α ∈ SimNum (3)
Logical Operator : boolean × · · · × boolean → boolean (4)

Discrete Transfer Function : double → double (5)
Data Type Converterα : β → α, α, β ∈ SimT (6)

Figure 3: Types of some Simulink blocks.

x1

x2

s

y

Figure 5: A triggered subsystem.

instance, the period of A can be 2 and the period of B
1. We consider this a non-modular feature of Simulink.

The objective of clock inference is to compute the pe-
riod and phase of each Simulink signal, block and sub-
system, and use this information when creating the cor-
responding Lustre flows and nodes and when defining
the period at which the SCADE/Lustre program must
be run. Due to lack of space, we only give some exam-
ples on how this is done. The details will appear in a
subsequent paper.

Consider the Simulink model of Figure 6 and assume
that the period of input x is 1 and that the period set
to the Zero-order Hold block is 2.6 Then, the output
y has period 2 and in the generated SCADE/Lustre
program, it will be defined as y = x when b1/2,
where b1/2 is the boolean flow true false true false · · · .
Now, if 1 is the smallest period in the entire Simulink
model, this will also be the period at which the
generated SCADE/Lustre program must be run. In
the SCADE/Lustre program, clock(x) = basic and
clock(y) = b1/2.

As another example, consider a subsystem A with two
inputs x1 and x2, with periods π1 and π2, respectively.
If these are the only periods in the Simulink model,
then the period of the SCADE/Lustre program must
be the greatest common divisor (GCD) of π1 and π2.
This will also be the period of the outputs of A.

6Unless otherwise mentioned, we assume that phases are 0.

x y

Ts

Zero_Order
Hold

Figure 6: A Zero-order Hold block modifying the period
of its input.

3.6 Hierarchical translation
Logically, a Simulink model is organized as a tree,
where the children of a subsystem are the subsystems
(or blocks) directly embedded in it. The translation
is performed following this hierarchy in a bottom-up
fashion (i.e., starting from the basic blocks). For trace-
ability, naming conventions are used, such as suffixing
by an index or using the name path along the tree.

Simple basic Simulink blocks (e.g., adders, multipli-
ers, the 1

z transfer function) are translated into basic
SCADE/Lustre operators. For example, an adder is
simply translated into + and 1

z is the pre operator in
SCADE/Lustre.

More complex Simulink blocks (e.g., discrete filters)
are translated into SCADE/Lustre nodes. For exam-
ple, the transfer function z+2

z2+3z+1 is translated into the
SCADE/Lustre code:

node Transfer_Function_3(E: real)
returns(S: real);
var Em_1, Em_2, Sm_1, Sm_2: real;
let

S = 1.0*Em_1+2.0*Em_2-3.0*Sm_1-1.0*Sm_2 ;
Em_1 = 0.0 -> pre(E) ;
Em_2 = 0.0 -> pre(Em_1) ;
Sm_1 = 0.0 -> pre(S) ;
Sm_2 = 0.0 -> pre(Sm_1) ;

tel.

A Simulink subsystem S is translated into a
SCADE/Lustre node N , possibly containing calls to
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Figure 7: Simulink system A with subsystem B.

other nodes. For example, consider the Simulink sys-
tem A shown in Figure 7. A contains subsystem B.
The Lustre code generated for this example is as shown
below.

node A(A_in1,A_in2,A_in3 :real)
returns (A_out1,A_out2 :real);
let

A_out1 = B(A_in1 , A_in2);
A_out2 = ...

tel.

node B(B_in1,B_in2: real)
returns (B_out);
let

...
tel.

3.7 Tools
The above ideas have been implemented in two tools:
(1) a commercial tool, called SimulinkGateway, by Es-
terel Technologies; (2) an academic prototype, called
Sim2Lus, developed at Verimag. Sim2Lus is imple-
mented in Java. It translates Simulink to an inter-
mediate XML format and then to Lustre.

The tool has been applied in the context of the Euro-
pean IST project “Next TTA” on a case study provided
by Audi, on a Simulink model of a warning processing
system, part of a larger system actually used in Audi
cars. The Simulink model has 5 layers, 20 subsystems
and 113 blocks in total. The resulting Lustre program
is 718 lines long and is generated in a few seconds.
The Lustre code was verified using the model-checker
Lesar [17], against a set of properties provided by Audi.
Some of the properties were found false. A more de-
tailed report on the case study (modulo confidentiality
constraints) will be provided elsewhere.

