
1

TDL4Gumstix: Extending the TDL Tool Chain to
Support a new Platform

Gerd Dauenhauer and Patricia Derler

Abstract—TDL4Gumstix is a case study show-
ing how to extend the TDL Tool Chain to support
a new platform. The platform chosen is Gum-
stix, a Linux-based computer system of the size
of a gum stick. On this platform, real-time tasks
designed with the Timing Definition Language to-
gether with MATLAB Simulink are executed. A
simple Java client simulates Sensors and Actuators
that are used by the tasks running on the new plat-
form. The communication between the client and
the platform is done via UDP.

Index Terms—timing definition language, Gum-
stix, real-time programming

I. Motivation

The Timing Definition Language (TDL) allows one
to specify the timing behavior of a hard real-time con-
trol application in a descriptive way and separates the
timing aspect of such applications from the function-
ality [1]. TDL enables the definition of components
that behave identically on any platform and with any
distribution schema. TDL generates code for Tasks
and Modules that have to run on the platform which
means that the code generators need to have a min-
imum amount of knowledge of the platform. In this
work, we show that there are only a few steps neces-
sary when porting TDL for a new platform by pro-
viding TDL support for the Gumstix platform.

II. Hardware Setup

We used the Gumstix hardware as a platform for
porting TDL. Gumstix, inc. is the maker of full func-
tion miniature computers(FFMC) in gum stick size
(20mm x 80mm x 8mm) having a Linux motherboard
[2]. We used the Gumstix 400xm with a 400 Mhz
Intel XScale CPU and a 16 MB Flash memory to-
gether with an extension board to enable communi-
cation over Ethernet (Dual ethernet board). A build-
root environment provided for the Gumstix platform
which is publicly available enables comfortable com-
pilation

email: gerd.dauenhauer@cs.uni-salzburg.at
email: patricia.derler@cs.uni-salzburg.at

Fig. 1. TDL - An Example

III. TDL

The Timing Definition Language is a high-level tex-
tual notation for defining the timing behavior of real-
time applications. TDL is based on Giotto [3] ab-
stractions and concepts like logical timing, the sepa-
ration of timing and functionality, modes and mode
switches. Furthermore, TDL is extended by a compo-
nent architecture, it allows the transparent distribu-
tion over multiple nodes and provides a new syntax.
The main goal of TDL is the separation of timing
from implementation.

Basically, real-time software involves a set of tasks
that get input from a set of sensors and calculate out-
put for a set of actuators. A mode is a collection of
tasks representing a particular state of operation of a
control application. Modules as units of parallel com-
position and units of distribution consist of multiple
modes, sensors and actuators. Tasks, sensors and ac-
tuators can either be public or private for a module.
Figure 1 shows the basic concepts of TDL.

The same example can be written in TDL Syntax
which is shown below. For further information about
the TDL Syntax please look at [1].

module Module {

s enso r double s1 uses getS1 ;
s enso r double s2 uses getS2 ;
ac tuator double a1 := 1 uses setA1 ;
ac tuator double a2 := 2 uses setA2 ;
ac tuator double a3 := 3 uses setA3 ;

2

task t1 {
input double port1 ;
output double port2 ;
uses t1Impl (port1 , port2) ;

}

task t2 {
input double port1 ;

double port2 ;
output double port3 ;
uses t2Impl (port1 , port2 , port3) ;

}

task t3 {
input double port1 ;
output double port2 ;

double port3 ;
uses t3Impl (port1 , port2 , port3) ;

}

s t a r t mode mode1 [per iod=10 ms] {
task

[f r e q =10] task1 {port1 := s1 ;}
[f r e q =20] task2 {port2 := s2 ;

port1 := s1 ;}
actuator

[f r e q =10] a2 := task2 . port3 ;
[f r e q =10] a1 := task1 . port2 ;

mode
[f r e q =10] i f s1 = 100

then mode2 ;
}

mode mode2 [per iod=1 ms] {
task

[f r e q =5] task3 {port1 := s2 ;}
[f r e q =1] task1 {port1 := s1 ;}

actuator
[f r e q =5] a2 := task3 . port2 ;
[f r e q =5] a3 := task3 . port3 ;
[f r e q =1] a1 := task1 . port2 ;

}
}

A. The TDL Tool Chain

An extensive tool chain enables designing TDL ap-
plications graphically and generating TDL and plat-
form specific code. Figure 2 shows the main tools and
how they interact.

With MATLAB Simulink [4], tasks and guards are

Fig. 2. TDL Tool Chain

designed graphically. The TDL:VisualCreator en-
ables the graphical design of an application accord-
ing to TDL semantics. The Real-Time Workshop of
Simulink generates C-Code for task and guard imple-
mentations. The TDL:VisualCreator generates the
TDL code. The TDL:VisualDistributor assigns mod-
ules to nodes and generates C-Code for the execution
of those modules on a specific platform. In our case,
code for the Gumstix hardware needs to be generated.
Furthermore, wrapper code is generated for the code
generated by Simulink. The E-Machine is a virtual
machine for executing the TDL tasks and modes and
provides the IO functionality.

