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Traditional (Persistent)
Memory Model

• Allocated memory objects are guaranteed to 
exist until deallocation

• Explicit deallocation is not safe (dangling 
pointers) and can be space-unbounded
(memory leaks)

• Implicit deallocation (unreachable objects) is 
safe but may be slow or space-consuming 
(proportional to size of live memory) and 
can still be space-unbounded (memory leaks)
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Short-term Memory

• Memory objects are only guaranteed to 
exist for a finite amount of time

• Memory objects are allocated with a given 
expiration date

• Memory objects are neither explicitly nor 
implicitly deallocated but may be refreshed 
to extend their expiration date



With short-term memory 
programmers or algorithms 

specify which memory objects 
are still needed 

and not
which memory objects are

not needed anymore!
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Full Compile-Time 
Knowledge

Figure 1. Approximation of the needed set by the not-expired set
in the short-term memory model.

piring, and conservative expiration potentially delaying expiration
of unreachable and thus not-needed objects.

Heap management in the short-term memory model is correct if
the not-expired set always contains the needed set, and is bounded
if the expired set always eventually contains the objects of the not-
needed set, and time advances. It is interesting to note that the mark
phase of a mark-sweep garbage collector may readily be used to
provide refreshing information that guarantees correctness by con-
servatively refreshing all reachable objects before time advances.
However, this approach may again suffer from reachable memory
leaks.

In this paper we focus on explicit refreshing. Like explicit deal-
location, explicit refreshing may be done incorrectly but with dif-
ferent consequences. The source of incorrect use of explicit re-
freshing is missing refreshing information, resulting in memory be-
ing reclaimed too early creating dangling pointers. Other sources
of errors in the explicit use of the persistent memory model are
avoided with short-term memory. Multiple explicit deallocation of
the same object is an error in the persistent memory model whereas
multiple refreshing in the short-term memory model has no con-
sequence other than creating runtime overhead. Unreachable ob-
jects can never be explicitly deallocated in the persistent memory
model (source of memory leaks) whereas refreshing needed and
thus reachable objects is always possible.

To summarize, correct explicit deallocation information must
be “just right”. Too much information and too few information is
a source of errors. In contrast, too much explicit refreshing infor-
mation is still correct. As a consequence, any over-approximation
of the minimal correct refreshing information is also correct. We
believe that even static analysis has the potential to provide such an
over-approximation eventually.

After presenting the short-term memory model in more detail,
we discuss several use cases of short-term memory based on real
code that was originally written in the persistent memory model.
We then introduce concurrent implementations of short-term mem-
ory, called self-collecting mutators, written in C and in Java. Self-
collecting mutators supports multi-threaded programs, in particu-
lar correct refreshing without concurrent reasoning similar to using
garbage collectors.

The paper presents the following contributions: (1) the short-
term memory model and an analysis of its use by real code; (2) the
concurrent self-collecting mutators implementations in Java and in
C, and an implementation analysis; and (3) confirmation of the
analysis with experimental results on several benchmarks.

The structure of the rest of the paper is as follows. In Sec-
tion 2 we introduce the concepts of short-term memory. The self-
collecting mutators implementations are presented in Section 3. In
Section 4 we present experimental results of a number of bench-
marks. Section 5 concludes the paper and presents future work.

Persistent MM Short-term MM
lifetime of from allocation from allocation
an object until deallocation until expiration
lifetime deallocation refreshing

management
errors dangling pointers, dangling pointers,

memory leaks memory leaks
sources of premature or no incorrect refresh,

errors deallocation no time progress
problems with deallocation time
concurrency synchronization synchronization

problems with implicit (redundant)
real time deallocation refresh

Table 1. Comparison of the persistent memory model with the
short-term memory model.

2. Short-term Memory Model
In this section we present the short-term memory model and com-
pare it with the persistent memory model. See Table 1 for a sum-
mary. We then introduce an explicit programming model for short-
term memory and discuss four use cases to show how much effort
it is to use short-term memory. The section concludes with a dis-
cussion of previous work related to short-term memory.

2.1 Model
With short-term memory, each object is only allocated for a finite
amount of time after which the object expires, which means that its
existence is not guaranteed anymore. So to say, every object has an
expiration date. As long as an object has not expired, its expiration
date can be extended by a finite amount of time through what we
call refreshing.

The notion of time is important for the short-term memory
model. It defines the lifetime of every object, which is the time
from the allocation of an object until it expires. If time advances
fast, objects will expire faster, and the system will require less
memory. If time stands still, no object will ever expire. This would
be equivalent to a system without deallocation. The definition of
time determines some core properties of the memory management
system and requires even more care in the presence of concurrency.

2.1.1 Use of the Model
With absolute knowledge, an object can be allocated with its exact
expiration date. Using exact expiration dates resembles explicit
deallocation but may be even more difficult than knowing the
position of explicit deallocation. On the other hand, for explicit
deallocation a pointer to the object is required at deallocation time,
which is not the case with expiration dates.

Figure 2 presents an example of short-term memory with abso-
lute knowledge about the expiration of objects. The lifetime of both
allocated objects is known at allocation time. The expiration date
can already be set then. For example, the command allocation(6)
allocates an object for six time units.

In contrast to using exact expiration dates, every object can be
allocated for zero time units, i.e., it will expire at the next time
advance. Time advances when all existing objects are not needed
anymore. An example is shown in Figure 3. All objects have the
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Figure 2. Allocation with known expiration date.
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Figure 3. All objects are allocated for one time unit.

same expiration date. Even if an object is only used for a short
amount of time, it will not expire before the next time advance.

Another choice between these two extremes is to allocate ob-
jects using estimated expiration dates, which can later be extended
by refreshing. However, refreshing creates additional runtime over-
head. It can be done explicitly by the programmer or implicitly by
an underlying memory management system.

Figure 4 illustrates refreshing. An object is allocated with an
estimated expiration date. If the object is needed beyond its expira-
tion date, it is refreshed. In Figure 4 the object exists for six time
units in total. Since it was originally allocated for one time unit
only, it had to be refreshed for another five, which is done by two
consecutive refresh statements.

The notion of expiration date in the short-term memory model
enables trading-off compile-time analysis effort, runtime overhead,
and memory consumption. Allocation with known expiration date
(cf. Figure 2) requires full compile-time analysis, but least run-
time overhead and memory consumption. Allocation for one time
unit (cf. Figure 3) requires only light-weight compile-time analy-
sis needed for time control, but introduces additional memory con-
sumption. With refreshing (cf. Figure 4), compile-time analysis ef-
fort remains light-weight and memory consumption improves at the
expense of increased runtime overhead.

2.1.2 Sources of Errors
A memory management system based on the short-term memory
model could be used incorrectly creating dangling pointers and
memory leaks.

Dangling pointers, which are pointers to objects that no longer
exist, may be created by premature expiration. Dangling pointers
can be avoided, for example, by continuously refreshing every
reachable object at the expense of increased runtime overhead and
memory consumption.

Memory leaks occur when not-needed objects are never deal-
located or reused. With explicit deallocation, memory leaks oc-
cur due to missing free calls. Even with garbage-collected systems
reachable memory leaks occur due to references to not-needed ob-
jects. Short-term memory avoids memory leaks present in explicit-
deallocation systems, and may avoid reachable memory leaks pro-
vided that reachable but not-needed objects are not continuously
refreshed, creating the potential for dangling pointers again. In Sec-
tion 4.1 we present a benchmark where our explicit implementation
of short-term memory repairs a reachable memory leak. Similar
handling of memory leaks is described in [17].

However, with short-term memory, memory leaks do occur but
under new circumstances, i.e., when not-needed objects never ex-
pire, caused by continuous refreshing or time standing still. In our
explicit implementation of short-term memory, the programmer,
possibly supported by static analysis, needs to make sure that time
advances. It may be possible to implement short-term memory us-
ing real time instead of programmer-controlled time in which case

Figure 4. Allocation with estimated expiration date. If the object
is needed longer, it is refreshed.

time is guaranteed to advance eventually but refreshing may be
more difficult to do correctly.

2.1.3 Concurrency
In explicit-deallocation systems it can be difficult to place deallo-
cation statements correctly, in particular in the presence of multiple
threads. When several threads use the same object, only the last-
accessing thread can deallocate the object correctly. The difficulty
of deallocation comes from the need of synchronizing dealloca-
tion statements among threads. Garbage collectors solve the dif-
ficult problem of correct deallocation in particular for concurrent
programs. The same can be achieved with short-term memory.

When using short-term memory, every thread refreshes the ob-
jects it uses, just as for single-threaded applications. Logically, each
object has a separate expiration date per thread. An object expires
when it expires for all threads. Depending on the notion of time,
using short-term memory for concurrent programs is more or less
convenient. Our implementation provides a synchronized global
and an unsynchronized thread-local notion of time. With global
time correct use of short-term memory does not require concurrent
reasoning, similar to using garbage collectors.

We already stated before that memory leaks can be introduced in
short-term memory if time stands still. For multi-threaded applica-
tions it is necessary that global time also advances if some threads
are inactive or blocked. This is not a problem if real time is used but
it has to be considered for systems in which time advance depends
on the progress of the thread. Our implementation also solves the
problem of blocking threads.

2.1.4 Real Time
Many real-time programs use static memory management in which
all memory is allocated when a program is started. Reasons for this
are that it is difficult to guarantee the correct use of explicit dynamic
memory management, and that garbage collection performance
depends, in the worst case, on the total number of live objects,
either in time or in space.

Short-term memory can be used for real-time programs if re-
freshing is done incrementally because refreshing incurs runtime
overhead proportional to the number of needed objects. In a multi-
threaded setting redundant refreshes of shared objects by multiple
threads may need to be reduced for better performance.

2.2 Use Cases
What we propose in this paper is that short-term memory can be
used explicitly and thereby provides an interesting heap manage-
ment interface not just to programmers but potentially also to static
analysis tools. The main questions are then: how easy is it to use
short-term memory explicitly, and how many of the required mem-
ory management calls can be added by a static analysis tool?

To answer the first question we define a programming model
which explicitly uses short-term memory. Most important for such
a programming model is the definition of time. We also define how
object allocation and refreshing work. The answer to the second
question remains future work.

2.2.1 Explicit Programming Model
We use relative user-defined per-thread time represented by a
thread-local clock which is a counter incremented by one whenever
the thread to which the clock belongs invokes an explicit tick-call.
In order to guarantee that time advances, the user is required to put
tick-calls at locations in the program code that are always even-
tually executed. Logically, each object has a separate expiration
date for each thread. An object expires when it has expired for all
threads. An object expires for a thread when the thread-local time
is greater than the expiration date of the object for this thread.
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Figure 3. All objects are allocated for one time unit.

same expiration date. Even if an object is only used for a short
amount of time, it will not expire before the next time advance.

Another choice between these two extremes is to allocate ob-
jects using estimated expiration dates, which can later be extended
by refreshing. However, refreshing creates additional runtime over-
head. It can be done explicitly by the programmer or implicitly by
an underlying memory management system.

Figure 4 illustrates refreshing. An object is allocated with an
estimated expiration date. If the object is needed beyond its expira-
tion date, it is refreshed. In Figure 4 the object exists for six time
units in total. Since it was originally allocated for one time unit
only, it had to be refreshed for another five, which is done by two
consecutive refresh statements.

The notion of expiration date in the short-term memory model
enables trading-off compile-time analysis effort, runtime overhead,
and memory consumption. Allocation with known expiration date
(cf. Figure 2) requires full compile-time analysis, but least run-
time overhead and memory consumption. Allocation for one time
unit (cf. Figure 3) requires only light-weight compile-time analy-
sis needed for time control, but introduces additional memory con-
sumption. With refreshing (cf. Figure 4), compile-time analysis ef-
fort remains light-weight and memory consumption improves at the
expense of increased runtime overhead.

2.1.2 Sources of Errors
A memory management system based on the short-term memory
model could be used incorrectly creating dangling pointers and
memory leaks.

Dangling pointers, which are pointers to objects that no longer
exist, may be created by premature expiration. Dangling pointers
can be avoided, for example, by continuously refreshing every
reachable object at the expense of increased runtime overhead and
memory consumption.

Memory leaks occur when not-needed objects are never deal-
located or reused. With explicit deallocation, memory leaks oc-
cur due to missing free calls. Even with garbage-collected systems
reachable memory leaks occur due to references to not-needed ob-
jects. Short-term memory avoids memory leaks present in explicit-
deallocation systems, and may avoid reachable memory leaks pro-
vided that reachable but not-needed objects are not continuously
refreshed, creating the potential for dangling pointers again. In Sec-
tion 4.1 we present a benchmark where our explicit implementation
of short-term memory repairs a reachable memory leak. Similar
handling of memory leaks is described in [17].

However, with short-term memory, memory leaks do occur but
under new circumstances, i.e., when not-needed objects never ex-
pire, caused by continuous refreshing or time standing still. In our
explicit implementation of short-term memory, the programmer,
possibly supported by static analysis, needs to make sure that time
advances. It may be possible to implement short-term memory us-
ing real time instead of programmer-controlled time in which case
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Figure 4. Allocation with estimated expiration date. If the object
is needed longer, it is refreshed.

time is guaranteed to advance eventually but refreshing may be
more difficult to do correctly.

