
Artist Summer School 2009
Tsinghua University, Beijing, China

Explicit, Dynamic
Memory Management with

Temporal and Spatial Guarantees
Christoph Kirsch and Ana Sokolova

Universität Salzburg

© C. Kirsch 2009

Memory Management

• Allocation:

‣malloc

© C. Kirsch 2009

Memory Management

• Allocation:

‣malloc

• Deallocation:

‣free

© C. Kirsch 2009

Memory Management

• Allocation:

‣malloc

• Deallocation:

‣free

• Access:

‣read and write

© C. Kirsch 2009

Free

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

© C. Kirsch 2009

Free

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A

© C. Kirsch 2009

Free

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object B

© C. Kirsch 2009

Free

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object B Object C

© C. Kirsch 2009

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object B Object C Object D

1. Assumption:

Objects may have
different sizes

© C. Kirsch 2009

Free

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A

© C. Kirsch 2009

Free

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object B

© C. Kirsch 2009

Free

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object B Object C

© C. Kirsch 2009

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object B Object C Object D

© C. Kirsch 2009

Deallocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object B Object C Object D

© C. Kirsch 2009

Free

Deallocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object B Object C

© C. Kirsch 2009

Free

Deallocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object B

© C. Kirsch 2009

Free

Deallocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A

© C. Kirsch 2009

Free

Deallocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

2. Assumption:

Objects may be
allocated and deallocated

in random order

© C. Kirsch 2009

Deallocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object B Object C Object D

© C. Kirsch 2009

Deallocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C Object D

© C. Kirsch 2009

Deallocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C

© C. Kirsch 2009

External Fragmentation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C

© C. Kirsch 2009

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C

Object E

© C. Kirsch 2009

Object F

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C

© C. Kirsch 2009

Object G

Allocation

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C

Memory is fragmented if
the largest, contiguous
piece of available space

is
smaller than

the total available space

© C. Kirsch 2009

Fragmentation

• Memory objects may have different sizes

• Memory objects may be allocated and
deallocated in random order

‣ creates the problem of memory
fragmentation!

Explicit, Dynamic
Memory Management with

Temporal and Spatial Guarantees

© C. Kirsch 2009

Static versus Dynamic

• Static memory management:

‣ Preallocate all memory at compile time

© C. Kirsch 2009

Static versus Dynamic

• Static memory management:

‣ Preallocate all memory at compile time

• Dynamic memory management:

‣ Allocate and deallocate memory at run time

Explicit, Dynamic
Memory Management with

Temporal and Spatial Guarantees

© C. Kirsch 2009

Implicit versus Explicit

• Implicit, dynamic memory management:

‣ Garbage collector (GC) deallocates objects,
not programmer (implicit free calls by GC)

© C. Kirsch 2009

Implicit versus Explicit

• Implicit, dynamic memory management:

‣ Garbage collector (GC) deallocates objects,
not programmer (implicit free calls by GC)

• Explicit, dynamic memory management:

‣ Objects are deallocated by programmer
(explicit free calls)

© C. Kirsch 2009

Implicit, Dynamic Memory Management

Explicit, Dynamic Memory Management

Static Memory Management

Programming Abstraction Runtime Overhead

© C. Kirsch 2009

Implicit

Explicit

Static

Programming Abstraction

Embedded, Real Time

Server, Performance

Web, Safety

Runtime Overhead

© C. Kirsch 2009

Implicit

Explicit

Static

Programming Abstraction

Embedded, Real Time

Server, Performance

Web, Safety

Runtime Overhead

© C. Kirsch 2009

Implicit

Explicit

Static

Programming Abstraction

Embedded, Real Time

Server, Performance

Web, Safety

Runtime Overhead

© C. Kirsch 2009

Temporal Performance

• Throughput:

‣ 10MB/s allocation rate

‣ 10MB/s deallocation rate

© C. Kirsch 2009

Temporal Performance

• Throughput:

‣ 10MB/s allocation rate

‣ 10MB/s deallocation rate

• Latency/Responsiveness:

‣ 1ms execution time (malloc/free)

‣ 0.1ms preemption time (malloc/free)

© C. Kirsch 2009

Spatial Performance

• Degree of fragmentation:

‣ The number of contiguous pieces of memory
of a given size that can still be allocated

© C. Kirsch 2009

Spatial Performance

• Degree of fragmentation:

‣ The number of contiguous pieces of memory
of a given size that can still be allocated

• Administrative space:

‣ meta data structures (used, free lists)

There is a trade-off
between

temporal and spatial
performance

© C. Kirsch 2009

Temporal Predictability

• Unpredictable complexity (in terms of input):

‣ allocation/deallocation may take time
proportional to the total size of memory

© C. Kirsch 2009

Temporal Predictability

• Unpredictable complexity (in terms of input):

