
AudioFX

Embedded Software Engineering Course
Winter 2009 / 2010

Christian Ebner                    
Daniel Sürth                    



Table of Contents
1  Introduction......................................................................................................................................3
2  Sound Card, Drivers and different Operating Systems....................................................................3
3  Audio Signal Processing...................................................................................................................3
4  OpenAL............................................................................................................................................4

4.1  Description................................................................................................................................4
4.2  Installation ...............................................................................................................................4
4.3  OpenAL model..........................................................................................................................4

5  Threading..........................................................................................................................................5
5.1  Task Model................................................................................................................................5

6  Scheduling........................................................................................................................................7
6.1  Default scheduling....................................................................................................................7
6.2  Enabling access to threads for scheduling................................................................................7
6.3  Changing priorities...................................................................................................................8
6.4  Future work...............................................................................................................................8



1 Introduction

The goal of our project AudioFX was to process an audio input signal in real-time. Before the audio 
device sends the audio signal to the speakers the signal is modified by an audio-effect-module.

2 Sound Card, Drivers and different Operating Systems
The sound card processes the input and output signals. 

On windows systems proprietary audio drivers are provided from manufacturers. Most UNIX 
systems use OSS (Open Sound System) as a sound driver. The MacBook Pro we used has an Intel 
high definition audio driver.

Since there exist so many different drivers for different operating systems we looked for a library 
which can be used on different platforms and we found OpenAL.

3 Audio Signal Processing
When the analog audio signal is transformed to a digital one, the audio card splits the signal into 
audio samples. 
The information of one sample is coded into a number of bits so the bit-rate is defined as the 
number of bits per samples. A CD for example has a bit-rate of 16 bits/sample.

The sample rate is defined in Hz. 1 Hz is one oscillation per second. 
If we take a sample rate of 44100 Hz and a bit-rate of 16 bits/sample, then 44100 samples have to 
be processed within a second, that are about 86 KB a second.

Mono/Stereo:
Mono or monophonic describes a system where all the audio signals are mixed together and routed 
through a single audio channel whereas stereophonic systems have two independent audio signal 
channels, one for the left and one for the right side.
In a stereo buffer stream the samples of the left and the right channels are stored in turns.

Audio Effects 
The effects we implemented are echo/delay and pitch.
An echo is defined as a repetition of the original signal within 50ms. One or more delayed signals 
are added to the original signal. The delayed signals have to last 50ms or longer.
With the technique of pitching it is possible to shift the original signal up or down in pitch.



4 OpenAL

4.1 Description
OpenAL is a cross-platform audio API developed by Creative Labs and written in the programming 
language C.  

4.2 Installation
OpenAL may be used within different operating systems. We chose Windows (XP, Windows 7) as 
well as a Linux version for enabling the scheduling of existing task.
For using OpenAL on Windows, the dynamic-linked library OpenAL32.dll has to be installed. This 
will be done by an installer provided by the OpenAL team. For using the API while programming 
AudioFX,  needed  c  header  and  the  corresponding  OpenAL32.lib  library  were  taken  from the 
OpenAL 1.1 Core SDK.
For using OpenAL on Linux, we downloaded the source code and compiled it using cmake and 
make. The header files were copied to /usr/include/AL and the library to /usr/lib/

4.3 OpenAL model
Working with OpenAL includes working with at least one device. This device includes different 
basic items which are used within OpenAL: buffers, sources and listeners. If the device is opened, a 
context will be created which includes a listeners object. Nevertheless, we are not concentrating on 
the listener object in our project, since this feature is more important for adding 3D audio effects 
and we are more interested in basic audio effects instead of adding 3D effects. 

As demonstrated in fig 1, a device may have multiple sources and buffers. Captured audio signals 
have to be stored in those buffers and the source will continue playing as long as buffers are filled.

Figure 1. OpenAL objects

Device

Context

Listener

Source 1 Source 2

Buffer 1 Buffer 2



5 Threading
In the AudioFX project, two additional threads are created by the OpenAL API. The actual called 
functions are depending on the used audio drivers. In the following example, files are analyzed 
which are related to the Open Sound System (which is used on Linux).

5.1 Task Model

Figure 2. Task model

read data from device

write data into RingBuffer

Start

End

capturing 
canceled

cont. capturing 

Start

mix data

attach data to device

End

data available

cont. 
playing

playing 
canceled

Start

initialize devices

destroy devices

End

handle captured 
data

(RingBuffer)

control processed
data

stop 
program

mutex

Task B: OpenAL 
(capture, 
“OSSCaptureProc()”)

Task A: 
AudioFX (main) 

Task C: OpenAL
(play, “OSSProc()”)



In fig 2, three tasks are shown: 

(1) Task A represents the main program of the AudioFX project. Running this tasks includes 
initializing all used OpenAL structures, as devices, sources, buffers, etc. Errors within this 
phase are crucial and means for example that a playing device could not be found. 