2.1.3 Concurrency
In explicit-deallocation systems it can be difficult to place deallo-
cation statements correctly, in particular in the presence of multiple
threads. When several threads use the same object, only the last-
accessing thread can deallocate the object correctly. The difficulty
of deallocation comes from the need of synchronizing dealloca-
tion statements among threads. Garbage collectors solve the dif-
ficult problem of correct deallocation in particular for concurrent
programs. The same can be achieved with short-term memory.

When using short-term memory, every thread refreshes the ob-
jects it uses, just as for single-threaded applications. Logically, each
object has a separate expiration date per thread. An object expires
when it expires for all threads. Depending on the notion of time,
using short-term memory for concurrent programs is more or less
convenient. Our implementation provides a synchronized global
and an unsynchronized thread-local notion of time. With global
time correct use of short-term memory does not require concurrent
reasoning, similar to using garbage collectors.

We already stated before that memory leaks can be introduced in
short-term memory if time stands still. For multi-threaded applica-
tions it is necessary that global time also advances if some threads
are inactive or blocked. This is not a problem if real time is used but
it has to be considered for systems in which time advance depends
on the progress of the thread. Our implementation also solves the
problem of blocking threads.

2.1.4 Real Time
Many real-time programs use static memory management in which
all memory is allocated when a program is started. Reasons for this
are that it is difficult to guarantee the correct use of explicit dynamic
memory management, and that garbage collection performance
depends, in the worst case, on the total number of live objects,
either in time or in space.

Short-term memory can be used for real-time programs if re-
freshing is done incrementally because refreshing incurs runtime
overhead proportional to the number of needed objects. In a multi-
threaded setting redundant refreshes of shared objects by multiple
threads may need to be reduced for better performance.

2.2 Use Cases
What we propose in this paper is that short-term memory can be
used explicitly and thereby provides an interesting heap manage-
ment interface not just to programmers but potentially also to static
analysis tools. The main questions are then: how easy is it to use
short-term memory explicitly, and how many of the required mem-
ory management calls can be added by a static analysis tool?

To answer the first question we define a programming model
which explicitly uses short-term memory. Most important for such
a programming model is the definition of time. We also define how
object allocation and refreshing work. The answer to the second
question remains future work.

2.2.1 Explicit Programming Model
We use relative user-defined per-thread time represented by a
thread-local clock which is a counter incremented by one whenever
the thread to which the clock belongs invokes an explicit tick-call.
In order to guarantee that time advances, the user is required to put
tick-calls at locations in the program code that are always even-
tually executed. Logically, each object has a separate expiration
date for each thread. An object expires when it has expired for all
threads. An object expires for a thread when the thread-local time
is greater than the expiration date of the object for this thread.
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Sources of Errors:

1. not-needed objects
are continuously refreshed or

time does not advance 
(memory leaks)

2. needed objects expire 
(dangling pointers)
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Explicit Programming Model

• Each thread advances a thread-local clock 
by invoking an explicit tick() call

• Each object receives upon its allocation an 
expiration date that is initialized to the 
thread-local time

• An explicit refresh(Object, Extension) 
call sets the expiration date of the Object  
to the current thread-local time plus the 
given Extension
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Explicit, Concurrent 
Programming Model

• Each object (logically!) receives expiration 
dates for all threads that are initialized to 
the respective thread-local times

• Refreshing an object (logically!) sets its 
already expired expiration dates to the 
respective thread-local times

‣ all threads must tick() before a newly 
allocated or refreshed object can expire!



Our Conjecture:

It is easier to say
which objects are still needed

than
which objects are not needed 

anymore!
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Use Cases

benchmark LoC tick refresh free aux total

mpg123 16043 1 0 (-)43 0 44

JLayer 8247 1 6 0 2 9

Monte Carlo 1450 1 3 0 2 6

LuIndex 74584 2 15 0 3 20

Table 2. Use cases of short-term memory: lines of code of the

benchmark, number of tick-calls, number of refresh-calls, number

of free-calls, number of auxiliary lines of code, and total number of

modified lines of code.

Upon allocation an object receives expiration dates for all

threads that are initialized to the respective thread-local times.

Refreshing is done by explicit refresh-calls, which take two pa-

rameters, an object which should be refreshed and an expiration

extension. The new expiration date of an object (for the thread in-

voking the refresh-call) is the current (thread-local) time plus the

given expiration extension. Moreover, the expiration dates for the

threads for which the object has already expired are set to the re-

spective thread-local times. This way other threads get a chance to

refresh the object before it expires. For example, a producer of an

object may stop refreshing the object and tick as soon as the object

is consumed by a consumer, which then still has a chance to refresh

the object and tick without further coordination with the producer.

Note that it makes no difference if an object is refreshed once or

multiple times (by the same thread) within one time unit. More-

over, in some cases it is useful to have a recursive refresh-call that

refreshes all objects reachable from a given object. Performing a

recursive refresh-call is similar to a mark-sweep garbage collector

performing a (partial) mark phase.

The explicit programming model does not require concurrent

reasoning for correct usage by the programmer similar to using

garbage collectors. In other words, each thread may tick and refresh

the objects it needs independently of any other threads. Note that

our implementations do not actually maintain expiration dates for

all threads and therefore only approximate this model in the sense

that objects may expire later than they could, but never earlier. As

a result, all memory management operations take constant time at

the expense of potentially increased memory consumption.

2.2.2 Benchmarks
We translated the following programs to use short-term memory:

1. the mpg123
1

MP3 converter version 1.12 written in C,

2. the JLayer MP3 converter
2
,

3. the Monte Carlo benchmark of the Grande Java Benchmark

Suite [15],

4. the LuIndex benchmark of the Dacapo Benchmark Suite [6],

version 9.12.

We informally applied a translation scheme that makes estab-

lishing correctness easy at the expense of potentially decreased

runtime performance and increased memory consumption. We first

identify the code location that marks the end of the period of the

most frequent periodic behavior of the benchmark, and where most

of the memory expires. We say that this memory is short-term with

respect to that period. We then place a tick-call at this code lo-

cation, which was easy for us to find in all four benchmarks. We

finally add refresh-calls on objects that are still needed after exe-

cuting the tick-call to maintain memory that is not short-term. All

other memory is short-term and will then expire.

1
http://www.mpg123.de

2
http://www.javazoom.net/javalayer/javalayer.html

The mpg123 benchmark converts a set of mp3 files to a set of

corresponding wav files. All memory needed for the conversion of a

single file is short-term, which means that it expires once the file is

converted. Therefore, one tick-call is sufficient and is conveniently

placed in the code where processing a file is finished. This removes

the need for all 43 free-calls in the original code. No refresh-calls

are required.

For the remaining three programs written in Java we only use re-

cursive refresh-calls. Similar to the mpg123 benchmark, the JLayer

benchmark converts mp3 files to wav files. However, we have only

benchmarked JLayer on a single file at a time, and therefore iden-

tified frame rather than file processing as the relevant periodic be-

havior for placing a tick-call in the code where processing a frame

is finished. Four refresh-calls are required for input and output

buffers. Another refresh-call is required for a progress-listener ob-

ject. The application root object allocated in the main method of

JLayer, which needs to exist during the whole program execution,

also requires a refresh-call. This object is a local object, only reach-

able from within the main method. Making this object reachable

from the code location where refreshing is done results in two aux-

iliary lines of code.

The Monte Carlo benchmark consists of a calculation loop to

which we added a tick-call at the end. Hence, all memory allocated

within one loop iteration is short-term, except for a result object

that is generated in every loop iteration and stored in a result set

which requires one recursive refresh-call. A second refresh-call

is required to refresh the application root object, again with two

auxiliary lines of code to make it accessible. A third refresh-call is

required on an object used for time measurements.

The LuIndex benchmark consists of two threads. The first thread

does not have a main loop but recursively iterates over files con-

tained in a hierarchical file system. File processing is the relevant

periodic behavior here according to our scheme but more difficult

to identify because of the absence of a main loop. A tick-call is

placed in the code where processing a file is finished. Two refresh-

calls and three auxiliary lines of code are necessary to refresh the

application root object and to prevent the current state of the recur-

sion from expiring. Another refresh-call is required for a result data

object. Finally, eleven refresh-calls are necessary to prevent static

variables from expiring. The second thread processes, in a loop, the

data generated by the first thread. We placed a tick-call at the end

of this loop and added a refresh-call on its only root object.

2.3 Related Work
Implementing short-term memory essentially requires a representa-

tion of the not-expired and expired sets as well as an algorithm that

determines expiration information and time advance. The algorithm

may be an offline analysis tool or an online system, as with most

related work, or even a programmer that provides the information

manually, as with self-collecting mutators. The representation may

implement sets to support any algorithm, as in self-collecting mu-

tators, or more specific data structures such as stacks and buffers

that are more efficient but work only for specific algorithms, as in

some related work.

Stack allocation can be seen as implementing a special case of

short-term memory where the representation are per-thread stacks

and the algorithm maintains per-frame expiration dates and per-

stack time that advances upon returns from subroutines, which

facilitates constant-time allocation and deallocation of multiple

objects. General refreshing is not possible.

Short-term memory is originally inspired by cyclic allocation

where the representation are cyclic fixed-size per-allocation-site

buffers [17]. The algorithm maintains per-buffer expiration dates

set to the size of the buffer and per-buffer time that advances upon

each allocation in the buffer. For example, an allocation in a three-
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Goals

• Explicit, thread-safe memory management system

• Constant time complexity for all operations

‣ predictable execution times, incrementality

• Constant space consumption by all operations

‣ small, bounded space overhead

• No additional threads and no read/write barriers

‣ self-collecting mutators!



© C. Kirsch 2010

Implementations

• Java patch under EPL

‣ based on Jikes RVM, GNU Classpath class library

• Dynamic C library (libscm) under GPL

‣ based on POSIX threads, ptmalloc2 allocator

• Available at:

‣ tiptoe.cs.uni-salzburg.at/short-term-memory

works with any 
legacy code (1-word 
space overhead per 

memory block)

http://tiptoe.cs.uni-salzburg.at/short-term-memory
http://tiptoe.cs.uni-salzburg.at/short-term-memory
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Two Approximations
• Single-expiration-date approximation (for Java)

‣ one expiration date for all threads

‣ recursive refresh is easy but blocking threads 
are a problem

• Multiple-expiration-date approximation (for C)

‣ expiration dates for all threads that refreshed an 
object

‣ recursive refresh is difficult but blocking threads 
can be handled
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element buffer will always receive an expiration date equal to the
current time plus three, i.e., memory allocated in the buffer will
be reused after three subsequent allocations in the buffer, making
deallocation unnecessary. Refreshing is again not possible. Note
that cyclic allocation requires properly dimensioning the buffers,
which is related to the more general problem of properly refreshing
objects and advancing time with short-term memory.

Region-based memory management [21] can also be seen as
implementing a special case of short-term memory where the rep-
resentation are per-code-block regions, which allow to deallocate
multiple objects in constant time. The algorithm always uses ex-
piration dates equal to the current time plus one and maintains
per-region time that advances upon events determined by an offline
analysis tool. General refreshing is not possible but could be done
by copying objects from one region to another.

Garbage collectors are implementations of the persistent mem-
ory model that compute unreachability, directly or indirectly, for
reclaiming otherwise persistent memory. However, some portions
of garbage collectors may be used to implement special cases of
short-term memory. For example, as stated before, the mark phase
of a mark-sweep garbage collector [16] may be used to implement
an algorithm that prevents reachable objects from expiring. The
transition from the mark to the sweep phase can then be seen as
time advance for all objects. More recent work on object staleness,
e.g. [8], and memory growth, e.g. [14], may be used to identify
reachable memory leaks for expiring reachable but actually not-
needed objects.

3. Self-collecting Mutators
In this paper we present two new concurrent implementations of
short-term memory, called self-collecting mutators, which conser-
vatively approximate the explicit programming model previously
introduced in Section 2.2.1. We produced one implementation writ-
ten in C to enable programs written in C to use short-term memory,
and another one written in Java for Java programs. We elaborate
on the advantages and disadvantages of each implementation after
presenting general design choices. Both implementations have the
following properties and features:

• Constant time complexity for all operations.
• Constant memory consumption by all operations.
• No additional threads and no read/write barriers.

All memory management operations are constant-time, which
enables full incrementality, and allocate at most constant memory.
The system is self-collecting, i.e., there are no additional threads for
memory management, and there are no read or write barriers. The
combination of incrementality and self-collection is in general only
possible at the expense of increased memory consumption since
memory may be reclaimed with a mutator-dependent delay, which
nevertheless bounds the increase in memory consumption.

3.1 Design
Recall the explicit programming model for short-term memory
presented in Section 2.2.1. Logically, each object has a separate
expiration date for each thread and expires when it has expired
for all threads. Clearly, implementing this may cause too much
space and time overhead since all expiration dates must be stored
and refreshing requires updating all expiration dates of an object.
However, for correct expiration, it is enough to ensure that no
object expires earlier than prescribed by its logical expiration dates.
Hence, we may approximate the set of all expiration dates of an
object by a subset of it using a notion of global time that advances
at the speed of the slowest-ticking thread.
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Figure 5. Global time calculation.

3.1.1 Single-Expiration-Date Approximation
Each thread has a thread-local clock which is incremented by one
whenever the thread ticks, i.e., invokes a tick-call. The thread-
local clock determines the thread-local time. In addition to the
thread-local clocks, we keep track of global time represented by
a global clock which is a counter incremented by one whenever all
threads have ticked at least once. More precisely, we keep a ticked-
threads-counter which is reset to the total number of threads at
every increment of the global time. When a thread ticks for the first
time after the ticked-threads-counter has been reset, we decrement
the ticked-threads-counter by one (in an atomic decrement-and-test
operation in C and using a lock in Java). Global time advances
when the ticked-threads-counter reaches zero. For atomic global-
time advance and reset of the ticked-threads-counter we use a lock
(in both implementations). The time period between two advances
of the global clock is called the global period. The calculation of
global time is illustrated on an example in Figure 5.