4 SCADE/Lustre extensions

The set of extensions we propose aim at relating the
SCADE/Lustre program with its implementation on
TTA. This is necessary, since the SCADE/Lustre pro-
gram has a logical-time semantics, whereas the imple-
mentation operates in real-time. The extensions allow
the user to express what it means for an implementa-
tion to be correct and to direct the compiler to some
extent. Thus, they facilitate both analysis (checking
whether an implementation is correct) and synthesis
(automatically building correct implementations).

The extensions do not change the high-level (logical-
time) semantics of Lustre. To ensure backward-
compatibility, they are provided mainly as annotations
(pragmas) which can be taken into account or ignored,
depending on the version of the compiler used. The
extensions follow the declarative style of Lustre.

4.1 Extensions
A set of code distribution primitives allow the user to
specify which parts of the Lustre program are assigned
to which TTA node. A set of timing assumption prim-
itives allow the user to specify known facts about the
implementation, such as what is the period of an exter-
nal clock, what is worst-case execution time (WCET) of
a code block or the transmission time of a message. A
set of timing requirement primitives allow the user to
specify properties that the implementation must sat-
isfy, such as relative deadlines of the form “from the
moment input x is read until the moment output y is
written, at most k time units elapse”. We give some
examples of primitives and their usage in what follows.

4.1.1 Code distribution: The annotation
location = P , where P is the name of a node in the
distributed platform, is used to specify that a particular
code block must be executed on P (at every instant).
For example,

x = f(y) (location = P )
y = g(z) (location = Q)

says that x must be computed on P and y on Q. Note
that this implies that y must be transmitted from Q to
P , before computation of x can start.

At the moment, we assume that location annotations
are placed only in the body of the main node of a
SCADE/Lustre program. They can annotate any kind
of equation, including calls to other nodes, and they
imply that the entire computation must be performed
in the specified location. Location annotations are also
placed on declarations of input variables, to specify on
which location the input variable is sampled.
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4.1.2 Basic clock period and predefined pe-
riodic clocks: The annotation

(hyp) basic period = p

declares that the period of the basic clock is p time
units. This is a timing assumption. Time units are
implicit, but they have to be consistent throughout all
declarations of timing assumptions.

The primitive periodic cl(k, p), where k, p are integer
constants, k ≥ 1 and p ≥ 0, defines a sub-clock of
the basic clock, with (logical-time) period k and initial
phase p. That is, periodic cl(k, p) is a boolean flow
which is false for the first p instants and then becomes
true once every k instants. For example,

periodic cl(2, 0) = true, false, true, false, · · ·

Note that such flows can already be defined in Lustre
(e.g., see the definition of clock1over2 in Section 3).
However, the periodic cl primitive is more than just
a shorthand. It helps the compiler identify the different
periods in a multi-periodic application, and to use this
information for scheduling (see Section 5).

4.1.3 Execution times: The primitive
exec time is used to specify assumptions on the
execution times of Lustre operators. It can be used
either on a basic operator (e.g., +,−, ∗) or a composite
operator (called a Lustre node). If A is an operator,
the declaration

(hyp) exec time(A) in [l, u]

states that the execution of A (assuming no interrup-
tions) takes at least l and at most u time units.

It should be noted that we assume that lower and up-
per bounds on execution times are given, that is, we do
not compute them. Computing such bounds is a chal-
lenging issue by itself. Techniques such as, for instance,
those of [11] can be used for this purpose.

4.1.4 Deadlines: Deadlines are timing re-
quirements. They are specified using the primitive
date. The expression date(x), where x is a flow, de-
notes the time the value of x becomes available in a
given instant, during program execution. An input
(respectively, internal, output) variable becomes avail-
able when it is read (respectively, computed, written).
Constants are available at the beginning of an instant.
Then, assuming x is an input and y an output variable,
the declaration

(req) date(y)− date(x) ≤ 5

states that y should be written at most 5 time units
after x is read.

Execution priorities: The primitive after is
used to add dependencies between Lustre expressions.
This is useful when the programmer wants to enforce
execution priorities between readings, computations or
writings. The expression

exp1 after exp2

needs both exp1 and exp2 to be computed and outputs
the value of exp1. For example, in the program

x = f(u);
y = g(v after x);

the variable y will be computed after x.

