
RTSS 2009 - 30th IEEE Real-Time Systems Symposium
December 3, 2009

Distributed, Modular HTL

Thomas A. Henzinger
EPFL / IST Austria

Christoph M. Kirsch
University of Salzburg

Eduardo R. B. Marques
University of Porto

Ana Sokolova
University of Salzburg

• HTL = Hierarchical Timing Language [EMSOFT 2006]

• Modularity = compositionality

• HTL is modular (syntax and semantics)

• How modular is HTL compilation ?

• How modular is HTL distribution ?

Distributed, Modular HTL

Time-Portable Programming

Tiptoe
[USENIX 2008, IIES 2009, SIES 2009]

Exotasks
[LCTES 2007, TECS 2009]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006, RTSS 2009]

Logical Execution Time

0 1 2 3 4 5 6 7 8 9 10

Control System

Plant

Sensor
Task

Actuator

Logical Execution Time

Actual Execution Time

0 1 2 3 4 5 6 7 8 9 10

Control System

Plant

Sensor Actuator
Task

running

Time Determinism
Control System

Plant

A system’s I/O behavior is time-deterministic if,
for all sequences of input values and times,

the system always produces
unique sequences of output values and times.

• HTL has four building blocks:

‣ task (computation)

‣ mode (precedences)

‣ module (sequential composition)

‣ program (concurrency, refinement)

• an HTL program is an hierarchical, tree-like
structure whose nodes are such blocks

Hierarchical Timing Language

Example

A

3TSController
PumpA PumpB

BMMode
Monitor

A_P A_PI B_P B_PI

A_PISlow A_PIFast B_PISlow B_PIFast

program module mode refinement

Task

input
ports

output
ports

private
ports

Task

• an insulated code procedure (C / Java)

‣ no side effects, no synchronization

‣ executes periodically

0 Δ

Precedences

Task

• tasks with equal periods may communicate
through ports, defining task precedences

precedence precedence

0 Δ

comm.
write

comm.
read

Communicators

Task

• a communicator is a periodically updated,
program-wide variable

• tasks with different periods must
communicate through communicators

comm.
read

interval for
transmission

0 Δ

Logical Execution Time

Task

LET defined by
communicator
accesses and
precedences

0 Δ

• a mode is a set of tasks with equal period
and precedences between them.

Mode

Mode

0 Δ

{

Module

a mode is a set of tasks with equal period and
precedences.

Mode
A

Mode
B

Mode
C

A B C

ΔA

B

ΔB ΔB ΔC

• a module is a set of modes that alternate
execution according to a mode switching
specification

Module

mode
switching

• a program is a set of concurrent modules

• programs are distributed module-wise

Program

A

B

C
A B CB

D E D ED D D D

Program
communicator

interaction

abstract task

Refinement

a mode is a set of tasks with equal period and
precedences.

...

refinement program

abstract mode

refinement task

• modes can be refined

• refinement preserves abstract behavior

same period
longer LET

shorter WCET

0 Δ

HTL Compilation

Well
Formedness

Race
Freedom

Time
Safety

Transmission
Safety

Code
Generation

Well-formed, race-free,
time-safe, and

transmission-safe
HTL programs are
time-deterministic

Platform-independent

Well
Formedness

Race
Freedom

Time
Safety

Transmission
Safety

Code
Generation

syntactic
constraints

no
communicator

races

E
machine

PLDI 2002
APGES 2007

Platform-dependent

Well
Formedness

Race
Freedom

Time
Safety

Transmission
Safety

Code
Generation

communication
schedulability

computation
schedulability

Modularity

original
program

original
component

new
program

new
component

incremental
addition or
replacement

Modularity

original
component

new
component

dependency
context

context
for

incremental
compilation

original
program

Modularity

Aspect
Component

(C)
Dependency

Context Complexity

Well Formedness any C linear

Race Freedom
top P linear

Race Freedom
refinement C no check

Time Safety
top P exponential

Time Safety
refinement C no check

Transmission
Safety

any communicators linear

Code generation any C linear

P : full program

Modularity

Aspect
Component

(C)
Dependency

Context Complexity

Well Formedness any C linear

Race Freedom
top P linear

Race Freedom
refinement C no check

Time Safety
top P exponential

Time Safety
refinement C no check

Transmission
Safety

any Communicators Linear

Code generation any C Polynomial

A concrete HTL program that refines
a time-safe, race-free,abstract HTL program

is also time-safe and race-free.
P : full program

Modularity

Aspect
Component

(C)
Dependency

Context Complexity

Well Formedness any C linear

Race Freedom
top P linear

Race Freedom
refinement C no check

Time Safety
top P exponential

Time Safety
refinement C no check

Transmission
Safety

any communicators linear

Code generation any C linear

Fully non-modular.

P : full program

Modularity

Aspect
Component

(C)
Dependency

Context Complexity

Well Formedness any C linear

Race Freedom
top P linear

Race Freedom
Refinement C No check

Time Safety
Top P Exponential

Time Safety
Refinement C No check

Transmission
safety any communicators linear

Code generation any C linear

Can be inferred solely from
communicator periods and platform

worst-case transmission times.

P : full program

Modularity

Aspect
Component

(C)
Dependency

Context Complexity

Well Formedness any C linear

Race Freedom
top P linear

Race Freedom
refinement C no check

Time Safety
top P exponential

Time Safety
Refinement C No check

Transmission
safety

Any Communicators Linear

Code
generation any C linear

Fully modular: code can be generated
separately per component [APGES 2007].

P : full program

Distribution

• transmission-safety can be asserted by
standard schedulability criteria for a variety
of network platforms

(e.g. TDMA, FTT-CAN).

• time-safety analysis and code generation can
be done separately per host

• overall: scalable distribution

• HTL = Hierarchical Timing Language

• Modularity = compositionality

• HTL is modular (syntax and semantics)

• HTL compilation is (quite) modular

• HTL distribution is modular

Conclusion

• HTL = Hierarchical Timing Language

• Modularity = compositionality

• HTL is modular (syntax and semantics)

• HTL compilation is (quite) modular

• HTL distribution is modular

Conclusion

Thank you