The explicit programming model can be approximated by keep-
ing a single expiration date evaluated against global time. This
means that an object expires when the global time is greater than the
expiration date. When an object is allocated its expiration date is set
to the global time plus one. Adding one additional time unit to the
global time is necessary since at the time of allocation some (but not
all) threads may have already ticked in the current global period.
Allocation and expiration of an object in the single-expiration-date
approximation is shown in Figure 6(a). When a thread refreshes an
object, the new expiration date is set to the global time plus one
plus the expiration extension, unless the result is lower than the old
expiration date. This way no thread can shorten the lifetime of an
object already prescribed by another thread. As a result, no object
will expire too early. Moreover, a programmer need not know any
of the implementation details of self-collecting mutators except for
the explicit programming model.

Figure 6. Object expiration in the single-expiration-date approxi-
mation (a) and in the multiple-expiration-date approximation (b,c).
Filled circles indicate global-time advance, and ×’s indicate thread-
global-time advance.
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element buffer will always receive an expiration date equal to the
current time plus three, i.e., memory allocated in the buffer will
be reused after three subsequent allocations in the buffer, making
deallocation unnecessary. Refreshing is again not possible. Note
that cyclic allocation requires properly dimensioning the buffers,
which is related to the more general problem of properly refreshing
objects and advancing time with short-term memory.

Region-based memory management [21] can also be seen as
implementing a special case of short-term memory where the rep-
resentation are per-code-block regions, which allow to deallocate
multiple objects in constant time. The algorithm always uses ex-
piration dates equal to the current time plus one and maintains
per-region time that advances upon events determined by an offline
analysis tool. General refreshing is not possible but could be done
by copying objects from one region to another.

Garbage collectors are implementations of the persistent mem-
ory model that compute unreachability, directly or indirectly, for
reclaiming otherwise persistent memory. However, some portions
of garbage collectors may be used to implement special cases of
short-term memory. For example, as stated before, the mark phase
of a mark-sweep garbage collector [16] may be used to implement
an algorithm that prevents reachable objects from expiring. The
transition from the mark to the sweep phase can then be seen as
time advance for all objects. More recent work on object staleness,
e.g. [8], and memory growth, e.g. [14], may be used to identify
reachable memory leaks for expiring reachable but actually not-
needed objects.

3. Self-collecting Mutators
In this paper we present two new concurrent implementations of
short-term memory, called self-collecting mutators, which conser-
vatively approximate the explicit programming model previously
introduced in Section 2.2.1. We produced one implementation writ-
ten in C to enable programs written in C to use short-term memory,
and another one written in Java for Java programs. We elaborate
on the advantages and disadvantages of each implementation after
presenting general design choices. Both implementations have the
following properties and features:

• Constant time complexity for all operations.
• Constant memory consumption by all operations.
• No additional threads and no read/write barriers.

All memory management operations are constant-time, which
enables full incrementality, and allocate at most constant memory.
The system is self-collecting, i.e., there are no additional threads for
memory management, and there are no read or write barriers. The
combination of incrementality and self-collection is in general only
possible at the expense of increased memory consumption since
memory may be reclaimed with a mutator-dependent delay, which
nevertheless bounds the increase in memory consumption.

3.1 Design
Recall the explicit programming model for short-term memory
presented in Section 2.2.1. Logically, each object has a separate
expiration date for each thread and expires when it has expired
for all threads. Clearly, implementing this may cause too much
space and time overhead since all expiration dates must be stored
and refreshing requires updating all expiration dates of an object.
However, for correct expiration, it is enough to ensure that no
object expires earlier than prescribed by its logical expiration dates.
Hence, we may approximate the set of all expiration dates of an
object by a subset of it using a notion of global time that advances
at the speed of the slowest-ticking thread.

Figure 5. Global time calculation.

3.1.1 Single-Expiration-Date Approximation
Each thread has a thread-local clock which is incremented by one
whenever the thread ticks, i.e., invokes a tick-call. The thread-
local clock determines the thread-local time. In addition to the
thread-local clocks, we keep track of global time represented by
a global clock which is a counter incremented by one whenever all
threads have ticked at least once. More precisely, we keep a ticked-
threads-counter which is reset to the total number of threads at
every increment of the global time. When a thread ticks for the first
time after the ticked-threads-counter has been reset, we decrement
the ticked-threads-counter by one (in an atomic decrement-and-test
operation in C and using a lock in Java). Global time advances
when the ticked-threads-counter reaches zero. For atomic global-
time advance and reset of the ticked-threads-counter we use a lock
(in both implementations). The time period between two advances
of the global clock is called the global period. The calculation of
global time is illustrated on an example in Figure 5.

The explicit programming model can be approximated by keep-
ing a single expiration date evaluated against global time. This
means that an object expires when the global time is greater than the
expiration date. When an object is allocated its expiration date is set
to the global time plus one. Adding one additional time unit to the
global time is necessary since at the time of allocation some (but not
all) threads may have already ticked in the current global period.
Allocation and expiration of an object in the single-expiration-date
approximation is shown in Figure 6(a). When a thread refreshes an
object, the new expiration date is set to the global time plus one
plus the expiration extension, unless the result is lower than the old
expiration date. This way no thread can shorten the lifetime of an
object already prescribed by another thread. As a result, no object
will expire too early. Moreover, a programmer need not know any
of the implementation details of self-collecting mutators except for
the explicit programming model.

Figure 6. Object expiration in the single-expiration-date approxi-
mation (a) and in the multiple-expiration-date approximation (b,c).
Filled circles indicate global-time advance, and ×’s indicate thread-
global-time advance.
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• Allocation: expiration date = global time + 1

• Refresh:

‣ expiration date = global time + 1 + extension 

‣ unless the result is less than the old date

• Expiration: expiration date < global time
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Figure 7. Thread-global times.

A disadvantage of the single-expiration-date approximation is
that global time does not advance if a thread stops ticking, due to
blocking, faults, or programming errors. We provide a solution to
the problem of blocking and faults (but not programming errors),
using multiple expiration dates that approximate the programming
model better than a single expiration date, at the expense of in-
creased memory consumption.

3.1.2 Multiple-Expiration-Date Approximation
Assume the set of threads is partitioned into active and passive
(blocked/faulty) threads. The computation of global time remains
the same but only on the active threads, i.e., the ticked-threads-
counter counts only active threads. Each thread maintains an addi-
tional clock, called the thread-global clock, which advances at the
speed of the global clock as long as the thread is active and stops
when the thread is passive. The thread-global clock advances at
the first tick of the thread in the current global period. Therefore,
it is possible that the thread-global time is larger by one time unit
than the global time but only in the remainder of the global period.
When a thread blocks, it is moved from the set of active to the set
of passive threads, so that the ticked-threads-counter does not con-
sider it anymore, ensuring that the global time advances without
this thread. The thread-global time of the blocked thread remains
unchanged as long as it stays blocked. When a thread resumes, it
is moved from the set of passive to the set of active threads assum-
ing that it has already ticked in the current global period, unless the
set of active threads was empty. Hence, the ticked-threads-counter
does not change. Figure 7 shows the advance of global time and
thread-global times as well as the evolution of the ticked-threads-
counter on an example.

An object will now have per-thread expiration dates but not
necessarily an expiration date for each thread. An expiration date
for a given thread is evaluated against the thread-global time of
the thread. An object expires when it has expired for all its ex-
piration dates. Upon allocation an object receives a single expira-
tion date for the thread that allocated the object initialized to the
thread-global time plus two. Adding two additional time units to the
thread-global time is necessary since two time units of the thread-
global time are guaranteed to include one global period. One could
add a single additional time unit (instead of two) but only if the
allocating thread has already ticked in the current global period.
However, testing this condition and setting the expiration date must
then be done atomically. We have not implemented this optimiza-
tion since allocation (and refreshing) are frequent operations. Allo-
cation and expiration of an object in the multiple-expiration-dates
approximation is shown in Figure 6, distinguishing whether the al-
locating thread has not ticked, Figure 6(b), or has already ticked,
Figure 6(c), in the current global period. When a thread refreshes
an object a new expiration date is created and set to the thread-
global time plus two plus the expiration extension. If the object
already has an expiration date for the thread, we keep the larger
of the two. It is also correct to keep multiple expiration dates per
object and thread, as in the C implementation, as long as an object
expires only when all expiration dates have expired.

The multiple-expiration-date approximation solves the problem
of global time not advancing due to blocking and faulty threads,
at the expense of additional memory consumption. Note that if an
object is known to be local to the allocating thread (not shared
by any other thread), then its expiration dates can be evaluated
against thread-local time. In such a case, the initial expiration date
can be set to the thread-local time (without additional time units),
resulting in potentially earlier expiration. In the C implementation
we provide an API for distinguishing shared and local objects.

3.2 Implementation
We implemented the single-expiration-date approximation for Java
and the multiple-expiration-date approximation for C. An advan-
tage of the single-expiration-date approximation is that it allows for
a simple implementation of recursive refresh. For Java, recursive
refresh is particularly important because of the potentially large
number of objects used in Java applications. The drawback of our
current Java implementation is that it can not deal with blocking
and faulty threads. Implementing recursive refresh in the multiple-
expiration approximation is more difficult and left for future work.
However, the absence of recursive refresh in C is not much of a
disadvantage because the missing object model in C often results
in programs with less hierarchical object graphs.

3.2.1 Single-Expiration-Date Implementation for Java
The Java implementation of the single-expiration-date approxima-
tion [2] is based on the Jikes Research Virtual Machine [3], version
3.1.0, and the Gnu Classpath3 class library, version 0.97.2.

We extended the Jikes object model by an object header that
consists of three words storing a 16-bit integer representing the
value of the (single) expiration date of an object, a 16-bit allocation-
site identifier explained below, and two references to other objects
for creating a doubly-linked list of objects sorted by increasing ex-
piration dates. The list implements an object buffer that is FIFO
for objects with the same expiration date. There are three buffer
operations: insert, remove, and select-expired; and two buffer im-
plementations: insert-pointer buffer and segregated buffer [2] for
which the time complexity of all operations is independent of the
size of the buffers. The time complexity of the segregated buffer op-
erations are O(1) for insert and remove, and O(log n) for select-
expired where n is the maximal expiration extension, which is fixed
at compile time in our implementation. The time complexity of the
insert-pointer buffer operations are O(1) for select-expired and re-
move, and O(log n) for insert. We only use the segregated buffer
implementation in the Java benchmarks because select-expired op-
erations may be done less often than insert operations.

Object buffers are allocated per allocation site [17] and lock-
protected for multi-threading. Per-thread buffers are possible to re-
duce contention but remain future work. Upon allocation of a new
object, the corresponding allocation-site buffer is checked for an
expired object. If there is one, it is removed from the buffer and its
memory is reused for the new object. Otherwise, memory for the
new object is allocated from free memory. After setting the expira-
tion date of the new object, it is inserted into the buffer. Refreshing
an object removes the object from the buffer in which the object is
stored. The correct buffer is identified by the previously mentioned
16-bit allocation-site identifier in the header of the object. Then,
the new expiration date of the object is set. Finally, the object is
inserted back into the buffer. Recursive refresh works by traversing
in a single round the objects that are reachable from a given ob-
ject and have an expiration date less than the new expiration date,
refreshing each object along the way. Object traversal stops when-
ever a leaf object or an object with an expiration date greater than

3 http://www.gnu.org/software/classpath/
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• Allocation:

‣ first expiration date = thread-global time + 2

• Refresh:

‣ new expiration date =
thread-global time + 2 + extension

• Expiration:

‣ for all threads t and expiration dates d of t:
expiration date d < thread-global time of t
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element buffer will always receive an expiration date equal to the
current time plus three, i.e., memory allocated in the buffer will
be reused after three subsequent allocations in the buffer, making
deallocation unnecessary. Refreshing is again not possible. Note
that cyclic allocation requires properly dimensioning the buffers,
which is related to the more general problem of properly refreshing
objects and advancing time with short-term memory.

Region-based memory management [21] can also be seen as
implementing a special case of short-term memory where the rep-
resentation are per-code-block regions, which allow to deallocate
multiple objects in constant time. The algorithm always uses ex-
piration dates equal to the current time plus one and maintains
per-region time that advances upon events determined by an offline
analysis tool. General refreshing is not possible but could be done
by copying objects from one region to another.

Garbage collectors are implementations of the persistent mem-
ory model that compute unreachability, directly or indirectly, for
reclaiming otherwise persistent memory. However, some portions
of garbage collectors may be used to implement special cases of
short-term memory. For example, as stated before, the mark phase
of a mark-sweep garbage collector [16] may be used to implement
an algorithm that prevents reachable objects from expiring. The
transition from the mark to the sweep phase can then be seen as
time advance for all objects. More recent work on object staleness,
e.g. [8], and memory growth, e.g. [14], may be used to identify
reachable memory leaks for expiring reachable but actually not-
needed objects.