A dependency between expressions which are not alive
at the same instants does not make sense. Therefore,
the arguments of after must have the same clock. This
is checked at compile-time in the same way as for an
arithmetical expression like x + y. As usual, the de-
pendencies induced by after are also checked by the
compiler for absence of cycles.

4.2 Analysis
The purpose of analysis is to check whether an imple-
mentation is correct. Correctness, in our case, means
respecting the timing requirements, as well as the stan-
dard logical constraints (e.g., respecting the partial or-
der defined by data dependencies). Of course, it is very
hard (if not impossible) to check whether the actual
implementation is correct: this would imply checking
every possible execution and for each execution, ob-
serving the availability times of variables and checking
that the timing requirements are met.

Instead, correctness can be checked on a model of the
implementation. Such a model can be obtained by
merging three parts: (1) an “untimed” part which mod-
els the execution of the compiled code, (2) a “timed”
part which models the timing assumptions, and (3)
a (timed) part which models the environment. Since
parts (1) and (3) generally deal with infinite-domain
data (e.g., integers), we need finite-state abstractions.
Tools that perform such abstractions and build fini-
tary models are already available as part of the Lus-
tre tool suite. For instance, Lesar [17] generates a
finite-state model of a Lustre program by considering
only the boolean variables, and then uses BDD-based
techniques for model-checking. One of the goals of
our project is to integrate Lesar with the tool Kro-
nos [5], which is a model-checker of timed automata [1].
A similar approach has been successfully taken in the
project Taxys [4], for checking timing requirements on
Esterel [2] programs.

p. 8



4.3 Synthesis
Analysis is currently possible only for uni-processor
applications, since the current Lustre compiler pro-
duces uni-processor implementations (tools like Lesar
assume such an implementation in building their mod-
els). Even if multi-processor compilation and modeling
were available, the compiler has many choices when
generating code. To see this, consider a trivial exam-
ple. The Lustre program

x = f(u)
y = g(w)

admits two possible implementations:

implementation 1 implementation 2
x := f(u); y := g(w);
y := g(w); x := f(u);

Which one should the compiler choose? Currently the
choice is done arbitrarily. However, it greatly affects
the properties of the implementation, in particular with
respect to the timing constraints. In the above exam-
ple, if the time to execute f is long and there is a
short deadline associated with y, implementation 2 is
clearly preferable. The objective of synthesis is to aid
the compiler in choosing correct implementations. In
our case, synthesizing correct implementations of Lus-
tre programs on TTA can be reduced to a multi-period,
multi-processor scheduling problem, as is shown in Sec-
tion 5.

5 SCADE/Lustre to TTA

For implementation onto TTA, we start with a
SCADE/Lustre program extended with the additional
information presented in the previous section. In par-
ticular, we assume, for the time being, that the alloca-
tion of SCADE/Lustre nodes to TTA nodes is given, so
that the compiler does not have to decide this part. In
Section 5.1, we present the general compilation scheme.
An important part of this scheme is the scheduler,
which solves a multi-period, multi-processor scheduling
problem, taking into account the particular constraints
imposed by the TTA bus. Our scheduling techniques
are presented in Section 5.2.

5.1 Compilation scheme
The classical compilation of a Lustre node produces a
single step-function with an execution context, which
passes inputs and outputs and stores the program state.
At every “tick” of the basic clock the inputs are writ-
ten into the context, the step-function is called, and
the outputs are written out. The compilation into one
monolithic step-procedure is not suitable for the TTA
architecture. The solution is to generate several Lustre

modules which will run on different TTA processors
and will exchange messages via the TTA bus. Spe-
cial “glue” module will be generated to coordinate and
interface different modules running on the same pro-
cessor. The compilation scheme is shown in Figure 8.

In a first step the Analyzer (after performing type
checking, clock checking, etc) builds the syntax tree
and global partial order. Then, it partitions the partial
order to obtain a coarser graph. This is done according
to boundaries defined by the annotations of Section 4
(for example, an event associated with a deadline is a
good point for partitioning). The nodes of this coarser
graph represent tasks for the scheduling problem. Some
tasks correspond to computations (i.e., the execution
of the C code generated for the corresponding piece of
Lustre code), others to input readings or output writ-
ings, and others to the exchange of messages between
TTA nodes. The tasks are related with a precedence
relation (direct output of the partial order). They have
variable execution times (according to the exec time
annotations) and different periods (computed by div-
ing the period of the basic clock according to predefined
clocks). Their start and end times are constrained by
relative deadlines (according to date constraints). This
gives rise to a scheduling problem, which is given by the
Analyzer to the Scheduler.

