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Summary

Emphasize on what to do with components, not what they are or do.

Modular systems

= components
— components heavily depend on each other
— fit into one specific application environment

Component based systems
= components + glue code

— alot of highly specific glue code
— hard to maintain

Reo
= components + glue code components

Reo: a channel-based coordination model
for component composition
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Reo
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Reo comes from the Greek word PEW

(pronounced ‘rhe-oh’, means ‘ flow* as water in streams and channels)

Reo is

 glue code in component based software systems
* acoordination model for exogenous coordination (= orchestration)
of entities =component instances

with complex coordinators = connectors
— compositionally construction of connectors
— simplest connector: channels
» glue code that only contains interaction protocol (e.g. ordering, timing, data dependency)

Coordinate Components without knowing what they are and what they do!
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Component instance

* Black box

* non-empty set of active entities
like process, agent, thread, actor

* Only means of communication is I/O
operation on channels

* Executed on physical or logical
devices in a location

Reo: a channel-based coordination model
for component composition

Channel
Connecting two
component
instances

Connector
3-way connector
6-way connector
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* Point-to-point medium of communication
* Atomic connector
* Directionless
* Used to transfer data using input/output operations
* Has exactly two channel ends
Channel end:
— Types
e Sources: data enters into the channel
* Sinks: data leaves the channel

— Connected to at most one component instance
— Can be used by any active entity inside the component instance
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Synchronous Channels:

Synchronous channel
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Lossy synchronous channel
sink accepts data only when matching 1/0
operation exists

Filter channel
transfers only data items matching a pattern

Asynchronous Channels:

FIFO channel
N
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Asynchronous drain

° —N\ o
I—V \_l
source source

Asynchronous spout

[ < ] | > @
) N i
sink sink

Lossy FIFOn channel

drop newest data when buffer is full

Shift FIFOn channel

drop oldest data when buffer is full
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e Set of channel ends with connecting channels
e Directionless

* Organized in a graph with nodes and edges
— A node has 0 or more channel ends
— Every channel end is at exactly one node
— An edge between two nodes is a channel

— Source node: all channel ends are sources
— Sink node: all channel ends are sinks
— Mixed node: source and sink channels coincide on the node

* Every channelis a (simple) connector

Reo: a channel-based coordination model
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C1 .
- Component Instances

create forget connect disconnect read take write wait move join split hide
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Join and Split operations

By joining the sink and the source ends of two channels, a new connector is
created.
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join split
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source mixed node sink

join split

mixed node mixed node

Reo: a channel-based coordination model
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* Flow-through connector

data items flow through junction node




* Merger

b and d form a common node

non-deterministic merge of values from a and b
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* Take-cue regulator

a blc d
i
fe

e can count or regulate data flow from ab to cd
* take operations on f regulate the flow



* Write-cue regulator
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e write operations on f regulate the flow
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* Encapsulation and abstraction

T 7

The whole box is a ‘connector component’
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* Generic write-cue regulator

WCRegulator (n
<a, x1> = create(Sync)
<x2, b> = create(Sync)

create (SyncDrain)

1)
xX2)

<X, y> =
connect (x
connect (

)

join (x, x1)
join (x1, x2)

hide (x)

c = <>

for i = 1 to n do
<u, w> =
c = c o (u)
connect (w)
Jjoin(y, w)

done

hide (y)

return <a, b, c>

create (Sync)

WCRegulator(1)
“a write to c enables transfer of a value from a to b”

WCRegulator(2)
“a write to c1 or c2 enables transfer of a value from a to b”

cl c2
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* Ordering

Flow of data items written to a and b is ordered

al, bl, a2, b2, a3, b3, ...
c = (ab)*

Remember: A value can only be written from a to c if a value on b is available
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* Sequencer

O

a b c d
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* Take data out only in strict left-right order
* Generic Sequencer Controller: add or remove channels

Reo: a channel-based coordination model
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e Utility of sequencer |
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Sequencer
c = (ab)*

Write to a succeeds without availablity of value in b
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* Reo is a powerful expressive coordination language.

* Means for coordination are connectors.

 Complex connectors are built out of simpler ones.

* Connectors don’t know about entities that use them.

* Concept is intuitive because of the relation to physical data flows.
* Concept allows visual programming.

* Topology of connectors is dynamic and mobile.

 Secure implementation possible (shared data space everybody can

look, with channels not)