3. Self-collecting Mutators
In this paper we present two new concurrent implementations of
short-term memory, called self-collecting mutators, which conser-
vatively approximate the explicit programming model previously
introduced in Section 2.2.1. We produced one implementation writ-
ten in C to enable programs written in C to use short-term memory,
and another one written in Java for Java programs. We elaborate
on the advantages and disadvantages of each implementation after
presenting general design choices. Both implementations have the
following properties and features:

• Constant time complexity for all operations.
• Constant memory consumption by all operations.
• No additional threads and no read/write barriers.

All memory management operations are constant-time, which
enables full incrementality, and allocate at most constant memory.
The system is self-collecting, i.e., there are no additional threads for
memory management, and there are no read or write barriers. The
combination of incrementality and self-collection is in general only
possible at the expense of increased memory consumption since
memory may be reclaimed with a mutator-dependent delay, which
nevertheless bounds the increase in memory consumption.

3.1 Design
Recall the explicit programming model for short-term memory
presented in Section 2.2.1. Logically, each object has a separate
expiration date for each thread and expires when it has expired
for all threads. Clearly, implementing this may cause too much
space and time overhead since all expiration dates must be stored
and refreshing requires updating all expiration dates of an object.
However, for correct expiration, it is enough to ensure that no
object expires earlier than prescribed by its logical expiration dates.
Hence, we may approximate the set of all expiration dates of an
object by a subset of it using a notion of global time that advances
at the speed of the slowest-ticking thread.

Figure 5. Global time calculation.

3.1.1 Single-Expiration-Date Approximation
Each thread has a thread-local clock which is incremented by one
whenever the thread ticks, i.e., invokes a tick-call. The thread-
local clock determines the thread-local time. In addition to the
thread-local clocks, we keep track of global time represented by
a global clock which is a counter incremented by one whenever all
threads have ticked at least once. More precisely, we keep a ticked-
threads-counter which is reset to the total number of threads at
every increment of the global time. When a thread ticks for the first
time after the ticked-threads-counter has been reset, we decrement
the ticked-threads-counter by one (in an atomic decrement-and-test
operation in C and using a lock in Java). Global time advances
when the ticked-threads-counter reaches zero. For atomic global-
time advance and reset of the ticked-threads-counter we use a lock
(in both implementations). The time period between two advances
of the global clock is called the global period. The calculation of
global time is illustrated on an example in Figure 5.

The explicit programming model can be approximated by keep-
ing a single expiration date evaluated against global time. This
means that an object expires when the global time is greater than the
expiration date. When an object is allocated its expiration date is set
to the global time plus one. Adding one additional time unit to the
global time is necessary since at the time of allocation some (but not
all) threads may have already ticked in the current global period.
Allocation and expiration of an object in the single-expiration-date
approximation is shown in Figure 6(a). When a thread refreshes an
object, the new expiration date is set to the global time plus one
plus the expiration extension, unless the result is lower than the old
expiration date. This way no thread can shorten the lifetime of an
object already prescribed by another thread. As a result, no object
will expire too early. Moreover, a programmer need not know any
of the implementation details of self-collecting mutators except for
the explicit programming model.

Figure 6. Object expiration in the single-expiration-date approxi-
mation (a) and in the multiple-expiration-date approximation (b,c).
Filled circles indicate global-time advance, and ×’s indicate thread-
global-time advance.
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• Jikes objects are extended by a 3-word 
object header:

• 16-bit integer for expiration date

• 2 references for doubly-linked list of 
objects sorted by expiration dates

• 16-bit allocation-site identifier

• Three list operations:

• insert, remove, select-expired
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Complexity Trade-off

insert delete select expired

Singly-linked list O(1) O(m) O(m)
Doubly-linked list O(1) O(1) O(m)

Sorted doubly- O(m) O(1) O(1)
linked list

Insert-pointer buffer O(log n) O(1) O(1)
Segregated buffer O(1) O(1) O(log n)

Table 2. Comparison of buffer implementations. The num-

ber of objects in a buffer is m, the maximal expiration ex-

tension is n.

objects with different expiration dates but only its youngest

objects are not expired.

The complexity of insert is constant time because the cor-

rect list is determined by a modulo calculation, and objects

are only added at the tail. The delete operation is again con-

stant time because objects are stored in a doubly-linked list.

The complexity of select expired is linear in n because in

the worst case the head of every list has to be searched for

old objects. This complexity again can be reduced to log n
by using a bitmap. The bitmap indicates the buffers which

contain expired objects. To select an expired object faster,

we store the index of the list where the last expired object

was found. The next search for an expired object starts at

this position.

Table 2 gives an overview of the complexity of the buffer

operations in the different buffer implementations.

For the benchmarks we use the segregated buffer imple-

mentation with a maximal expiration extension of one time

unit. Only few objects exist longer than one time unit, and

most objects need not be refreshed since their allocation sites

are never called again. An expiration extension of one time

unit already allows for incremental usage of refresh, cf. Sec-

tion 4.

For concurrency support one additional insert position

exists in a sorted buffer to compensate for the time difference

between fast and slow threads. The possible insert positions

of the fast thread are shifted by one. Therefore, the size of

the pointer arrays for both the insert-pointer buffer and the

segregated buffer has to be extended to n + 2 to support

concurrency.

Each doubly-linked list is implemented with a next

pointer and a previous pointer in every object header. For

refreshing we have to know in which buffer the object is

contained. Therefore, the buffer identifier is stored in the

header of each object.

3.2.2 Concurrency Support

For the multi-threaded implementation, one has to filter

threads which cannot do appropriate tick-calls. For exam-

ple, Jikes initializes several administrative threads at start-

up. Most of the time these threads are inactive. Therefore,

they cannot tick appropriately.

To distinguish application threads from such administra-

tive threads, we let threads register during which they get

their thread-local time. Registration happens automatically

at the first memory operation of the thread. At registration, a

thread gets the global time as its thread-local time. A thread

is automatically unregistered upon termination, or it can un-

register explicitly. A problem with thread unregistrations is

how to secure its objects. One solution would be that a thread

adds a special tag to its objects so that they cannot be reused.

The thread removes the tag when it is activated again. An-

other problem is a thread which is stuck because it does not

increase its thread-local time anymore. The system can then

do the tagging if a thread timeouts.

3.2.3 Memory overhead

Our system has the following sources of memory overhead:

• The expiration date and the buffer identifier are stored in

one word in the header of every object. When the highest

possible global time is reached, the time wraps around

and starts with zero again.

• The next pointer and the previous pointer for the doubly-

linked list require two more words in the object header.

• Every allocation site has one segregated buffer with a

maximal expiration extension of n. For multi-threading

every segregated buffer consists of n + 2 doubly-linked

lists with two words overhead each (for the pointers in

the arrays), and one word for the index of the next buffer

to search. We therefore have a total overhead of seven

words per allocation site in our implementation (n = 1).

• For time definition, we have one word for the global time,

one word for the ticked-thread counter, and one word for

the thread-local times.

• For multi-threading, we need one lock per allocation site

and one lock for time synchronization.

Memory consumption of concurrent programs The mem-

ory consumption per thread in a concurrent program in-

creases if another thread is slower. Nevertheless, the memory

consumption per thread is bounded by the amount of mem-

ory it can allocate between two ticks of the slowest thread.

After a tick of the slowest thread, fast threads reuse their ob-

jects again.

4. Runtime Overhead and Incrementality

We next discuss a time-space trade-off controlled by the tick

frequency and the refreshing overhead. Towards the end we

also briefly explain incrementality options.

4.1 Runtime overhead for arbitrary programs

The runtime overhead of self-collecting mutators consists of

the overhead of tick-calls and the overhead of refreshing.

Since ticking is fast, tick-calls do not introduce much over-

head.
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Segregated buffer
(with bounded expiration extension n=3

at time 5)

Figure 6. Insert-pointer buffer implementation.

3.2.1 Buffers
The buffer implementation is most important for the perfor-
mance of self-collecting mutators. It has to provide three op-
erations: insert, select expired, and delete. A singly-linked
list implementation would provide constant-time insert, but
select expired and delete would depend on the size of the
buffer. A doubly-linked list improves delete to constant time,
but select expired remains linear in the size of the list.

When sorting by expiration date is applied to the list,
the complexity of select expired drops to constant time.
However, the complexity of insert becomes linear in the size
of the buffer. By imposing an upper bound on the expiration
extension, more efficient implementations are possible. We
present two such buffer implementations which exploit the
fact of bounded expiration extensions: insert-pointer buffers
and segregated buffers.

Insert-pointer buffer The following observation is the ba-
sis for the insert-pointer buffer implementation. If n is the
bound of the expiration extension, there are exactly n + 1
possible insert positions in the buffer to keep it sorted. Of
these, n positions for refreshing and one position for allo-
cation in the current time unit. For concurrency support one
additional insert position is needed, which we discuss later.

Pointers to these positions are stored in an additional
pointer array. When time advances, the pointer array needs
to be updated. However, any insert-pointer can only get one
of the following values: the beginning of the live part of the
buffer, the value of another existing pointer in the pointer
array, or the end of the buffer. For the update, we keep a
pointer to the beginning of the live buffer, that is a pointer to
the first unexpired object if such exists.

At each time advance objects may expire, which imposes
the need of updating the beginning of the live buffer. This is
done at the first insert after time advance. The new value is
one of the existing pointers in the insert-pointer array, or the
end of the buffer. This update is linear in n. Using a bitmap
reduces the complexity to log n. The new values of the insert
pointers can be determined in log n time as well.

Figure 6 illustrates the implementation of an insert-
pointer buffer. The maximal expiration extension is three,
so the insert-pointer array has four positions. The current
time is 5. There are pointers to the beginning and to the end
of the buffer, the pointer to the beginning of the live buffer
and the pointer array with pointers pointing to the insert po-
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Figure 7. Segregated buffer implementation.

sitions. An insert pointer for a given time value points to the
last object in the buffer with this expiration date. Objects
with expiration date 6 do not exist in the buffer and there-
fore the insert pointer 6 has no value. However, the correct
insert position for new objects with expiration date 6 is right
after the insert position of objects with expiration date 5. Af-
ter time advance, at time 6, the beginning of the live buffer
points to the successor of where pointer 5 points to. In the
new time unit, pointer 5 is not needed any longer for objects
with expiration date 5. Instead, the pointer is used for objects
with expiration date 9, which can now be inserted into the
buffer. Hence, the insert pointers correspond to time units
modulo the size of the array.

The complexity of delete is constant time because the
data structure is still a doubly-linked list, and select expired
is constant time because of the sorting (only the beginning of
the buffer needs to be checked). The complexity of insert is
constant time if the insert pointer is set, or linear in the size
of the array if a correct insert position has to be determined.
When bitmaps are used to find existing pointers in the array,
the worst-case complexity of insert drops to log n.

Segregated buffer The insert-pointer buffer allows to get
the oldest object from the buffer. However, this is not nec-
essary. It is enough to find any expired object. This insight
is used to get constant-time insert at the cost of logarithmic
select expired in the segregated buffer implementation.

Segregated buffers are shown in Figure 7. Here, not all
objects are in the same doubly-linked list, there are n + 1
doubly-linked lists. There exists one list for every insert po-
sition we had in the insert-pointer buffer before. Segregated
buffers use two pointer arrays of size n + 1. The first array
contains pointers to the heads of the lists, this is the select-
expired array. The second array is the insert-pointer array
which contains pointers to the tails of the lists. Hence, an
object is added at the tail of a list. The correct list for in-
serting an object with a given expiration date is determined
modulo the size of the array.

Every doubly-linked list is sorted because when an object
is inserted to a list, it is at least as young as the youngest
object in the list and it is inserted at the tail. A list can contain
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C Memory Block Model

• An expiration date for a given memory 
block is represented by a descriptor, which 
is a pointer to the block

• Memory blocks are extended by a 1-word 
descriptor counter, which counts the 
descriptors pointing to a given block

• Descriptors representing a given expiration 
date are gathered in a per-thread 
descriptor list
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or equal to the new expiration date is reached. Note that some ob-
jects may thus not be refreshed, i.e., if they are only reachable via
objects that already had an expiration date greater than or equal to
the new expiration date before the recursive refresh. However, this
problem does not occur in our benchmarks. A general solution is
related to parallel tracing [18] and remains future work.

In our current implementation, memory that was allocated once
is never returned to free memory. In particular, the memory of
expired objects of different size allocated at the same allocation
site is only reused if it fits new allocation requests and is otherwise
discarded and never reused again. This is an open issue for future
work, which may be addressed by using per-object-size rather
than per-allocation-site buffers. However, the use of per-allocation-
site buffers has a convenient side effect. The memory of objects
allocated at a given allocation site is only reused if the allocation
site is executed again after time advanced. It turns out that in
some benchmarks there are allocation sites that are only executed
during program initialization for allocating permanent objects. We
exploit the side effect in these benchmarks to handle permanent
objects efficiently without refreshing. We may nevertheless handle
permanent objects differently in the future through, e.g. infinite
expiration dates.

Another interesting feature of using per-allocation-site buffers is
that memory reuse is type-safe. However, reusing memory too early
is still an error that results from missed refreshing or premature
time advance. We implemented a debug mode in Jikes to detect
this kind of error. In debug mode, instead of actually reusing the
memory of an object, it is just marked. The error occurs if a
marked object is accessed, which is detected by a read barrier. A
marked object that triggers the barrier should have been refreshed.
The debug mode helped us find all necessary refresh-calls in the
LuIndex benchmark.