The Scheduler solves the scheduling problem (or de-
clares that no solution exists). A solution consists in
a bus schedule (MEDL) plus a set of schedules, one
for each TTA node. A TTA node schedule is time-
triggered: task execution is triggered either by the ticks
of TTA round counter or by a finer TTA clock, count-
ing macro-ticks within a round. If no solution is found,
it may be that the partition in tasks is too coarse. In
this case, a finer partition is found and the process is
repeated.

Based on the Scheduler results, the Integrator assem-
bles the Lustre code corresponding to adjacent tasks in
the schedule and constructs a set of Lustre modules.
It also automatically generates the “glue code” inter-
facing these modules. The following simple example
illustrates the process of compilation on one processor.

(hyp) basic_period = 10
(hyp) exec_time(A) in [3,5]
(hyp) exec_time(B) in [7,8]
(hyp) exec_time(B1) in [2,3]
(hyp) exec_time(B2) in [3,4]

(req) date(x) - date(u) <= 6

x = A(u);
y = B(u when periodic_cl(2,0), 0.0 -> pre(y));
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In the program, node A works at the basic clock, with
period 10. Node B works at a slower clock (defined
by periodic cl(2, 0)) with period twice the basic pe-
riod. We assume that B calls two sub-nodes, B1 and
B2, with execution times as shown above. Even though
nodes A,B are independent, the deadline requirement
implies that node A must be executed before B, so
that x is produced at most 6 time units after u be-
comes available. However, the entire cycle (10 units)
is not long enough to contain both A and B (max ex-
ecution time: 5 + 8 = 13). Thus, as a result of the
Scheduler, B is “split” in two modules, executing B1

and B2, respectively, as shown in Figure 9.

The final step is to integrate the two Lustre modules by
generating the glue code. The glue code is itself written
in Lustre, as shown below. z is used as an intermediate
variable to carry the result from B1 to B2. The values
of z are meaningful only at odd instants (1, 3, ...) while
the values of y are meaningful only at even instants. It
is assumed that an instant corresponds to the beginning
of a TTA round.

node glue(u: real) returns (x, y: real) ;
var z: real;
let
oddtick = periodic_cl(2,0) ;
x = A(u) ;
z = if oddtick then B1(u, 0.0 -> pre(y))

else 0.0 -> pre(z) ;
y = if oddtick then 0.0 -> pre(y)

else B2(u, pre(z)) ;
tel.

5.2 Scheduling
We now turn to the scheduling problem. The input to
the Scheduler is a set of tasks. Each task i is allocated
to a processor, loci, and has a variable execution time in
[li, ui], where li, ui are non-negative constants. Tasks
have precedences (partial order). Preemption is not
allowed. Each task is also associated with a period and
the objective is to find a schedule such that a set of
relative deadlines is satisfied.

Tasks model computation units and messages. A spe-
cial processor models the TTA bus. The problem is not
a standard scheduling problem, because of the relative
deadlines and the bus periodicity constraints.

In what follows, we first define the problem formally.
Then, we discuss the solution technique for the simple
case where the execution times are fixed, there is only
one processor and a single period, and the TTA bus
constraints are not taken into account. We then show
how the technique extends to the general case.

5.2.1 Definition of the scheduling problem:
Let s, e be the vectors of start and finish times of tasks.
Thus, si is the start time of task i, ej is the finish time
of task j, and so on. We will denote by ti = ei− si the
duration of task i, and t the corresponding vector for
all tasks.

The scheduling problem is formally defined using a set
of constraints. There are three types of constraints:

• Execution time constraints E(t): a conjunction of
inequalities li ≤ ti ≤ ui, for each i.

• Precedence, mutual-exclusion and TTA bus con-
straints C(s, t):

– Precedence: if i → j in the partial order
then ej ≤ si in the set C(s, t).

– Mutual-exclusion: if loc(i) = loc(j) then
ej ≤ si ∨ ei ≤ sj in the set C(s, t).