‣ allocation/deallocation may take time
proportional to the total size of memory

• Predictable complexity (in terms of input):

‣ allocation/deallocation takes time at most
proportional to the size of involved object

‣ access takes time at most proportional to
the size of involved object

© C. Kirsch 2009

Allocation Complexity

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C

Object E

It may be difficult to
improve

average performance
but it may still be possible to

improve
predictability

without loosing too much
performance

© C. Kirsch 2009

Spatial Predictability

• Unpredictable fragmentation:

‣ the degree of fragmentation may depend on
the full allocation and deallocation history,
i.e., the order of invocations

© C. Kirsch 2009

Spatial Predictability

• Unpredictable fragmentation:

‣ the degree of fragmentation may depend on
the full allocation and deallocation history,
i.e., the order of invocations

• Predictable fragmentation:

‣ the degree of fragmentation only depends on
the number of allocations and deallocations,
independently of the order of invocations

© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Solution Space

!"#$

%&'($
)*&+$,"(-'./$ &+$,"(-'./$

)
*
&
+$
,
"(
-'
.
/$

&
+$
,
"(
-'
.
/$

Hannes Payer Computational Systems Group, University of Salzburg

Explicit, Dynamic
Memory Management with

Temporal and Spatial Guarantees

© C. Kirsch 2009

Implicit

Explicit

Static

Programming Abstraction

Embedded, Real Time

Server, Performance

Web, Safety

Runtime Overhead

© C. Kirsch 2009

Implicit

Explicit

Static

Programming Abstraction

Embedded, Real Time

Server, Performance

Web, Safety

Runtime Overhead

© C. Kirsch 2009

Implicit

Explicit

Static

Programming Abstraction

Embedded, Real Time

Server, Performance

Web, Safety

Runtime Overhead

tiptoe.cs.uni-salzburg.at#

• Silviu Craciunas# (Programming Model)

• Andreas Haas (Memory Management)

• Hannes Payer # (Memory Management)

• Harald Röck (VM, Scheduling)

• Ana Sokolova* (Theoretical Foundation)

#Supported by a 2007 IBM Faculty Award, the EU ArtistDesign Network of Excellence
on Embedded Systems Design, and Austrian Science Fund Project P18913-N15.
*Supported by Austrian Science Fund Project V00125.

http://tiptoe.cs.uni-salzburg.at/
http://tiptoe.cs.uni-salzburg.at/

© C. Kirsch 2009

Tiptoe
• Tiptoe is a microkernel-based virtual machine

and process monitor for embedded systems

© C. Kirsch 2009

Tiptoe
• Tiptoe is a microkernel-based virtual machine

and process monitor for embedded systems

• Tiptoe virtualizes the host platform (system VM)
and provides infrastructure to run process VMs
and processes in real time

© C. Kirsch 2009

Tiptoe
• Tiptoe is a microkernel-based virtual machine

and process monitor for embedded systems

• Tiptoe virtualizes the host platform (system VM)
and provides infrastructure to run process VMs
and processes in real time

• Tiptoe controls throughput and latency of CPU,
memory, and I/O

© C. Kirsch 2009

Tiptoe
• Tiptoe is a microkernel-based virtual machine

and process monitor for embedded systems

• Tiptoe virtualizes the host platform (system VM)
and provides infrastructure to run process VMs
and processes in real time

• Tiptoe controls throughput and latency of CPU,
memory, and I/O

• I/O is multiplexed through IPC to a system VM
running Linux

© C. Kirsch 2009

Tiptoe

!"#$%&'$(')

*$%#'++'+

*$%#'++,-!

*$%#'++./

/0+1'2,-!

*$%#'++ .3'$41"(5
/0+1'2
/'$6"#'+

78 794((')+

:*7 -;/

794((')+

Figure 1: Tiptoe system design

microkernel such as OKL4. The key problem is to design
all system components such that there always exists at most
a linear relationship between the amount of CPU time re-
quired by each component to process a workload and the
actual amount of the workload. In this case, the usage of
system components would be temporally isolated as well.

Figure 1 shows the Tiptoe system design. On the lowest
level, there is a microkernel, which contains the VBS sched-
uler and an IPC mechanism. On top of the microkernel, pro-
cesses using the channel subsystem, and operating system
services, e.g., device drivers, may run along with operating
system instances encapsulated in system VMs, and process
VMs, which may take advantage of CF and the channel sub-
system. Scheduling parameters for the VBS scheduler are
set via system calls.

Scheduling
Tiptoe uses a real-time O(1)-scheduler for scheduling all
system activities. The scheduler [9] is based on the pre-
viously mentioned notion of variable-bandwidth servers
(VBS). Tiptoe assigns each scheduling task, i.e., process or
VM instance, in the system to a unique VBS, which essen-
tially controls the execution speed of the assigned task and
may even change the speed at any time upon request.

