
© C. Kirsch 2009

Scalability of
Allocation Throughput

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Fig. 9. Allocation throughput with an increasing number of threads

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o
n

s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o

n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o
n

s
/s

e
c

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Fig. 9. Allocation throughput with an increasing number of threads

© C. Kirsch 2009

Scalability of
Allocation Throughput

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Fig. 9. Allocation throughput with an increasing number of threads

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o
n

s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o

n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o
n

s
/s

e
c

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Fig. 9. Allocation throughput with an increasing number of threads

not scalable

© C. Kirsch 2009

Scalability of
Allocation Throughput

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Fig. 9. Allocation throughput with an increasing number of threads

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o
n

s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o

n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o
n

s
/s

e
c

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Fig. 9. Allocation throughput with an increasing number of threads

scalable

© C. Kirsch 2009

Scalability of
Allocation Throughput

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a
ti
o
n
s
/s

e
c

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Fig. 9. Allocation throughput with an increasing number of threads

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o
n

s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o

n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o
n

s
/s

e
c

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Fig. 9. Allocation throughput with an increasing number of threads

no
compaction

is better by a
constant

•global size-class locks do not
scale

• full compaction only
requires constant factor

© C. Kirsch 2009

Scalability of
Allocation Throughput

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o

n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o

n
s
/s

e
c

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

a
llo

c
a

ti
o

n
s
/s

e
c

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Fig. 9. Allocation throughput with an increasing number of threads

• level of sharing determines
scalability

© C. Kirsch 2009

Real Application
Performance

 370000

 380000

 390000

 400000

 410000

 420000

1 3 5 10 15 20 25 !

a
llo

c
a
ti
o
n
s
/s

e
c

partial compaction bound "

emacs

 186000

 188000

 190000

 192000

 194000

 196000

 198000

 200000

 202000

 204000

1 3 5 10 15 20 25 !

a
llo

c
a
ti
o
n
s
/s

e
c

hummingbird

Fig. 10. Allocation throughput for Hummingbird and Emacs

The macrobenchmarks are based on Emacs and Hummingbird alloca-

tion/deallocation traces [6]. In the Emacs trace about 51% of the allocated

objects are of size 40B, 15% are of size 648B, and 11% are of size 104B. The

remaining objects of the trace are also of small size. In the Hummingbird trace

about 25% of the allocated objects are of size 8B and 23% are of size 32B. The

remaining allocation requests vary from 16B to around 38.1MB (object sizes

greater than 16KB are ignored here). Hummingbird’s allocation behavior is very

different from the behavior of a typical mutator where 99% of the objects are of

small and similar sizes [11].

Figure 10 shows the allocation throughput of a single thread running the

Hummingbird and Emacs benchmarks. Larger κ values allow the Hummingbird

benchmark to allocate more objects per second. In the Emacs benchmark the

allocation throughput does not improve for larger κ.

 2160

 2162

 2164

 2166

 2168

 2170

1 3 5 10 15 20 25 !
 40

 50

 60

 70

 80

 90

 100

m
e
m

o
ry

 s
iz

e
 i
n
 p

a
g
e
s

n
u
m

b
e
r

o
f
n
o
t-

fu
ll

p
a
g
e
s

partial compaction bound "

emacs

memory size
not-full pages

 15320

 15325

 15330

 15335

 15340

1 3 5 10 15 20 25 !
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

m
e
m

o
ry

 s
iz

e
 i
n
 p

a
g
e
s

n
u
m

b
e
r

o
f
n
o
t-

fu
ll

p
a
g
e
s

hummingbird

memory size
not-full pages

Fig. 11. Memory usage and size-class fragmentation for Hummingbird and Emacs

 370000

 380000

 390000

 400000

 410000

 420000

1 3 5 10 15 20 25 !

a
llo

c
a

ti
o

n
s
/s

e
c

partial compaction bound "

emacs

 186000

 188000

 190000

 192000

 194000

 196000

 198000

 200000

 202000

 204000

1 3 5 10 15 20 25 !

a
llo

c
a

ti
o

n
s
/s

e
c

hummingbird

Fig. 10. Allocation throughput for Hummingbird and Emacs

The macrobenchmarks are based on Emacs and Hummingbird alloca-

tion/deallocation traces [6]. In the Emacs trace about 51% of the allocated

objects are of size 40B, 15% are of size 648B, and 11% are of size 104B. The

remaining objects of the trace are also of small size. In the Hummingbird trace

about 25% of the allocated objects are of size 8B and 23% are of size 32B. The

remaining allocation requests vary from 16B to around 38.1MB (object sizes

greater than 16KB are ignored here). Hummingbird’s allocation behavior is very

different from the behavior of a typical mutator where 99% of the objects are of

small and similar sizes [11].