– TTA bus: these constraints can also be ex-
pressed in a linear form with disjunctions,
however, they are more involved, thus, we
do not attempt to present them here.

Note that C(s, t) is not convex, because of the
disjunctions in the mutual-exclusion constraints.

• User requirements R(s, t). This is a conjunction
of relative deadlines of the form αi − αj ≤ dij ,
where αi = ei or αi = si and dij is a constant
and i 6= j.

The problem is to find a scheduling strategy, expressed
as a set of constraints S(s, t), such that

∀s, t :(
S(s, t)⇒ C(s, t)

)
∧(

E(t)⇒ S/t(t)
)
∧(

S(s, t) ∩ E(t)⇒ R(s, t)
)
,

(7)

where S/t(t) ≡ ∃s.S(s, t). The first conjunct says
that the strategy should respect the dependency and
mutual-exclusion constraints. The second conjunct
says that the strategy should not try to restrain the
execution times. The third conjunct says that the user
requirements must be met.

The strategies can be classified as static or dynamic. In
static strategies, all decisions are taken off-line, while
in dynamic strategies, decisions can be modified at run-
time (e.g., when a task finishes, we can re-consider
which task to execute next). Dynamic strategies are
not implementable in TTA. Static strategies can be
classified as untimed or timed:

p. 11



A
-

round 1 round 2
cycle 1

A B2B1

Figure 9: Module scheduling on one processor

• Static (untimed): a total order for each processor
is chosen and a task is started as soon as possible
(i.e., as soon as all its predecessor tasks in the
partial order have finished).

• Static timed: the start time si of each task i is
predefined.

In this paper, we only consider static timed strategies.

5.2.2 The scheduling technique: We use a
Branch-and-Bound (BB) search which starts from the
partial order at the root and produces a total task order
at the leaves. The novelty is the use of strong neces-
sary conditions which are tested at each step of the BB
algorithm. If the necessary conditions are not satisfied
then the BB sub-tree is pruned and we backtrack. Once
a total order is found, a linear program (LP) is solved
in order to find the strategy (start vector s). The LP
may also fail, in which case we backtrack.

It should be noted that, although Equation 7 con-
tains disjunctions and universal quantifiers, once a to-
tal order on the tasks is fixed, the equation is equiv-
alent to a convex polyhedral set, which can be ex-
pressed as a set of linear constraints and solved using
an LP solver. The transformation consists at replac-
ing all “positive” occurrences of ti in Equation 7 by
ui and all “negative” occurrences by li. For exam-
ple, rij ≤ (si + ti) − (sj + tj) ≤ dij is equivalent to
(si + ui)− (sj + lj) ≤ dij ∧ (sj + uj)− (si + li) ≤ −rij .

5.2.3 Necessary conditions: We want to de-
tect as soon as possible infeasible orders. This is done
with the help of an iterative procedure which manipu-
lates (restricts) the set of possible start times of each
task (called due-date set) and the absolute or relative
deadline intervals (absolute meaning with respect to
time zero). The procedure checks that

• the end time of a task is smaller than its (abso-
lute) deadline;

• the sum of all computation times does not exceed
the maximum deadline;

• no cycle occurs in the transitive closure;

• the due-date sets are not empty;

• the relative deadline intervals are not empty;

• no time interval is assigned to more than one task.

The set of constraints can be enriched recursively as
follows:

• Relative deadline intervals can be reduced by
transitive closure according to the partial order.

• Due-date intervals can also be reduced by com-
bining the partial order with execution times, rel-
ative deadlines and other task due-dates. Then,
absolute deadlines can be reduced accordingly.

• If two due-date intervals become disjoint then
a new precedence is induced between the corre-
sponding tasks.

The set of constraints is strengthened at each step of
the BB search, thus allowing to prune more branches
and reach a total order faster.

5.2.4 Multi-processor generalization: The
BB search is now used to find a total task order on
each processor (which is a restriction of the global par-
tial order). At each step, two tasks are ordered on a
processor, say P , and the necessary conditions are ap-
plied on P . If a modification of a due-date can influence
the parameters of another task in another processor,
say Q, then the necessary conditions are applied on Q
and the modifications are processed. In that way, the
conditions between processors are taken into account.

Many different strategies exist for ordering tasks dur-
ing the BB search. Two of them are described in what
follows. Their efficiency depends on the type of con-
straints we have.