IV. Extending TDL for the Gumstix
Platform

In this section, we describe the necessary steps to
port TDL for a new platform. Two main extensions
of the existing tool chain have to be performed:
• Provide the new Platform in the

TDL:VisualDistributor.
• Create an E-machine for the new platform.

A. TDL:VisualDistributor Plug-In

The Gumstix platform is implemented as a plug-
in for the TDL:VisualDistributor. As such its main
class GumstixPlatform is derived from the abstract
base class EmbeddedCPlatform for code generation
aspects and the interface NodePlatform for GUI inte-
gration aspects.

A.1 GumstixNodeProperties

The node attributes are presented in a typical prop-
erties view; properties are used to specify some set-
tings for the code generation shared between all mod-

DAUENHAUER AND DERLER: TDL4GUMSTIX 3

CPlatform

GumstixPlatform

<<interface>>

NodePlatform

<<realize>>

EmbeddedCPlatform PropertyPage

GumstixNodeProperties

GumstixInputProperties

GumstixOutputProperties

generate wrappers for
 MATLAB code

generate code representing E-code
and E-machine step function

generate main(), invoking the step function
and generate Makefile

Fig. 3. Plug-In classes

ules on that node. The emitted code - precisely the
Makefile - contains references to directories that must
be defined by the user:
• Build Root specifies the installation directory of

the Gumstix cross compilation system. E.g. the
C compiler referenced throughout the Makefile is
found in that directory.

• E-Machine specifies the directory containing the
source code for the Gumstix specific E-machine
implementation including I/O device drivers.

• MATLAB specifies the directory containing some
header files referenced in the source code gener-
ated by MATLAB Real-Time Workshop.

A.2 GumstixInputProperties and GumstixOutput-
Properties

Input and output ports in TDL must be assigned
to a specific I/O port on the Gumstix hardware - in
our case, they are just emulated through a TCP/IP
connection. The property views present a list of TDL
ports; for each TDL port, the corresponding I/O port
is assigned from a selection box. Usually one would
implement some intelligence in the property views like
• restrict assignment to compatible types only, i.e.

boolean TDL ports to digital I/O ports and float
or integer TDL ports to analog I/O ports or

• make selectable only those I/O ports that are not
already assigned.

A.3 GumstixPlatform

The Gumstix platform support is implemented by
extending the functionality already found in the code
for typical embedded hardware. The base class al-
ready emits files containing the E-code instructions
encoded as C-code.

The base class also emits a C file containing the step
function to be invoked at each tick of the hyper pe-
riod of all TDL modules. Since each embedded hard-
ware’s operating system has different mechanisms for
invoking a function repeatedly, this detail is left open
for subclasses; our implementation simply emits ad-
ditional C code that e.g. implements a main function
with some initialisation code and an infinite loop with
sleep and invoke instructions1:

i n t main (i n t argc , char ∗∗ argv) {
nextTimestamp = getCurrentTimestamp () ;
In i t IO () ;
initTDLMachine () ;
f f l u s h (stdout) ;
f o r (; ;) {

td l mach ine s t ep () ;
nextTimestamp += 100000;
whi l e (s leepUnti lTimestamp (

nextTimestamp) > 0 l) ;
}
re turn 0 ;

}
Other functionality the Gumstix platform class has

to provide is a mapping mechanism from the “ab-
stract” I/O port functions defined in the E-machine
to our implementation

The majority of code lines in the Gumstix plat-
form class is, however, responsible for generating the
Makefile:
• The C (cross-)compiler to be used is defined by

the node property “Build Root”.
• The compiler’s include directories argument

is constructed from the node properties “E-
Machine” and “MATLAB”

• Fially, all the build targets for all modules, tasks
and guards are emitted.

The result of the plug-in invocation is a directory
structure containing all source and support files nec-
essary to cross-compile the TDL application, result-
ing in a single executable that can be copied to the
Gumstix computer.

B. Gumstix E-Machine

The implementation of the E-machine for the
Gumstix platform is based on the implementation
for the DeComSys2 FlexRay3 Evaluation system

1 The sleep duration 100000 is the computed hyper period of
this node’s modules in micro seconds

2 http://www.decomsys.com
3 http://www.flexray.com

4

NODE<RENESAS>. Our implementation, however,
is much simpler; we do not provide support for multi-
node configurations, and as such, we do not need to
implement the TDL communication layer. We were
able to reuse the code by just removing the commu-
nication and I/O parts.

C. E-Machine - I/O

The I/O implementation of the TDL E-machine
handles the communication between the Gumstix
hardware and sensors and actuators. Information is
sent to and from the Gumstix hardware via UDP
packets. There are two types of messages which can
be sent and received by the Gumstix hardware:
• Sensor Message. A sensor message contains infor-

mation about the new value of one sensor. The
format of a sensor message is:

<SType>:<SNumber>:<SValue>

The sensor type can either be a for analog sensor
or d for digital sensor. Sensors are consecutively
numbered and the sensor number relates to ex-
actly one sensor of type digital or analog. The
sensor value is the actual value of the sensor.
The message <a>:<2>:<100> could be sent to the
Gumstix hardware and there be interpreted as
follows: The actual value of the second analog
sensor is 100.