Jikes is a metacircular implementation, which uses the same
heap management and garbage collector for the VM and the mu-
tator. When using self-collecting mutators garbage collection is
turned off. Since porting Jikes to short-term memory may be diffi-
cult and has not been done, we only redirect allocation requests of
the mutator to short-term memory by annotating the classes that are
exclusively used by the mutator. Allocation requests by the VM are
therefore permanent. Allocation requests in classes used by both
the VM and the mutator are also permanent, which is the case in
the JLayer and LuIndex benchmarks. However, since the VM typ-
ically stops allocating at some point in time, an aggressive space
optimization is possible by redirecting, after that point in time, all
allocation requests, even in classes that are not annotated, to short-
term memory. More details are discussed in Section 4.1.

3.2.2 Multiple-Expiration-Date Implementation for C
The C implementation of the multiple-expiration-date approxima-
tion is a dynamic C library available under GPL [1] based on
POSIX threads and the ptmalloc2 allocator of glibc-2.10.14.

Descriptors. An expiration date of a given memory object in
the C implementation is represented by a descriptor, which is a
single word that stores a pointer to the object. Moreover, each
memory object is extended by an object header that consists of a
descriptor counter, which is an integer word that counts, similar to a
reference counter, the number of descriptors that point to the object,
i.e., the number of expiration dates the object has. Descriptors
representing a given (not-expired) expiration date are gathered in a
descriptor list. In other words, the expiration date value represented
by a descriptor is implicitly encoded by storing the descriptor in a
descriptor list for this value. Note that an object may even have
multiple expiration dates with the same value, which means that

4 http://www.gnu.org/software/libc/

Figure 8. The design of the descriptor list.

there may be multiple descriptors in a descriptor list pointing to the
same object.

As shown in Figure 8, a descriptor list is a singly-linked list of
descriptor pages with a head and a tail pointer to the first and the last
page, respectively. A descriptor page is a fixed-size record that con-
sists of a pointer to the next page, an integer word that counts the
actual number of descriptors stored in the page, and a fixed num-
ber of words for storing descriptors. The size m of descriptor pages
is fixed at compile time. Descriptor pages are allocated cache- and
page-aligned for better runtime performance. We distinguish dif-
ferent size configurations of m in our benchmarks. Note that us-
ing descriptor pages provides only a constant-factor, yet potentially
significant, optimization over a singly-linked list of descriptors.

Given a compile-time bound n on the expiration extensions for
refreshing, we use a descriptor buffer to store n+1 descriptor lists
in an array of size n + 1, which supports expiration extensions
between zero and n. Note that n + 1 lists are sufficient if the de-
scriptors are evaluated against thread-local time. If they are eval-
uated against thread-global time, the buffer needs to store n + 3
lists (recall the two additional time units necessary for correct ex-
piration using thread-global time as previously discussed in Sec-
tion 3.1.2). For better runtime performance descriptor pages are
prefetched, i.e., the descriptor lists of a descriptor buffer always
contain at least one descriptor page, which may nevertheless not
contain any descriptors.

There are two descriptor buffer operations: insert and move-
expired, which are both O(1). Given a descriptor and an index
0 ≤ i ≤ n, which is computed from the current time and the expi-
ration extension as described below, the insert operation stores the
descriptor in the last descriptor page of the descriptor list at posi-
tion i in the buffer, if the page is not full. Otherwise, the descriptor
is stored in a new page that is allocated, either from a thread-local
page pool or, if empty, from free memory, and appended to the
list. Given an index 0 ≤ i ≤ n, which is computed from the cur-
rent time as described below, the move-expired operation removes
from the descriptor pages from the descriptor list at position i in the
buffer, if it contains at least one descriptor, and appends the pages to
a thread-local descriptor list called the expired-descriptor list. Un-
like the descriptor lists in a descriptor buffer, the expired-descriptor
list may contain descriptors that represent different expiration dates
that have, however, all expired. The then empty descriptor list at i
is refilled with an empty descriptor page prefetched either from the
thread-local page pool or, if empty, from free memory.

There are two descriptor buffers per thread: a locally-clocked
buffer and a globally-clocked buffer, containing n + 1 and n + 3
descriptor lists, respectively. The descriptors in the locally-clocked
and the globally-clocked buffer are evaluated against thread-local
and thread-global time, respectively. Let l be the current thread-
local time. Then the descriptor list in the locally-clocked buffer
containing descriptors representing an expiration date l is located
at position l mod (n + 1). Given an expiration extension 0 ≤

7 2010/8/24

Descriptor List



© C. Kirsch 2010

Descriptor Buffer

• A descriptor buffer is an array of size n+3 
of descriptor lists where n is a compile-
time bound on the maximal extension for 
refreshing

• Two (constant-time) buffer operations:

‣ insert, move-expired

• Two buffers per thread:

‣ locally-clocked and globally-clocked



© C. Kirsch 2010

Memory Operations
(are all constant-time modulo the underlying allocator)

• malloc(s) returns a pointer to a 
memory block of size s plus one word for 
the descriptor counter, which is set to zero

• free(Block) frees the given Block if its 
descriptor counter is zero

• local_refresh(Block, Extension)

• global_refresh(Block, Extension)

• tick()



Experiments
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CPU 2x AMD Opteron DualCore, 2.0 GHz
RAM 4GB
OS Linux 2.6.32-21-generic
Java VM Jikes RVM 3.1.0
C compiler gcc version 4.4.3
C allocator ptmalloc2-20011215 (glibc-2.10.1)

Table 3. System configuration.

Self-collecting mutators determines buffer sizes dynamically de-
pending on tick-calls. Moreover, it allows trading-off space con-
sumption caused by sparse tick-calls and time consumption caused
by required refresh-calls.

The memory management system described in [17] maintains
type safety as self-collecting mutators for Java does. Other work
which provides memory management type safety to support the de-
sign of non-blocking thread synchronization algorithms is reported
on in [13]. In [12] the authors propose the use of type-safe pool
allocation to support program analysis.

Reference-counting garbage collectors [9] determine reachabil-
ity by counting references pointing to an object. In our C imple-
mentation we determine expiration by counting descriptors point-
ing to an object. A drawback of reference counting are reference
cycles which do not occur in descriptor counting.

The buffers in our implementations essentially implement pri-
ority queues [10] where expiration extensions correspond to priori-
ties. It is important to note that the time complexity of all our buffer
operations is independent of the number of elements in the buffer,
which may or may not be the case for general priority queues.

The calculation of global time in self-collecting mutators is
related to barrier synchronization [20]. A barrier forces a set of
threads into a global state by blocking each thread when it has
reached a particular point in its execution. Global time advance cor-
responds to the global state when all active threads have ticked at
least once in the current global period. However, it does not im-
pose blocking on the threads. Similar to a barrier, we could also
block threads when they have ticked. In this case, refreshing ob-
jects would only require one instead of two additional time units,
potentially reducing memory consumption at the expense of muta-
tor execution speed. An implementation and adequate experiments
are future work.

Finally, note that the memory behavior of self-collecting mu-
tators can also be achieved with static preallocation. However, as
visible from the benchmarks in Table 2, self-collecting mutators is
convenient to use and does not require many code changes.

4. Experimental Setup and Evaluation
We discuss performance results obtained with the benchmarks de-
scribed in Section 2.2.2. The benchmarking setup is shown in Ta-
ble 3. For the Java benchmarks we compare self-collecting mu-
tators and two garbage collectors available with Jikes, the mark-
sweep garbage collector and the standard garbage collector of Jikes,
a two-generation copying collector where the mature space is han-
dled by an Immix collector [7]. We measured throughput (total ex-
ecution time) and memory consumption of the three Java bench-
marks and of four concurrent instances of the Monte Carlo bench-
mark. Moreover, for the Monte Carlo benchmark, we measure la-
tency (loop execution time) for the comparison with the garbage-
collected systems and show, for the single-instance Monte Carlo
benchmark, the effect of using different frequencies of tick-call in-
vocations on latency and memory consumption.

For the C benchmark we compare self-collecting mutators and
ptmalloc2. We measure the average (min/max) execution time of
all self-collecting mutators operations, throughput (total execution
time), and memory overhead and consumption.

4.1 Java Benchmarks
For the Java benchmarks we use replay compilation [19] provided
by the production configuration of Jikes, which runs a JIT compiler
in the recording phase.

4.1.1 Total Execution Time and Memory Consumption
We execute each measurement 30 times and calculate the average
of the total execution times. We determine the minimal heap size
necessary to execute each benchmark with self-collecting mutators.
The same heap size is then used for the garbage-collected systems
if it suffices for the execution which is true in all but one bench-
mark. For comparison, we also measure the total execution times
with double amount of memory. The minimal heap sizes for the
benchmarks are shown in Table 4.

The original Monte Carlo benchmark (MC leaky) is the only
benchmark where garbage-collected systems need significantly
more memory to run. The reason is that MC leaky produces a
reachable memory leak which is not collected by a garbage col-
lector. Self-collecting mutators (SCM) reuses the memory objects
in the memory leak upon expiration. Therefore, running the bench-
mark with self-collecting mutators requires much less memory than
running it with garbage-collected systems. With self-collecting mu-
tators the MC leaky benchmark can be executed in 40MB. We
improve the total execution time of the benchmark by refreshing
with an expiration extension of 50 and reducing the frequency of
tick-calls to one every 20th loop iteration (SCM(50,20)) resulting
in the need for 10MB more, i.e., 50MB heap size. The generational
garbage collector (GEN) requires at least 95MB for a success-
ful run whereas the mark-sweep garbage collector (MS) requires
100MB. We modified the Monte Carlo benchmark and removed
the memory leak (MC fixed). The MC fixed benchmark needs
only 40MB heap size on all systems. We executed four concur-
rent instances of the Monte Carlo benchmark without memory leak
(4×MC fixed). The execution of 4×MC fixed requires 60MB heap
size in the SCM(1,1) configuration of self-collecting mutators, ad-
ditional 10MB are needed in the SCM(50,20) configuration.

The JLayer benchmark needs 95MB heap size to execute and
the LuIndex benchmark needs 370MB. Both of them do not re-
quire refreshing. All objects which would require refreshing in the
JLayer benchmark are allocated permanently because their alloca-
tion sites are never executed again. In the LuIndex benchmark tick-
calls are only executed when all memory expires, as in Figure 3.
Both benchmarks benefit from the aggressive space optimization of
self-collecting mutators described in Section 3.2.1. At some point
in time, determined by test runs, we turn on the aggressive opti-
mization. For the JLayer benchmark this point in time is after the
conversion of ten frames of the mp3 file, resulting in memory con-
sumption decreased by 5MB. We execute the LuIndex benchmark
ten times for one measurement, and turn on the optimization af-
ter the first round. The reason is that towards the end of the first

MC MC 4×MC JLayer LuIndex
leaky fixed fixed

SCM(1,1) 40MB 40MB 60MB 95MB 370MB
SCM 50MB 40MB 70MB / /
(50,20)
aggressive / / / 90MB 250MB
SCM(1,1)
GEN 95MB 40MB 70MB 95MB 370MB
MS 100MB 40MB 70MB 95MB 370MB

Table 4. Heap size for the different system configurations.
SCM(n, k) stands for self-collecting mutators with a maximal ex-
piration extension of n. A tick-call is executed every k-th round of
the periodic behavior of the benchmark.
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Java: Memory

CPU 2x AMD Opteron DualCore, 2.0 GHz
RAM 4GB
OS Linux 2.6.32-21-generic
Java VM Jikes RVM 3.1.0
C compiler gcc version 4.4.3
C allocator ptmalloc2-20011215 (glibc-2.10.1)

Table 3. System configuration.

Self-collecting mutators determines buffer sizes dynamically de-
pending on tick-calls. Moreover, it allows trading-off space con-
sumption caused by sparse tick-calls and time consumption caused
by required refresh-calls.

The memory management system described in [17] maintains
type safety as self-collecting mutators for Java does. Other work
which provides memory management type safety to support the de-
sign of non-blocking thread synchronization algorithms is reported
on in [13]. In [12] the authors propose the use of type-safe pool
allocation to support program analysis.

Reference-counting garbage collectors [9] determine reachabil-
ity by counting references pointing to an object. In our C imple-
mentation we determine expiration by counting descriptors point-
ing to an object. A drawback of reference counting are reference
cycles which do not occur in descriptor counting.

The buffers in our implementations essentially implement pri-
ority queues [10] where expiration extensions correspond to priori-
ties. It is important to note that the time complexity of all our buffer
operations is independent of the number of elements in the buffer,
which may or may not be the case for general priority queues.

The calculation of global time in self-collecting mutators is
related to barrier synchronization [20]. A barrier forces a set of
threads into a global state by blocking each thread when it has
reached a particular point in its execution. Global time advance cor-
responds to the global state when all active threads have ticked at
least once in the current global period. However, it does not im-
pose blocking on the threads. Similar to a barrier, we could also
block threads when they have ticked. In this case, refreshing ob-
jects would only require one instead of two additional time units,
potentially reducing memory consumption at the expense of muta-
tor execution speed. An implementation and adequate experiments
are future work.

Finally, note that the memory behavior of self-collecting mu-
tators can also be achieved with static preallocation. However, as
visible from the benchmarks in Table 2, self-collecting mutators is
convenient to use and does not require many code changes.