Afterwards  the  program  starts  to  manage  the  capturing  and  playing  process.  This  is 
sequentially  done  in  the  two  functions  capture()  and  play()  which  are  called 
rotationally  The capturing function checks, how many audio signals have been written to an 
internal ring buffer since the last call of the function. If there are enough signals available 
for filling an audio source-related buffer, the data will be retrieved from the ring buffer and 
saved to one of available audio source-related buffers.

In  the  play  function,  filled  buffers  will  be  enqueued  to  the  specific  audio  source. 
Furthermore, buffers which are already processed (what means that the audio signals have 
already been played), are recognized and the buffers are marked to be reused.

Due to the programmers manual it may happen that an audio source stops playing if there 
are  no  further  buffers  attached  to  it.  Although  this  never  happens  in  our  tests,  we  are 
checking if the source is actually playing or should be restarted.

(2) Task B is part of the OpenAL API and runs a function called OSSCaptureProc. It is 
started when an new capturing device (e.g., a microphone) is opened in the main program of 
the project. The task will end only, if the capturing process is stopped. During the runtime, 
the captured data is retrieved by using the OSS driver to access the audio device. The audio 
signals are written to an internal ring buffer which may be read using OpenAL commands 
(alcCaptureSamples()).  Reading  form  or  writing  to  the  internal  ring  buffer  is 
constructed as a critical section, which is secured by a mutex.

(3) Task C is started, after a new context has been created. As described in chapter 4.2, a device 
has at least one context, so this thread starts immediately after OpenAL has been initialized. 
The task is part of the OpenAL API and executes a function called OSSProc. As long as the 
initialized device is not destroyed,  the stored data is  mixed what means that the data is 
ordered according to the audio format (e.g., mono or stereo). Afterwards, the signals are 
written to the audio device using the Open Sound System driver and the signals are played. 



6 Scheduling

6.1 Default scheduling
OpenAL creates  new  threads  without  defining  the  priority  or  the  algorithm  of  a  the  thread. 
Therefore, the threads are scheduled using Round Robin. 

6.2 Enabling access to threads for scheduling
We were interested how to access all threads which are created in AudioFX, either in our own code 
or in the code provided by OpenAL. If we are able to access them, we can change their behavior 
including their priorities. 
Therefore, we decided to modify the OpenAL API code, which is open source. Every thread is 
created  in  a  function  called  StartThread() in  the  file  alcThread.c which  belongs  to 
OpenAL. That means, we have to change only very view spots of the external source code, although 
it took some time to detect these spots.
It is possible to recognize all started threads within this function as may be seen in table 1. The bold 
lines  in  this  table  has  been  added  by us.  The  created  threads  are  saved  in  an  array which  is 
accessible via a getter function  

ALvoid *StartThread(ALuint (*func)(ALvoid*), ALvoid *ptr)
{
 ThreadInfo *inf = malloc(sizeof(ThreadInfo));
 
 if(!inf) return NULL;

 inf->func = func;
 inf->ptr = ptr;
 
 
 if(pthread_create(&inf->thread, NULL, StarterFunc, inf) != 0)
 { 
 free(inf);
 return NULL;
 }
 // we are actually using only two threads of the OpenAL API in 
 // the AudioFX project.
 if (AUDIOFX_threadPos < 2)
 {
   AUDIOFX_allThreads[AUDIOFX_threadPos++] = inf->thread;
 }
    
 return inf;
}

Table 1. Code snippet from alcThread.c

The getter function getAUDIOFX_Threads() has been added to the same file and is part of the 
OpenAL header called al.h, to be accessible. Now, all threads, either created by our code, or by 
OpenAL, may be controlled.

pthread_t *threads = getAUDIOFX_Threads();

Table 2. retrieving OpenAL threads within the AudioFX project



The modifications of the OpenAL source code are only valid for operating systems which are not 
based on MS Windows. Therefore, this OpenAL code might not compile when used on Windows.

6.3 Changing priorities
Having the information of the previous two paragraphs, we are now able to change the behavior of 
every thread within the project using POSIX standard commands (see table 3). 

pthread_t thr;
pthread_attr_t pta;

pthread_attr_init(&pta);

struct sched_param param;
param.sched_priority = 10; // 10 has to be considered as example  

pthread_attr_setschedpolicy(&pta, SCHED_FIFO);
pthread_attr_setschedparam(&pta, &param);

pthread_create(&thr, &pta, thread_func, NULL);

Table 3. Setting thread behavior

6.4 Future work
The current version of AudioFX is programmed for a MS Windows operating system. The concepts 
of this chapter are meant for a Linux version, maybe even with an installed real-time patch to ensure 
the aimed behavior and control. Due to the deadline set for the Audio FX project, the behavior of a 
Linux including a real time path could not be tested.


	1 Introduction
	2 Sound Card, Drivers and different Operating Systems
	3 Audio Signal Processing
	4 OpenAL
	4.1 Description
	4.2 Installation	
	4.3 OpenAL model

	5 Threading
	5.1 Task Model

	6 Scheduling
	6.1 Default scheduling
	6.2 Enabling access to threads for scheduling
	6.3 Changing priorities
	6.4 Future work