• Actuator Message. The actuator message con-
tains information about the new value for one
actuator. The format of an actuator message is:

<AType>:<ANumber>:<AValue>

The actuator type can either be a for analog ac-
tuator or d for digital actuator. Actuators are
consecutively numbered and the actuator num-
ber relates to exactly one actuator of type digital
or analog. The actuator value contains the new
value to which the actuator of type AType with
ID ANumber should be set.
The message <d>:<3>:<42> could be sent from
the Gumstix hardware to the third digital actu-
ator which would then set its value to 42.

When the system is started, the E-machine needs
to initialize the I/O component. During initialization,
two threads are started. One thread is used to send
values to actuators and one thread is used to receive
messages from sensors.

When a sensor message is sent to the platform run-
ning the TDL tasks, this message is parsed and stored
in an internal array. AnalogIO get or DigitalIO get
return the current value of a sensor which was sent

some time in the past and was stored in the internal
array.

AnalogIO set and DigitalIO set are used to set the
value of an actuator. Those values are stored locally
and whenever the sending thread is awake, it creates
messages out of those values and sends those messages
to the actuators.

V. Setting and Visualizing Sensor and
Actuator Values

TDL tasks receive input from sensors and send out-
put to actuators. In our approach we used UDP pack-
ets to transport information between sensors and ac-
tuators and the Gumstix platform.

For the sake of simplicity and to be able to con-
centrate on the main goal of this work, sensors and
actuators are being simulated. A simple Java applica-
tion simulates both, sensors and actuators. In figure 4
, a screenshot of the application shows how the appli-
cation is structured. We decided to provide 4 analog
and 4 digital sensors and the same amount of actua-
tors. By pressing the send-button next to a text field
for a sensor, a sensor message is created and sent to
the destination IP address.

Fig. 4. TDL4Gumstix Client

For the visualization of actuator port signals, we
created a simple ”Scope” GUI component in Java.
The scope displays the trace of the signal in a scrolling
2D area. The appearance of the component intention-
ally follows that of the scope control in Simulink. The
y axis is configured with the minimum and maximum

DAUENHAUER AND DERLER: TDL4GUMSTIX 5

Fig. 5. TDL - An Example

of the expected signal value; these values and some
values in between are also used to render the labels
and the grid. The grid on the x axis is automatically
rendered by the component; each grid line represents
one second.

The component is implemented as simple as possi-
ble, e.g. it does not follow the model-view-controller
pattern, but stores the sampled signal values on its
own. Data is added as a timestamp/value pair; data
is stored in a circular buffer of some preconfigured
size, so the scope always shows the last N sample val-
ues. Each added sample value causes the component
to repaint all of its content.

Although the component was implemented in the
context of our project, it may be reused in similar
situations; we would recommend, however, to add
some performance enhancements like block move op-
erations for scrolling and painting only the added
samples.

VI. An Example

We show how to build a TDL application in a very
simple example: a ramp generator.

First, we define the modules required by TDL with
the TDL:VisualCreator (see figure 5. In our example,
we define one module (TDL Module). In this mod-
ule, we create a task which has one actuator. The
task implementation is designed with Simulink and
Simulink standard blocks. Our task returns a value
which it increases and resets to zero when it reached
100; a ramp is generated.

The distribution of the modules is defined in the
TDL:VisualDistributor (see figure 6. Our module is

Fig. 6. Distribution of TDL Modules

placed on a node (Node1), worst case execution times
of tasks are defined and actuator names in the model
are mapped to real actuator names. We used a fixed
list of actuators in our example as we do not have real
actuators but we only visualize actuator values in an
external application.

With the TDL:VisualDistributor, the code required
for executing the modules on a platform is generated.

VII. Outlook

The implementation shown in this work is very sim-
ple because the main goal was to show that it is possi-
ble with only a few steps to port TDL to a new plat-
form. In a real-world application, real sensors and
real actuators would be used. Furthermore, multiple
Gumstix nodes could be supported. This would result
in a difficult synchronization problem between nodes.

VIII. Contribution

Gerd Dauenhauer: E-Machine modifications,
TDL:VisualDistributor Plug-in, Scope
Patricia Derler: E-Machine IO, TDL4Gumstix Java
Client

References

[1] Josef Templ, TDL Timing Definition Language Specifica-
tion. Technical Report, October 2006

[2] Gumstix, Gumstix way small computing http : / / www .

gumstix . com/

[3] Giotto Project, http : / / www-cad . eecs . berkeley . edu /

~fresco / giotto/

[4] The Mathworks. Simulink - Simulation and Model-Based
Design, http : / / www . mathworks . com / products /

simulink/