4. Experimental Setup and Evaluation
We discuss performance results obtained with the benchmarks de-
scribed in Section 2.2.2. The benchmarking setup is shown in Ta-
ble 3. For the Java benchmarks we compare self-collecting mu-
tators and two garbage collectors available with Jikes, the mark-
sweep garbage collector and the standard garbage collector of Jikes,
a two-generation copying collector where the mature space is han-
dled by an Immix collector [7]. We measured throughput (total ex-
ecution time) and memory consumption of the three Java bench-
marks and of four concurrent instances of the Monte Carlo bench-
mark. Moreover, for the Monte Carlo benchmark, we measure la-
tency (loop execution time) for the comparison with the garbage-
collected systems and show, for the single-instance Monte Carlo
benchmark, the effect of using different frequencies of tick-call in-
vocations on latency and memory consumption.

For the C benchmark we compare self-collecting mutators and
ptmalloc2. We measure the average (min/max) execution time of
all self-collecting mutators operations, throughput (total execution
time), and memory overhead and consumption.

4.1 Java Benchmarks
For the Java benchmarks we use replay compilation [19] provided
by the production configuration of Jikes, which runs a JIT compiler
in the recording phase.

4.1.1 Total Execution Time and Memory Consumption
We execute each measurement 30 times and calculate the average
of the total execution times. We determine the minimal heap size
necessary to execute each benchmark with self-collecting mutators.
The same heap size is then used for the garbage-collected systems
if it suffices for the execution which is true in all but one bench-
mark. For comparison, we also measure the total execution times
with double amount of memory. The minimal heap sizes for the
benchmarks are shown in Table 4.

The original Monte Carlo benchmark (MC leaky) is the only
benchmark where garbage-collected systems need significantly
more memory to run. The reason is that MC leaky produces a
reachable memory leak which is not collected by a garbage col-
lector. Self-collecting mutators (SCM) reuses the memory objects
in the memory leak upon expiration. Therefore, running the bench-
mark with self-collecting mutators requires much less memory than
running it with garbage-collected systems. With self-collecting mu-
tators the MC leaky benchmark can be executed in 40MB. We
improve the total execution time of the benchmark by refreshing
with an expiration extension of 50 and reducing the frequency of
tick-calls to one every 20th loop iteration (SCM(50,20)) resulting
in the need for 10MB more, i.e., 50MB heap size. The generational
garbage collector (GEN) requires at least 95MB for a success-
ful run whereas the mark-sweep garbage collector (MS) requires
100MB. We modified the Monte Carlo benchmark and removed
the memory leak (MC fixed). The MC fixed benchmark needs
only 40MB heap size on all systems. We executed four concur-
rent instances of the Monte Carlo benchmark without memory leak
(4×MC fixed). The execution of 4×MC fixed requires 60MB heap
size in the SCM(1,1) configuration of self-collecting mutators, ad-
ditional 10MB are needed in the SCM(50,20) configuration.

The JLayer benchmark needs 95MB heap size to execute and
the LuIndex benchmark needs 370MB. Both of them do not re-
quire refreshing. All objects which would require refreshing in the
JLayer benchmark are allocated permanently because their alloca-
tion sites are never executed again. In the LuIndex benchmark tick-
calls are only executed when all memory expires, as in Figure 3.
Both benchmarks benefit from the aggressive space optimization of
self-collecting mutators described in Section 3.2.1. At some point
in time, determined by test runs, we turn on the aggressive opti-
mization. For the JLayer benchmark this point in time is after the
conversion of ten frames of the mp3 file, resulting in memory con-
sumption decreased by 5MB. We execute the LuIndex benchmark
ten times for one measurement, and turn on the optimization af-
ter the first round. The reason is that towards the end of the first

MC MC 4×MC JLayer LuIndex
leaky fixed fixed

SCM(1,1) 40MB 40MB 60MB 95MB 370MB
SCM 50MB 40MB 70MB / /
(50,20)
aggressive / / / 90MB 250MB
SCM(1,1)
GEN 95MB 40MB 70MB 95MB 370MB
MS 100MB 40MB 70MB 95MB 370MB

Table 4. Heap size for the different system configurations.
SCM(n, k) stands for self-collecting mutators with a maximal ex-
piration extension of n. A tick-call is executed every k-th round of
the periodic behavior of the benchmark.
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Figure 9. Total execution time of the Monte Carlo benchmarks in
percentage of the total execution time of the benchmark using self-
collecting mutators.

round classes are loaded dynamically by the VM resulting in mem-
ory allocations. We start measuring the time after the first round. In
the LuIndex benchmark the effect of the aggressive optimization is
significant, it reduces the needed heap size by 120MB.

For the performance measurements of the Monte Carlo bench-
marks we use the SCM(50,20) configuration. In our experience
this configuration results in the best performance. We measure
the performance of the systems with the heap sizes shown in Ta-
ble 4 as well as with doubled amount of memory. The results are
shown in Figure 9. Self-collecting mutators is slightly faster than
the garbage-collected systems, even when more memory is avail-
able. The sharing of the buffers in self-collecting mutators between
concurrent threads does not affect the performance much because
the contention on each buffer is low. The JLayer and LuIndex
benchmarks were not measured with the SCM(50,20) configura-
tion since they do not require refreshing and SCM(50,20) induces
additional overhead. These benchmarks were measured with the
SCM(1,1) configuration as well as with the aggressive space opti-
mization, the results are shown in Figure 10. Note that the aggres-
sive optimization may result in decreased execution time as in the
JLayer benchmark or in increased execution time as in the LuIndex
benchmark. Self-collecting mutators is competitive to the garbage-
collected systems in temporal performance of all benchmarks.

4.1.2 Loop Execution Time and Memory Consumption
To measure the pause times of the memory management system
and the memory consumption we recorded the loop execution time
and the amount of free memory at the end of every loop iteration in
the Monte Carlo benchmark.

Figure 11 shows the free memory and the loop execution time
of the fixed Monte Carlo benchmark. The amount of free mem-
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Figure 12. Free memory and loop execution time of four concur-
rent instances of the Monte Carlo benchmark using self-collecting
mutators.

ory is nearly constant when the benchmark is executed with self-
collecting mutators. New result objects are allocated in every loop
iteration, but they do not require much space. The loop execution
time is nearly constant. It has a jitter of less than 100 microsec-
onds. Both garbage-collected systems have similar loop execution
times as self-collecting mutators except for the iterations in which
garbage collection is triggered. The loop execution time is much
larger then. The free-memory curve of the garbage-collected sys-
tems looks like a saw-tooth curve which has a peak after every
garbage collection run. The chart depicts the first 2500 loop iter-
ations, further iterations show the same pattern.

Next we measure the memory consumption and the loop ex-
ecution times of self-collecting mutators with four concurrent in-
stances of the Monte Carlo benchmark. Figure 12 shows the first
20 loop iterations. The values representing free memory for a given
thread correspond to the overall free memory measured at the end
of a loop iteration of the thread. The memory consumption is con-
stant (also for all further iterations), but the system initially requires
some loop iterations to find its steady state. Thereafter the buffers
of all allocation sites are large enough and no additional memory is
needed. The loop execution time still does not vary much.

At last we analyze the time-space trade-off controlled by the
number of loop iterations per tick-call. The loop execution times
are shown in Figure 13, the free memory over time is visualized
in Figure 14. For the measurements we considered three scenarios:
tick at every loop iteration, tick at every 50th loop iteration and tick
at every 200th iteration. We distributed the required refresh-calls
uniformly over all time units to achieve full incrementality. As a
result, the loop execution time has only small variance. The results
show that the more ticks, and thus the more refreshing happens,

10 2010/8/24



© C. Kirsch 2010

Java: Throughput

 98

 100

 102

 104

 106

 108

 110

 112

 114

 116

MC leaky MC fixed 4xMC fixed

to
ta

l r
u
n
tim

e
 in

 
 %

 o
f 
th

e
 r

u
n
tim

e
 o

f 
S

C
M

 
 (

lo
w

e
r 

is
 b

e
tt
e
r)

Monte Carlo Benchmarks

SCM(50,20)
GEN

MS

SCM(50,20) double memory
GEN double memory

MS double memory

Figure 9. Total execution time of the Monte Carlo benchmarks in
percentage of the total execution time of the benchmark using self-
collecting mutators.

round classes are loaded dynamically by the VM resulting in mem-
ory allocations. We start measuring the time after the first round. In
the LuIndex benchmark the effect of the aggressive optimization is
significant, it reduces the needed heap size by 120MB.

For the performance measurements of the Monte Carlo bench-
marks we use the SCM(50,20) configuration. In our experience
this configuration results in the best performance. We measure
the performance of the systems with the heap sizes shown in Ta-
ble 4 as well as with doubled amount of memory. The results are
shown in Figure 9. Self-collecting mutators is slightly faster than
the garbage-collected systems, even when more memory is avail-
able. The sharing of the buffers in self-collecting mutators between
concurrent threads does not affect the performance much because
the contention on each buffer is low. The JLayer and LuIndex
benchmarks were not measured with the SCM(50,20) configura-
tion since they do not require refreshing and SCM(50,20) induces
additional overhead. These benchmarks were measured with the
SCM(1,1) configuration as well as with the aggressive space opti-
mization, the results are shown in Figure 10. Note that the aggres-
sive optimization may result in decreased execution time as in the
JLayer benchmark or in increased execution time as in the LuIndex
benchmark. Self-collecting mutators is competitive to the garbage-
collected systems in temporal performance of all benchmarks.

4.1.2 Loop Execution Time and Memory Consumption
To measure the pause times of the memory management system
and the memory consumption we recorded the loop execution time
and the amount of free memory at the end of every loop iteration in
the Monte Carlo benchmark.

Figure 11 shows the free memory and the loop execution time
of the fixed Monte Carlo benchmark. The amount of free mem-

 99

 99.5

 100

 100.5

 101

 101.5

 102

 102.5

 103

 103.5

 104

JLayer LuIndex

to
ta

l r
u
n
tim

e
 in

 
%

 o
f 
th

e
 r

u
n
tim

e
 o

f 
S

C
M

 
 (

lo
w

e
r 

is
 b

e
tt
e
r)

SCM(1,1)
aggressive SCM(1,1)

GEN
MS

GEN double memory
MS double memory

Figure 10. Total execution time of the JLayer and the LuIndex
benchmarks in percentage of the total execution time of the bench-
mark using self-collecting mutators.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  500  1000  1500  2000  2500
 100

 1000

 10000

 100000

fr
e
e
 m

e
m

o
ry

 in
 M

B
 

 (
h
ig

h
e
r 

is
 b

e
tt
e
r)

lo
o
p
 e

xe
cu

tio
n
 t
im

e
 

 in
 m

ic
ro

se
co

n
d
s 

(l
o
g
a
ri
th

m
ic

) 
 (

lo
w

e
r 

is
 b

e
tt
e
r)

loop iteration

GEN free memory
MS free memory

SCM free memory

GEN loop execution time
MS loop execution time

SCM loop execution time

Figure 11. Free memory and loop execution time of the fixed
Monte Carlo benchmark.

 93

 93.02

 93.04

 93.06

 93.08

 93.1

 93.12

 93.14

 93.16

 93.18

 93.2

 0  5  10  15  20
 100

 1000

 10000

 100000

fr
e
e
 m

e
m

o
ry

 in
 M

B
 

 (
h
ig

h
e
r 

is
 b

e
tt
e
r)

lo
o
p
 e

xe
cu

tio
n
 t
im

e
 

 in
 m

ic
ro

se
co

n
d
s 

 (
lo

w
e
r 

is
 b

e
tt
e
r)

loop iteration

loop execution time thread1
loop execution time thread2
loop execution time thread3
loop execution time thread4

free memory thread1
free memory thread2
free memory thread3
free memory thread4

Figure 12. Free memory and loop execution time of four concur-
rent instances of the Monte Carlo benchmark using self-collecting
mutators.

ory is nearly constant when the benchmark is executed with self-
collecting mutators. New result objects are allocated in every loop
iteration, but they do not require much space. The loop execution
time is nearly constant. It has a jitter of less than 100 microsec-
onds. Both garbage-collected systems have similar loop execution
times as self-collecting mutators except for the iterations in which
garbage collection is triggered. The loop execution time is much
larger then. The free-memory curve of the garbage-collected sys-
tems looks like a saw-tooth curve which has a peak after every
garbage collection run. The chart depicts the first 2500 loop iter-
ations, further iterations show the same pattern.

Next we measure the memory consumption and the loop ex-
ecution times of self-collecting mutators with four concurrent in-
stances of the Monte Carlo benchmark. Figure 12 shows the first
20 loop iterations. The values representing free memory for a given
thread correspond to the overall free memory measured at the end
of a loop iteration of the thread. The memory consumption is con-
stant (also for all further iterations), but the system initially requires
some loop iterations to find its steady state. Thereafter the buffers
of all allocation sites are large enough and no additional memory is
needed. The loop execution time still does not vary much.

At last we analyze the time-space trade-off controlled by the
number of loop iterations per tick-call. The loop execution times
are shown in Figure 13, the free memory over time is visualized
in Figure 14. For the measurements we considered three scenarios:
tick at every loop iteration, tick at every 50th loop iteration and tick
at every 200th iteration. We distributed the required refresh-calls
uniformly over all time units to achieve full incrementality. As a
result, the loop execution time has only small variance. The results
show that the more ticks, and thus the more refreshing happens,
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round classes are loaded dynamically by the VM resulting in mem-
ory allocations. We start measuring the time after the first round. In
the LuIndex benchmark the effect of the aggressive optimization is
significant, it reduces the needed heap size by 120MB.