A VBS is configured by a single number that determines
a utilization bound called bandwidth cap in percentage of
CPU time. Upon creating a new VBS, the system checks
if the sum of the bandwidth caps of the existing VBS and
the new VBS is still less than or equal to the system’s total
capacity. The admission test for running new processes or
VM instances is therefore also constant-time.

To configure their actual execution speed, each schedul-
ing task chooses a pair (λ,π) called virtual periodic resource
such that λ over π is less than or equal to the bandwidth cap
of the VBS to which the task is assigned. The λ and π val-
ues correspond to the previously mentioned notions of limit
and period, respectively. The VBS will then execute the as-
signed task for λ units of time every π units of time. The task
can switch at any time to a different virtual periodic resource
within the range of the bandwidth cap of the VBS, marking
the beginning of a new what we previously called action.

The key property of VBS is programmable temporal isola-
tion. If the admission test succeeds for a new VBS, the sys-
tem guarantees the VBS that the assigned task, upon choos-
ing a virtual periodic resource (λ,π) within the bandwidth
cap of the VBS, will be executed for λ units of time every

π units of time, with at most one π delay from the point in
time when the resource is chosen. Intuitively, what happens
is that the VBS must “re-synchronize” with the new virtual
periodic resource every time the resource is changed. We
tolerate the delay of at most one period because it makes the
admission test simple and constant-time. There appears to be
a fundamental trade-off between scheduling efficiency and
admission complexity. Note that the admission test comes
at the expense of precision. Even if the test fails, there may
be system configurations in which a VBS could guarantee
temporal isolation. However, a more precise test will have
to consider the system in more detail and therefore be more
expensive.

VBS guarantees that the response times of a process or
VM instance is temporally isolated on the level of their in-
dividual actions, i.e., portions of code, from any other sys-
tem activities. Moreover, the response times may only vary
within at most one period of the chosen virtual periodic re-
sources. Therefore, the smaller the periods are the smaller
the response time jitter will be, however, at the expense
of higher administrative overhead through more frequent
scheduler invocations. Conversely, the larger the periods are
the higher the net CPU throughput will be due to fewer in-
terruptions.

The bound on response time jitter only holds under the
assumption that scheduling overhead is zero. In fact, it turns
out that in practice the jitter may be more than one period
because of the non-zero scheduling overhead, see Section 5.
The jitter is nevertheless still bounded but only according to
a more complex relationship between scheduling overhead
and the periods in the system. We are currently working on
a precise formulation.

Legacy code not using VBS and not expecting any guar-
anteed response times may run outside of the real-time
scheduling domain, i.e., during idle time. Multiple non-VBS
processes are scheduled (during the idle time of the real-time
scheduler) using another scheduling policy such as round-
robin.

Memory Management
Similar to other hypervisors and microkernels (e.g. [2, 14]),
Tiptoe divides physical memory into pages and provides an
interface for processes to request new pages, to return pages
not needed anymore, and to update a process’ page table en-
tries. A process is responsible to establish the mapping of
virtual memory addresses to physical memory addresses us-
ing the interface to the microkernel.

Moreover, process VMs that use an object-based memory
model may use our Compact-fit explicit memory manage-
ment system [11] to manage their internal heaps in real time.
CF implements real-time versions of malloc and free, and
bounds fragmentation through real-time compaction such
that the available memory for a given object size can al-
ways be determined in constant time. Memory analysis tools
like [8] may therefore effectively bound heap sizes required
to run programs, if CF is used.

The JAviator
javiator.cs.uni-salzburg.at

© C. Kirsch 2009

Quad-Rotor Helicopter

Gyro

Propulsion

Gumstix

600MHz XScale, 128MB RAM, WLAN, Atmega uController

© C. Kirsch 2009

© C. Kirsch 2009

© C. Kirsch 2009

Indoor Flight
STARMAC Controller

© C. Kirsch 2009

Indoor Flight
STARMAC Controller

© C. Kirsch 2009

Outdoor Flight
STARMAC Controller

© C. Kirsch 2009

Outdoor Flight
STARMAC Controller

© C. Kirsch 2009

Outdoor Flight
Salzburg Controller

© C. Kirsch 2009

Outdoor Flight
Salzburg Controller

© C. Kirsch 2009

What’s next?

• Autonomous single-vehicle flights

• position controller

• waypoint controller

© C. Kirsch 2009

What’s next?

• Autonomous single-vehicle flights

• position controller

• waypoint controller

• Autonomous multi-vehicle flights

• mission controller

© C. Kirsch 2009

Salzburg Soft Walls
Controller on JJ

© C. Kirsch 2009

Salzburg Soft Walls
Controller on JJ