Figure 10 shows the allocation throughput of a single thread running the

Hummingbird and Emacs benchmarks. Larger κ values allow the Hummingbird

benchmark to allocate more objects per second. In the Emacs benchmark the

allocation throughput does not improve for larger κ.

 2160

 2162

 2164

 2166

 2168

 2170

1 3 5 10 15 20 25 !
 40

 50

 60

 70

 80

 90

 100

m
e

m
o

ry
 s

iz
e

 i
n

 p
a

g
e

s

n
u

m
b

e
r

o
f

n
o

t-
fu

ll
p

a
g

e
s

partial compaction bound "

emacs

memory size
not-full pages

 15320

 15325

 15330

 15335

 15340

1 3 5 10 15 20 25 !
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

m
e

m
o

ry
 s

iz
e

 i
n

 p
a

g
e

s

n
u

m
b

e
r

o
f

n
o

t-
fu

ll
p

a
g

e
s

hummingbird

memory size
not-full pages

Fig. 11. Memory usage and size-class fragmentation for Hummingbird and Emacs

• less compaction may result in
better allocation throughput

•size-class fragmentation
increases with less compaction
but total memory consumption
may not

© C. Kirsch 2009

TLSF vs. opt., non-comp. CF
Performance

Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).

memory (in MB)

TLSF CF (16B blocks) CF (32B blocks)

memory memory size-class memory size-class

size size fragmentation size fragmentation

Emacs 25.7 34.6 0.46 34.5 0.38

Hummingbird 203.7 245.3 8.3 245.9 11.4

Table 3. Memory consumption of TLSF versus optimized, non-compacting CF (with-

out abstract addressing)

malloc (in clock ticks) free (in clock ticks)

TLSF CF TLSF CF

avg max avg max avg max avg max

time time time time time time time time

Emacs 228 93359 260 81662 153 71159 279 74798

Hummingbird 411 109079 529 98820 500 69192 574 79914

Table 4. Performance of TLSF versus optimized, non-compacting CF (without ab-

stract addressing)

Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).

Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).

memory (in MB)

TLSF CF (16B blocks) CF (32B blocks)

memory memory size-class memory size-class

size size fragmentation size fragmentation

Emacs 25.7 34.6 0.46 34.5 0.38

Hummingbird 203.7 245.3 8.3 245.9 11.4

Table 3. Memory consumption of TLSF versus optimized, non-compacting CF (with-

out abstract addressing)

malloc (in clock ticks) free (in clock ticks)

TLSF CF TLSF CF

avg max avg max avg max avg max

time time time time time time time time

Emacs 228 93359 260 81662 153 71159 279 74798

Hummingbird 411 109079 529 98820 500 69192 574 79914

Table 4. Performance of TLSF versus optimized, non-compacting CF (without ab-

stract addressing)

Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).

© C. Kirsch 2009

TLSF vs. opt., non-comp. CF
Performance

Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).

memory (in MB)

TLSF CF (16B blocks) CF (32B blocks)

memory memory size-class memory size-class

size size fragmentation size fragmentation

Emacs 25.7 34.6 0.46 34.5 0.38

Hummingbird 203.7 245.3 8.3 245.9 11.4

Table 3. Memory consumption of TLSF versus optimized, non-compacting CF (with-

out abstract addressing)

malloc (in clock ticks) free (in clock ticks)

TLSF CF TLSF CF

avg max avg max avg max avg max

time time time time time time time time

Emacs 228 93359 260 81662 153 71159 279 74798

Hummingbird 411 109079 529 98820 500 69192 574 79914

Table 4. Performance of TLSF versus optimized, non-compacting CF (without ab-

stract addressing)

Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).

Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).

memory (in MB)

TLSF CF (16B blocks) CF (32B blocks)

memory memory size-class memory size-class

size size fragmentation size fragmentation

Emacs 25.7 34.6 0.46 34.5 0.38

Hummingbird 203.7 245.3 8.3 245.9 11.4

Table 3. Memory consumption of TLSF versus optimized, non-compacting CF (with-

out abstract addressing)

malloc (in clock ticks) free (in clock ticks)

TLSF CF TLSF CF

avg max avg max avg max avg max

time time time time time time time time

Emacs 228 93359 260 81662 153 71159 279 74798

Hummingbird 411 109079 529 98820 500 69192 574 79914

Table 4. Performance of TLSF versus optimized, non-compacting CF (without ab-

stract addressing)

Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).

only 1.3%
of the 35% more

memory

© C. Kirsch 2009

TLSF vs. opt., non-comp. CF
Performance

Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).

memory (in MB)

TLSF CF (16B blocks) CF (32B blocks)

memory memory size-class memory size-class

size size fragmentation size fragmentation

Emacs 25.7 34.6 0.46 34.5 0.38

Hummingbird 203.7 245.3 8.3 245.9 11.4

Table 3. Memory consumption of TLSF versus optimized, non-compacting CF (with-

out abstract addressing)

malloc (in clock ticks) free (in clock ticks)

TLSF CF TLSF CF

avg max avg max avg max avg max

time time time time time time time time

Emacs 228 93359 260 81662 153 71159 279 74798

Hummingbird 411 109079 529 98820 500 69192 574 79914

Table 4. Performance of TLSF versus optimized, non-compacting CF (without ab-

stract addressing)

Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).

Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).

memory (in MB)

TLSF CF (16B blocks) CF (32B blocks)

memory memory size-class memory size-class

size size fragmentation size fragmentation

Emacs 25.7 34.6 0.46 34.5 0.38

Hummingbird 203.7 245.3 8.3 245.9 11.4

Table 3. Memory consumption of TLSF versus optimized, non-compacting CF (with-

out abstract addressing)

malloc (in clock ticks) free (in clock ticks)

TLSF CF TLSF CF

avg max avg max avg max avg max

time time time time time time time time

Emacs 228 93359 260 81662 153 71159 279 74798

Hummingbird 411 109079 529 98820 500 69192 574 79914

Table 4. Performance of TLSF versus optimized, non-compacting CF (without ab-

stract addressing)

Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).

sometimes
even better
than TLSF

• fragmentation through
partitioning dominates CF
memory consumption

•opt., non-comp. CF only
slightly slower than TLSF

© C. Kirsch 2009

Allocation Throughput with
Decreasing Compaction Increment

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

128512102420484096!

a
llo

c
a

ti
o

n
s
/s

e
c

compaction increment "

1 thread
2 threads
4 threads
6 threads
8 threads

(a) allocation throughput

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

16 48 160 552 2048 8000

s
y
s
te

m
 l
a

te
n

c
y
 i
n

 µ
s
e

c

block size in bytes

! 128
! 512
! 1024
! 2048
! 4096

! "

(b) system latency with 8 threads

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

128512102420484096!

n
u

m
b

e
r

o
f

s
o

u
rc

e
 p

a
g

e
s

compaction increment "

1 thread
2 threads
4 threads
6 threads
8 threads

(c) transient size-class fragmentation

Fig. 12. Allocation throughput, system latency, and transient size-class fragmentation
with decreasing compaction increments

8.3 Concurrent Incremental CF

The microbenchmark runs mutator threads allocating and deallocating objects
from 16B to 16KB randomly. The threads operate on global size classes.

© C. Kirsch 2009

System Latency with 8 Threads
and Increasing Block Size

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

128512102420484096!

a
llo

c
a

ti
o

n
s
/s

e
c

compaction increment "

1 thread
2 threads
4 threads
6 threads
8 threads

(a) allocation throughput

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

16 48 160 552 2048 8000

s
y
s
te

m
 l
a

te
n

c
y
 i
n

 µ
s
e

c

block size in bytes

! 128
! 512
! 1024
! 2048
! 4096

! "

(b) system latency with 8 threads

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

128512102420484096!

n
u

m
b

e
r

o
f

s
o

u
rc

e
 p

a
g

e
s

compaction increment "

1 thread
2 threads
4 threads
6 threads
8 threads

(c) transient size-class fragmentation

Fig. 12. Allocation throughput, system latency, and transient size-class fragmentation
with decreasing compaction increments

8.3 Concurrent Incremental CF

The microbenchmark runs mutator threads allocating and deallocating objects
from 16B to 16KB randomly. The threads operate on global size classes.

© C. Kirsch 2009

Transient Size-Class Fragmentation with
Decreasing Compaction Increment

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

128512102420484096!

a
llo

c
a

ti
o

n
s
/s

e
c

compaction increment "

1 thread
2 threads
4 threads
6 threads
8 threads

(a) allocation throughput

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

16 48 160 552 2048 8000

s
y
s
te

m
 l
a

te
n

c
y
 i
n

 µ
s
e

c

block size in bytes

! 128
! 512
! 1024
! 2048
! 4096

! "

(b) system latency with 8 threads

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

128512102420484096!

n
u

m
b

e
r

o
f

s
o

u
rc

e
 p

a
g

e
s

compaction increment "

1 thread
2 threads
4 threads
6 threads
8 threads

(c) transient size-class fragmentation

Fig. 12. Allocation throughput, system latency, and transient size-class fragmentation
with decreasing compaction increments

8.3 Concurrent Incremental CF

The microbenchmark runs mutator threads allocating and deallocating objects
from 16B to 16KB randomly. The threads operate on global size classes.