For the performance measurements of the Monte Carlo bench-
marks we use the SCM(50,20) configuration. In our experience
this configuration results in the best performance. We measure
the performance of the systems with the heap sizes shown in Ta-
ble 4 as well as with doubled amount of memory. The results are
shown in Figure 9. Self-collecting mutators is slightly faster than
the garbage-collected systems, even when more memory is avail-
able. The sharing of the buffers in self-collecting mutators between
concurrent threads does not affect the performance much because
the contention on each buffer is low. The JLayer and LuIndex
benchmarks were not measured with the SCM(50,20) configura-
tion since they do not require refreshing and SCM(50,20) induces
additional overhead. These benchmarks were measured with the
SCM(1,1) configuration as well as with the aggressive space opti-
mization, the results are shown in Figure 10. Note that the aggres-
sive optimization may result in decreased execution time as in the
JLayer benchmark or in increased execution time as in the LuIndex
benchmark. Self-collecting mutators is competitive to the garbage-
collected systems in temporal performance of all benchmarks.

4.1.2 Loop Execution Time and Memory Consumption
To measure the pause times of the memory management system
and the memory consumption we recorded the loop execution time
and the amount of free memory at the end of every loop iteration in
the Monte Carlo benchmark.

Figure 11 shows the free memory and the loop execution time
of the fixed Monte Carlo benchmark. The amount of free mem-
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ory is nearly constant when the benchmark is executed with self-
collecting mutators. New result objects are allocated in every loop
iteration, but they do not require much space. The loop execution
time is nearly constant. It has a jitter of less than 100 microsec-
onds. Both garbage-collected systems have similar loop execution
times as self-collecting mutators except for the iterations in which
garbage collection is triggered. The loop execution time is much
larger then. The free-memory curve of the garbage-collected sys-
tems looks like a saw-tooth curve which has a peak after every
garbage collection run. The chart depicts the first 2500 loop iter-
ations, further iterations show the same pattern.

Next we measure the memory consumption and the loop ex-
ecution times of self-collecting mutators with four concurrent in-
stances of the Monte Carlo benchmark. Figure 12 shows the first
20 loop iterations. The values representing free memory for a given
thread correspond to the overall free memory measured at the end
of a loop iteration of the thread. The memory consumption is con-
stant (also for all further iterations), but the system initially requires
some loop iterations to find its steady state. Thereafter the buffers
of all allocation sites are large enough and no additional memory is
needed. The loop execution time still does not vary much.

At last we analyze the time-space trade-off controlled by the
number of loop iterations per tick-call. The loop execution times
are shown in Figure 13, the free memory over time is visualized
in Figure 14. For the measurements we considered three scenarios:
tick at every loop iteration, tick at every 50th loop iteration and tick
at every 200th iteration. We distributed the required refresh-calls
uniformly over all time units to achieve full incrementality. As a
result, the loop execution time has only small variance. The results
show that the more ticks, and thus the more refreshing happens,
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persistent MM short-term MM

malloc of ptmalloc2 166 (78 / 199k) /

free of ptmalloc2 86 (14 / 169k) /

malloc of SCM 172 (82 / 267k) 138 (75 / 271k)

free of SCM 91 (10 / 157k) /

local-refresh(1, 256B) / 227 (131 / 548k)

local-refresh(10, 256B) / 225 (131 / 548k)

local-refresh(1, 4KB) / 228 (131 / 548k)

local-refresh(10, 4KB) / 230 (131 / 548k)

global-refresh(1, 256B) / 226 (116 / 551k)

global-refresh(10, 256B) / 224 (116 / 551k)

global-refresh(1, 4KB) / 227 (116 / 551k)

global-refresh(10, 4KB) / 228 (116 / 551k)

local-tick(1, 256B) / 378 (277 / 164k)

local-tick(10, 256B) / 359 (277 / 71k)

local-tick(1, 4KB) / 375 (277 / 164k)

local-tick(10, 4KB) / 366 (277 / 164k)

global-tick(1, 256B) / 367 (229 / 169k)

global-tick(10, 256B) / 352 (229 / 151k)

global-tick(1, 4KB) / 365 (229 / 169k)

global-tick(10, 4KB) / 361 (229 / 169k)

Table 5. Average (min/max) execution time in CPU clock cycles

of the memory management operations in the mpg123 benchmark.

Here, e.g. local-refresh(n,m) stands for the local-refresh-call with

a maximal expiration extension of n and descriptor page size m.

When local/global-refresh is used then the tick-call is denoted by

local/global-tick.

the greater the loop execution time is. However, with less ticks

memory consumption increases. When a tick-call is executed only

every 200th loop iteration, memory consumption is maximal, but

temporal performance is much better than in the scenario with one

tick every loop iteration and slightly better than in the scenario with

one tick every 50th loop iteration.

Note that the total number of allocated objects increases over

time requiring more and more refreshing. This explains not only the

obvious increase in loop execution time when ticking every loop

iteration but also the slight increase in loop execution time when

ticking every 50th and every 200th loop iteration, nearly not visible

in the figure. Memory consumption increases as time elapses since

a new result object is allocated in every loop iteration. Temporal

and spatial performance appear to be inversely proportional, for

example, the scenario with the least frequent tick-calls is the fastest

because of less refreshing but is the most memory-consuming.

4.2 C Benchmarks
We first discuss the average (min/max) execution time of the self-

collecting mutators operations measured during the execution of

the mpg123 benchmark. We then compare self-collecting mutators

and ptmalloc2 with this benchmark, first in terms of total execution

time and then in terms of memory overhead and consumption.
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Figure 13. Loop execution time of the Monte Carlo benchmark

with different tick frequencies. Self-collecting mutators is used.

ptmalloc2 895.25ms 100.00%

ptmalloc2 through SCM 899.43ms 100.47%

local-SCM(1, 256B) 890.18ms 99.43%

local-SCM(10, 256B) 898.28ms 100.34%

local-SCM(1, 4KB) 892.18ms 99.66%

local-SCM(10, 4KB) 892.28ms 99.67%

global-SCM(1, 256B) 893.76ms 99.83%

Table 6. Total execution times of the mpg123 benchmark aver-

aged over 100 repetitions. Here, local/global-SCM(n,m) stands for

self-collecting mutators with a maximal expiration extension of n
and descriptor page size m, using local/global-refresh.

Table 5 shows the execution times in CPU clock cycles of the

memory management operations in the mpg123 benchmark aver-

aged over 100 repetitions. The middle and the right column show

the results when persistent and short-term memory memory are

used, respectively. The results confirm that self-collecting mutators

introduce negligible runtime overhead when persistent memory is

used. Interestingly, the average execution time of allocation is less

(138 cycles versus 166 and 172 cycles) when short-term memory is

used probably because here self-collecting mutators allocates and

deallocates memory in a different order than when persistent mem-

ory is used. The other entries for short-term memory show that the

bound on expiration extensions and the descriptor page size do not

influence execution times.

The total execution times of the mpg123 benchmark averaged

over 100 repetitions are shown in Table 6. We experiment with sev-

eral configurations of self-collecting mutators using the expiration

extension bounds 1 and 10, and the descriptor page sizes 256B and

4KB. Note that in the mpg123 benchmark we only use an expira-

tion extension of zero. In each loop iteration of the benchmark 27

descriptors are created. The total execution time is nearly the same

for all configurations, independently of using local-refresh-calls or

global-refresh-calls. However, memory overhead and consumption

does differ as discussed next.

The memory overhead for storing descriptors and descriptor

counters as well as the total memory consumption of the mpg123

benchmark is shown in Figure15. Memory overhead and consump-

tion are measured before and after every malloc-call. The expira-

tion extension bound 10 obviously introduces more memory over-

head than the bound 1. The descriptor buffers clearly introduce less

overhead with 256B than with 4KB descriptor pages.

The ptmalloc2 system already deallocates and reuses the mem-

ory of some objects within one loop iteration. With self-collecting

mutators memory consumption is higher because objects allocated

in one loop iteration are not deallocated before the next loop itera-

tion. The use of the global-refresh-call introduces three times more

memory consumption than the use of the local-refresh-call because

the descriptors and thereby the corresponding objects expire later.

Self-collecting mutators is also competitive to explicit deallo-

cation in temporal performance of the mpg123 benchmark, at the

expense of moderately increased memory consumption. However,
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Figure 14. Free memory of the Monte Carlo benchmark with

different tick frequencies. Self-collecting mutators is used.
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persistent MM short-term MM

malloc of ptmalloc2 166 (78 / 199k) /

free of ptmalloc2 86 (14 / 169k) /

malloc of SCM 172 (82 / 267k) 138 (75 / 271k)

free of SCM 91 (10 / 157k) /

local-refresh(1, 256B) / 227 (131 / 548k)

local-refresh(10, 256B) / 225 (131 / 548k)

local-refresh(1, 4KB) / 228 (131 / 548k)

local-refresh(10, 4KB) / 230 (131 / 548k)

global-refresh(1, 256B) / 226 (116 / 551k)

global-refresh(10, 256B) / 224 (116 / 551k)

global-refresh(1, 4KB) / 227 (116 / 551k)

global-refresh(10, 4KB) / 228 (116 / 551k)

local-tick(1, 256B) / 378 (277 / 164k)

local-tick(10, 256B) / 359 (277 / 71k)

local-tick(1, 4KB) / 375 (277 / 164k)

local-tick(10, 4KB) / 366 (277 / 164k)

global-tick(1, 256B) / 367 (229 / 169k)

global-tick(10, 256B) / 352 (229 / 151k)

global-tick(1, 4KB) / 365 (229 / 169k)

global-tick(10, 4KB) / 361 (229 / 169k)

Table 5. Average (min/max) execution time in CPU clock cycles

of the memory management operations in the mpg123 benchmark.

Here, e.g. local-refresh(n,m) stands for the local-refresh-call with

a maximal expiration extension of n and descriptor page size m.

When local/global-refresh is used then the tick-call is denoted by

local/global-tick.

the greater the loop execution time is. However, with less ticks

memory consumption increases. When a tick-call is executed only

every 200th loop iteration, memory consumption is maximal, but

temporal performance is much better than in the scenario with one

tick every loop iteration and slightly better than in the scenario with

one tick every 50th loop iteration.

Note that the total number of allocated objects increases over

time requiring more and more refreshing. This explains not only the

obvious increase in loop execution time when ticking every loop

iteration but also the slight increase in loop execution time when

ticking every 50th and every 200th loop iteration, nearly not visible

in the figure. Memory consumption increases as time elapses since

a new result object is allocated in every loop iteration. Temporal

and spatial performance appear to be inversely proportional, for

example, the scenario with the least frequent tick-calls is the fastest

because of less refreshing but is the most memory-consuming.

4.2 C Benchmarks
We first discuss the average (min/max) execution time of the self-

collecting mutators operations measured during the execution of

the mpg123 benchmark. We then compare self-collecting mutators

and ptmalloc2 with this benchmark, first in terms of total execution

time and then in terms of memory overhead and consumption.
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Figure 13. Loop execution time of the Monte Carlo benchmark

with different tick frequencies. Self-collecting mutators is used.

ptmalloc2 895.25ms 100.00%

ptmalloc2 through SCM 899.43ms 100.47%

local-SCM(1, 256B) 890.18ms 99.43%

local-SCM(10, 256B) 898.28ms 100.34%

local-SCM(1, 4KB) 892.18ms 99.66%

local-SCM(10, 4KB) 892.28ms 99.67%

global-SCM(1, 256B) 893.76ms 99.83%

Table 6. Total execution times of the mpg123 benchmark aver-

aged over 100 repetitions. Here, local/global-SCM(n,m) stands for

self-collecting mutators with a maximal expiration extension of n
and descriptor page size m, using local/global-refresh.

Table 5 shows the execution times in CPU clock cycles of the

memory management operations in the mpg123 benchmark aver-

aged over 100 repetitions. The middle and the right column show

the results when persistent and short-term memory memory are

used, respectively. The results confirm that self-collecting mutators

introduce negligible runtime overhead when persistent memory is

used. Interestingly, the average execution time of allocation is less

(138 cycles versus 166 and 172 cycles) when short-term memory is

used probably because here self-collecting mutators allocates and

deallocates memory in a different order than when persistent mem-

ory is used. The other entries for short-term memory show that the

bound on expiration extensions and the descriptor page size do not

influence execution times.

The total execution times of the mpg123 benchmark averaged

over 100 repetitions are shown in Table 6. We experiment with sev-

eral configurations of self-collecting mutators using the expiration

extension bounds 1 and 10, and the descriptor page sizes 256B and

4KB. Note that in the mpg123 benchmark we only use an expira-

tion extension of zero. In each loop iteration of the benchmark 27

descriptors are created. The total execution time is nearly the same

for all configurations, independently of using local-refresh-calls or

global-refresh-calls. However, memory overhead and consumption

does differ as discussed next.

The memory overhead for storing descriptors and descriptor

counters as well as the total memory consumption of the mpg123

benchmark is shown in Figure15. Memory overhead and consump-

tion are measured before and after every malloc-call. The expira-

tion extension bound 10 obviously introduces more memory over-

head than the bound 1. The descriptor buffers clearly introduce less

overhead with 256B than with 4KB descriptor pages.

The ptmalloc2 system already deallocates and reuses the mem-

ory of some objects within one loop iteration. With self-collecting

mutators memory consumption is higher because objects allocated

in one loop iteration are not deallocated before the next loop itera-

tion. The use of the global-refresh-call introduces three times more

memory consumption than the use of the local-refresh-call because

the descriptors and thereby the corresponding objects expire later.