(1) Processor-by-processor method: here, a total order
is first found on one processor, before proceeding to the
next processor. If the relative deadlines between tasks
within processors are strong and if there are few rela-
tive deadlines which link tasks of different processors
then this is a good approach. The set of tasks which
must be scheduled first is the one which is the most con-
strained. During the construction of the total order of
one processor, new constraints appears for some tasks
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of others processors and the necessary conditions test
whether those new constraints lead to a non-feasible
problem.

(2) Rank method: here, we alternate the choice of pro-
cessors. If the relative deadlines are important between
tasks of different processor, this method is usually bet-
ter. We place the first tasks on each processors, the
second ones and so one until we have a total order
for each processor. Because the constraints between
processors are strong, the position of one task deeply
affects other tasks in other processors.

5.2.5 Multi-period generalization: If the
tasks do not have the same period we consider the least
common multiple (LCM) of the set of periods as the
working period and for each task of periodicity p we
make LCM

p copies and their corresponding precedences
and relative deadlines. Moreover, new constraints are
added in the due-date intervals in order to satisfy the
release time constraints of the new tasks.

5.2.6 TTA bus constraints: As we have seen
before, the TTA bus is periodic and a processor can
transmit only once per round. To take into account
TTA bus constraints, we consider messages as tasks
which must be computed on a special processor: the
bus. The messages have the periodicity of their send-
ing tasks. The duration of a round is taken to be equal
to or a divisor of the GCD of all periods. The duration
of the cycle is taken to be equal to the least common
multiple of all periods. Precedence constraints are built
between sender and receiver of a message. Moreover,
messages sent by the same processor are grouped in or-
der to form a slot. In practice, this is achieved thanks to
relative deadlines between messages. During the con-
struction of the total order for every processor (except
the bus) the necessary conditions enrich the due-dates
of messages. Moreover, for the sake of periodicity of
the bus, message due-dates propagate from a round to
the following ones.

6 Conclusions

We have presented an end-to-end layered approach for
the design and implementation of embedded software
on a distributed platform. It is worth noting that our
tools, although conceived as part of the above chain,
can be used independently, as stand-alone tools or in
other design chains. Sim2Lus, the Scheduler and the
extended Lustre parser are available upon request to
the authors. The Analyzer and Integrator are still un-
der development. Apart from completing these tools,
future work includes extending our approach to State-
flow, enhancing the capabilities of the Scheduler so that
the allocation of tasks to processors is not fixed, and au-

tomatizing the interaction between the Scheduler and
the Analyzer (module fragmentation request).

Regarding related work, a number of approaches exist
at various levels of the design chain, but very few are
end-to-end. [19] report on an approach to co-simulate
discrete controllers modeled in the synchronous lan-
guage Signal [6] along with continuous plants mod-
eled in Simulink. [18] use a model-checker to verify
a Simulink/Stateflow model from the automotive do-
main, however, they translate their model manually to
the input language of the model-checker.

[9] report on the SPI workbench, a framework for
modeling, analysis and synthesis of embedded system,
based on an abstract model of concurrent processes
communicating with FIFO queues or registers, called
the SPI model. The authors report on translating
Simulink to SPI, given an (externally provided) analy-
sis of execution times of Simulink blocks. It is not clear
whether the translation is manual or automatic. The
focus of the authors seems to be the timing analysis of
Simulink models.

Giotto [8] is a time-triggered programming language,
similar in some aspects to SCADE/Lustre. The
main differences is the logical-time semantics of
SCADE/Lustre versus real-time semantics of Giotto,
and the fact that Giotto compilation is parameter-
ized by a run-time scheduler, while in SCADE/Lustre
scheduling is done once and for all at compile-time.
MetaH [3] is an architecture description language and
associated tool-suite. It uses an “asynchronous” model
based on the Ada language, and real-time scheduling
techniques such as rate-monotonic scheduling [15] to
analyze the properties of the implementation.

Annotations of programming languages with external
information, as we propose here for Lustre, is also
sometimes undertaken in aspect-oriented programming
approaches (e.g., as in [16]).

Naturally, our work on scheduling is related with the
vast literature on job-shop-like scheduling or real-time
scheduling. However, we could not find scheduling
techniques that can deal with relative deadlines, as we
do here. Another originality of our scheduling problem
is the periodicity constraints imposed by the TTA bus.
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