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• HTL = Hierarchical Timing Language [EMSOFT 2006]

• Modularity = compositionality

• HTL is modular (syntax and semantics)

• How modular is HTL compilation ?

• How modular is HTL distribution ?

Distributed, Modular HTL



Time-Portable Programming

Tiptoe
[USENIX 2008, IIES 2009, SIES 2009]

Exotasks
[LCTES 2007, TECS 2009]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006, RTSS 2009]
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Actual Execution Time
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Time Determinism
Control System

Plant

A system’s I/O behavior is time-deterministic if,
for all sequences of input values and times,

the system always produces
unique sequences of output values and times.



• HTL has four building blocks:

‣ task (computation)

‣ mode (precedences)

‣ module (sequential composition)

‣ program (concurrency, refinement)

• an HTL program is an hierarchical, tree-like 
structure whose nodes are such blocks

Hierarchical Timing Language



Example
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program module mode refinement



Task

input
ports

output 
ports

private
ports

Task

• an insulated code procedure (C / Java)

‣ no side effects, no synchronization

‣ executes periodically

0 Δ



Precedences

Task

• tasks with equal periods may communicate 
through ports, defining task precedences

precedence precedence

0 Δ



comm. 
write

comm. 
read

Communicators

Task

• a communicator is a periodically updated, 
program-wide variable

• tasks with different periods must 
communicate through communicators

comm. 
read

interval for
transmission

0 Δ



Logical Execution Time
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• a mode is a set of tasks with equal period 
and precedences between them. 

Mode

Mode
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Module

a mode is a set of tasks with equal period and 
precedences. 

Mode 
A

Mode 
B

Mode
C

A B C

ΔA
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ΔB ΔB ΔC

• a module is a set of modes that alternate 
execution according to a mode switching 
specification 

Module

mode
switching



• a program is a set of concurrent modules

• programs are distributed module-wise

Program
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Program
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interaction



abstract task

Refinement

a mode is a set of tasks with equal period and 
precedences. 

...

refinement program

abstract mode

refinement task

• modes can be refined 

• refinement preserves abstract  behavior

same period
longer LET

shorter WCET

0 Δ



HTL Compilation
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Well-formed, race-free, 
time-safe, and 

transmission-safe 
HTL programs are
time-deterministic



Platform-independent
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Modularity
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Modularity

Aspect
Component 
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P : full program



Modularity

Aspect
Component 

(C)
Dependency 

Context Complexity

Well Formedness any C linear

Race Freedom
top P linear

Race Freedom
refinement C no check

Time Safety
top P exponential

Time Safety
refinement C no check

Transmission 
Safety

any Communicators Linear

Code generation any C Polynomial

A concrete HTL program that refines
a time-safe, race-free,abstract HTL program

is also time-safe and race-free.
P : full program
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Modularity
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Time Safety
Refinement C No check

Transmission 
safety any communicators linear

Code generation any C linear

Can be inferred solely from 
communicator periods and platform 

worst-case transmission times.

P : full program



Modularity

Aspect
Component 

(C)
Dependency 

Context Complexity

Well Formedness any C linear

Race Freedom
top P linear

Race Freedom
refinement C no check

Time Safety
top P exponential

Time Safety
Refinement C No check

Transmission 
safety

Any Communicators Linear

Code 
generation any C linear

Fully modular: code can be generated 
separately per component [APGES 2007].

P : full program



Distribution

• transmission-safety can be asserted by 
standard schedulability criteria for a variety 
of network platforms 

(e.g. TDMA, FTT-CAN).

• time-safety analysis and code generation can 
be done separately per host

• overall: scalable distribution
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Thank  you