Self-collecting mutators is also competitive to explicit deallo-

cation in temporal performance of the mpg123 benchmark, at the

expense of moderately increased memory consumption. However,
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Figure 14. Free memory of the Monte Carlo benchmark with

different tick frequencies. Self-collecting mutators is used.
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persistent MM short-term MM

malloc of ptmalloc2 166 (78 / 199k) /

free of ptmalloc2 86 (14 / 169k) /

malloc of SCM 172 (82 / 267k) 138 (75 / 271k)

free of SCM 91 (10 / 157k) /

local-refresh(1, 256B) / 227 (131 / 548k)

local-refresh(10, 256B) / 225 (131 / 548k)

local-refresh(1, 4KB) / 228 (131 / 548k)

local-refresh(10, 4KB) / 230 (131 / 548k)

global-refresh(1, 256B) / 226 (116 / 551k)

global-refresh(10, 256B) / 224 (116 / 551k)

global-refresh(1, 4KB) / 227 (116 / 551k)

global-refresh(10, 4KB) / 228 (116 / 551k)

local-tick(1, 256B) / 378 (277 / 164k)

local-tick(10, 256B) / 359 (277 / 71k)

local-tick(1, 4KB) / 375 (277 / 164k)

local-tick(10, 4KB) / 366 (277 / 164k)

global-tick(1, 256B) / 367 (229 / 169k)

global-tick(10, 256B) / 352 (229 / 151k)

global-tick(1, 4KB) / 365 (229 / 169k)

global-tick(10, 4KB) / 361 (229 / 169k)

Table 5. Average (min/max) execution time in CPU clock cycles

of the memory management operations in the mpg123 benchmark.

Here, e.g. local-refresh(n,m) stands for the local-refresh-call with

a maximal expiration extension of n and descriptor page size m.

When local/global-refresh is used then the tick-call is denoted by

local/global-tick.

the greater the loop execution time is. However, with less ticks

memory consumption increases. When a tick-call is executed only

every 200th loop iteration, memory consumption is maximal, but

temporal performance is much better than in the scenario with one

tick every loop iteration and slightly better than in the scenario with

one tick every 50th loop iteration.

Note that the total number of allocated objects increases over

time requiring more and more refreshing. This explains not only the

obvious increase in loop execution time when ticking every loop

iteration but also the slight increase in loop execution time when

ticking every 50th and every 200th loop iteration, nearly not visible

in the figure. Memory consumption increases as time elapses since

a new result object is allocated in every loop iteration. Temporal

and spatial performance appear to be inversely proportional, for

example, the scenario with the least frequent tick-calls is the fastest

because of less refreshing but is the most memory-consuming.

4.2 C Benchmarks
We first discuss the average (min/max) execution time of the self-

collecting mutators operations measured during the execution of

the mpg123 benchmark. We then compare self-collecting mutators

and ptmalloc2 with this benchmark, first in terms of total execution

time and then in terms of memory overhead and consumption.
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Figure 13. Loop execution time of the Monte Carlo benchmark

with different tick frequencies. Self-collecting mutators is used.

ptmalloc2 895.25ms 100.00%

ptmalloc2 through SCM 899.43ms 100.47%

local-SCM(1, 256B) 890.18ms 99.43%

local-SCM(10, 256B) 898.28ms 100.34%

local-SCM(1, 4KB) 892.18ms 99.66%

local-SCM(10, 4KB) 892.28ms 99.67%

global-SCM(1, 256B) 893.76ms 99.83%

Table 6. Total execution times of the mpg123 benchmark aver-

aged over 100 repetitions. Here, local/global-SCM(n,m) stands for

self-collecting mutators with a maximal expiration extension of n
and descriptor page size m, using local/global-refresh.

Table 5 shows the execution times in CPU clock cycles of the

memory management operations in the mpg123 benchmark aver-

aged over 100 repetitions. The middle and the right column show

the results when persistent and short-term memory memory are

used, respectively. The results confirm that self-collecting mutators

introduce negligible runtime overhead when persistent memory is

used. Interestingly, the average execution time of allocation is less

(138 cycles versus 166 and 172 cycles) when short-term memory is

used probably because here self-collecting mutators allocates and

deallocates memory in a different order than when persistent mem-

ory is used. The other entries for short-term memory show that the

bound on expiration extensions and the descriptor page size do not

influence execution times.

The total execution times of the mpg123 benchmark averaged

over 100 repetitions are shown in Table 6. We experiment with sev-

eral configurations of self-collecting mutators using the expiration

extension bounds 1 and 10, and the descriptor page sizes 256B and

4KB. Note that in the mpg123 benchmark we only use an expira-

tion extension of zero. In each loop iteration of the benchmark 27

descriptors are created. The total execution time is nearly the same

for all configurations, independently of using local-refresh-calls or

global-refresh-calls. However, memory overhead and consumption

does differ as discussed next.

The memory overhead for storing descriptors and descriptor

counters as well as the total memory consumption of the mpg123

benchmark is shown in Figure15. Memory overhead and consump-

tion are measured before and after every malloc-call. The expira-

tion extension bound 10 obviously introduces more memory over-

head than the bound 1. The descriptor buffers clearly introduce less

overhead with 256B than with 4KB descriptor pages.

The ptmalloc2 system already deallocates and reuses the mem-

ory of some objects within one loop iteration. With self-collecting

mutators memory consumption is higher because objects allocated

in one loop iteration are not deallocated before the next loop itera-

tion. The use of the global-refresh-call introduces three times more

memory consumption than the use of the local-refresh-call because

the descriptors and thereby the corresponding objects expire later.

Self-collecting mutators is also competitive to explicit deallo-

cation in temporal performance of the mpg123 benchmark, at the

expense of moderately increased memory consumption. However,
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Figure 14. Free memory of the Monte Carlo benchmark with

different tick frequencies. Self-collecting mutators is used.
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C: Throughput

persistent MM short-term MM

malloc of ptmalloc2 166 (78 / 199k) /

free of ptmalloc2 86 (14 / 169k) /

malloc of SCM 172 (82 / 267k) 138 (75 / 271k)

free of SCM 91 (10 / 157k) /

local-refresh(1, 256B) / 227 (131 / 548k)

local-refresh(10, 256B) / 225 (131 / 548k)

local-refresh(1, 4KB) / 228 (131 / 548k)

local-refresh(10, 4KB) / 230 (131 / 548k)

global-refresh(1, 256B) / 226 (116 / 551k)

global-refresh(10, 256B) / 224 (116 / 551k)

global-refresh(1, 4KB) / 227 (116 / 551k)

global-refresh(10, 4KB) / 228 (116 / 551k)

local-tick(1, 256B) / 378 (277 / 164k)

local-tick(10, 256B) / 359 (277 / 71k)

local-tick(1, 4KB) / 375 (277 / 164k)

local-tick(10, 4KB) / 366 (277 / 164k)

global-tick(1, 256B) / 367 (229 / 169k)

global-tick(10, 256B) / 352 (229 / 151k)

global-tick(1, 4KB) / 365 (229 / 169k)

global-tick(10, 4KB) / 361 (229 / 169k)

Table 5. Average (min/max) execution time in CPU clock cycles

of the memory management operations in the mpg123 benchmark.

Here, e.g. local-refresh(n,m) stands for the local-refresh-call with

a maximal expiration extension of n and descriptor page size m.

When local/global-refresh is used then the tick-call is denoted by

local/global-tick.

the greater the loop execution time is. However, with less ticks

memory consumption increases. When a tick-call is executed only

every 200th loop iteration, memory consumption is maximal, but

temporal performance is much better than in the scenario with one

tick every loop iteration and slightly better than in the scenario with

one tick every 50th loop iteration.

Note that the total number of allocated objects increases over

time requiring more and more refreshing. This explains not only the

obvious increase in loop execution time when ticking every loop

iteration but also the slight increase in loop execution time when

ticking every 50th and every 200th loop iteration, nearly not visible

in the figure. Memory consumption increases as time elapses since

a new result object is allocated in every loop iteration. Temporal

and spatial performance appear to be inversely proportional, for

example, the scenario with the least frequent tick-calls is the fastest

because of less refreshing but is the most memory-consuming.

4.2 C Benchmarks
We first discuss the average (min/max) execution time of the self-

collecting mutators operations measured during the execution of

the mpg123 benchmark. We then compare self-collecting mutators

and ptmalloc2 with this benchmark, first in terms of total execution

time and then in terms of memory overhead and consumption.
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Figure 13. Loop execution time of the Monte Carlo benchmark

with different tick frequencies. Self-collecting mutators is used.

ptmalloc2 895.25ms 100.00%

ptmalloc2 through SCM 899.43ms 100.47%

local-SCM(1, 256B) 890.18ms 99.43%

local-SCM(10, 256B) 898.28ms 100.34%

local-SCM(1, 4KB) 892.18ms 99.66%

local-SCM(10, 4KB) 892.28ms 99.67%

global-SCM(1, 256B) 893.76ms 99.83%

Table 6. Total execution times of the mpg123 benchmark aver-

aged over 100 repetitions. Here, local/global-SCM(n,m) stands for

self-collecting mutators with a maximal expiration extension of n
and descriptor page size m, using local/global-refresh.

Table 5 shows the execution times in CPU clock cycles of the

memory management operations in the mpg123 benchmark aver-

aged over 100 repetitions. The middle and the right column show

the results when persistent and short-term memory memory are

used, respectively. The results confirm that self-collecting mutators

introduce negligible runtime overhead when persistent memory is

used. Interestingly, the average execution time of allocation is less

(138 cycles versus 166 and 172 cycles) when short-term memory is

used probably because here self-collecting mutators allocates and

deallocates memory in a different order than when persistent mem-

ory is used. The other entries for short-term memory show that the

bound on expiration extensions and the descriptor page size do not

influence execution times.

The total execution times of the mpg123 benchmark averaged

over 100 repetitions are shown in Table 6. We experiment with sev-

eral configurations of self-collecting mutators using the expiration

extension bounds 1 and 10, and the descriptor page sizes 256B and

4KB. Note that in the mpg123 benchmark we only use an expira-

tion extension of zero. In each loop iteration of the benchmark 27

descriptors are created. The total execution time is nearly the same

for all configurations, independently of using local-refresh-calls or

global-refresh-calls. However, memory overhead and consumption

does differ as discussed next.

The memory overhead for storing descriptors and descriptor

counters as well as the total memory consumption of the mpg123

benchmark is shown in Figure15. Memory overhead and consump-

tion are measured before and after every malloc-call. The expira-

tion extension bound 10 obviously introduces more memory over-

head than the bound 1. The descriptor buffers clearly introduce less

overhead with 256B than with 4KB descriptor pages.

The ptmalloc2 system already deallocates and reuses the mem-

ory of some objects within one loop iteration. With self-collecting

mutators memory consumption is higher because objects allocated

in one loop iteration are not deallocated before the next loop itera-

tion. The use of the global-refresh-call introduces three times more

memory consumption than the use of the local-refresh-call because

the descriptors and thereby the corresponding objects expire later.

Self-collecting mutators is also competitive to explicit deallo-

cation in temporal performance of the mpg123 benchmark, at the

expense of moderately increased memory consumption. However,
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C:
Memory
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Figure 15. Memory overhead and consumption of the mpg123
benchmark. Again, local/global-SCM(n,m) stands for self-
collecting mutators with a maximal expiration extension of n
and descriptor page size m, using local/global-refresh. We write
space-overhead(n,m) to denote the memory overhead of the local-
SCM(n,m) configurations for storing descriptors and descriptor
counters.

self-collecting mutators significantly simplifies memory manage-
ment usage over explicit deallocation as shown in Table 2.

5. Conclusion and Future Work
We proposed the short-term memory model and presented Java
and C implementations of a memory management system called
self-collecting mutators that uses the model. In short-term memory
objects are allocated with an expiration date, which makes deal-
location unnecessary. Self-collecting mutators provides constant-
time memory operations, supports concurrency, and performs com-
petitively with garbage-collected and explicitly managed systems.
Moreover, short-term memory consumption typically becomes
constant after an initial period of time. We presented experiments
that confirm our claims in a number of benchmarks.

We informally described a simple translation scheme for port-
ing existing programs to self-collecting mutators. In most of the
benchmarks we only had to insert a negligible number of lines of
code compared to the total number of lines of code. Using self-
collecting mutators was here almost as easy as programming in a
garbage-collected system, yet with decreased runtime overhead and
improved predictability.

As near-term future work, we plan to implement the multiple-
expiration-dates approximation in Java in order to deal with block-
ing and faulty threads. The challenge will be to support recur-
sive refresh. In the C implementation we plan to finish integrating
blocking, resuming, and unregistering threads into the thread man-
agement system, and perform further experiments on non-trivial,
concurrent benchmarks. Finally, we started working on implement-
ing the multiple-expiration-dates approximation for Go. The chal-
lenge will probably be to maintain the scalability of goroutines.

Medium-term future work may be on fully time- and space-
predictable memory management by combining self-collecting
mutators with real-time allocators such as Compact-fit [11] and
comparing the result with real-time garbage collectors such as
Metronome [4]. More long-term research may focus on exploring
different time definitions, e.g. based on real time, but also establish-
ing correctness, by providing a program analysis tool for automatic

translation of programs to short-term memory or more advanced
runtime support.
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