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no 
compaction

is better by a
constant



•global size-class locks do not 
scale

• full compaction only 
requires constant factor
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Fig. 10. Allocation throughput for Hummingbird and Emacs

The macrobenchmarks are based on Emacs and Hummingbird alloca-

tion/deallocation traces [6]. In the Emacs trace about 51% of the allocated

objects are of size 40B, 15% are of size 648B, and 11% are of size 104B. The

remaining objects of the trace are also of small size. In the Hummingbird trace

about 25% of the allocated objects are of size 8B and 23% are of size 32B. The

remaining allocation requests vary from 16B to around 38.1MB (object sizes

greater than 16KB are ignored here). Hummingbird’s allocation behavior is very

different from the behavior of a typical mutator where 99% of the objects are of

small and similar sizes [11].

Figure 10 shows the allocation throughput of a single thread running the

Hummingbird and Emacs benchmarks. Larger κ values allow the Hummingbird

benchmark to allocate more objects per second. In the Emacs benchmark the

allocation throughput does not improve for larger κ.
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Fig. 11. Memory usage and size-class fragmentation for Hummingbird and Emacs
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different from the behavior of a typical mutator where 99% of the objects are of
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• less compaction may result in 
better allocation throughput

•size-class fragmentation 
increases with less compaction 
but total memory consumption 
may not
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Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).

memory (in MB)

TLSF CF (16B blocks) CF (32B blocks)

memory memory size-class memory size-class

size size fragmentation size fragmentation

Emacs 25.7 34.6 0.46 34.5 0.38

Hummingbird 203.7 245.3 8.3 245.9 11.4

Table 3. Memory consumption of TLSF versus optimized, non-compacting CF (with-

out abstract addressing)

malloc (in clock ticks) free (in clock ticks)

TLSF CF TLSF CF

avg max avg max avg max avg max

time time time time time time time time

Emacs 228 93359 260 81662 153 71159 279 74798

Hummingbird 411 109079 529 98820 500 69192 574 79914

Table 4. Performance of TLSF versus optimized, non-compacting CF (without ab-

stract addressing)

Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).
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Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).
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TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
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around 1.3% comes from size-class fragmentation while the difference between
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class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).
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memory consumption
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Allocation Throughput with 
Decreasing Compaction Increment
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Fig. 12. Allocation throughput, system latency, and transient size-class fragmentation
with decreasing compaction increments

8.3 Concurrent Incremental CF

The microbenchmark runs mutator threads allocating and deallocating objects
from 16B to 16KB randomly. The threads operate on global size classes.
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System Latency with 8 Threads 
and Increasing Block Size
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Fig. 12. Allocation throughput, system latency, and transient size-class fragmentation
with decreasing compaction increments

8.3 Concurrent Incremental CF

The microbenchmark runs mutator threads allocating and deallocating objects
from 16B to 16KB randomly. The threads operate on global size classes.
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Transient Size-Class Fragmentation with 
Decreasing Compaction Increment
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Fig. 12. Allocation throughput, system latency, and transient size-class fragmentation
with decreasing compaction increments

8.3 Concurrent Incremental CF

The microbenchmark runs mutator threads allocating and deallocating objects
from 16B to 16KB randomly. The threads operate on global size classes.


