Reo: a channel-based coordination
model for component composition

(by Farhad Arbab)

presented by Patricia Derler
Software Systems Seminar
University of Salzburg

June 2007

Motivation

Motivation Concepts Channels and Connectors Implementation Composition

Summary

Emphasize on what to do with components, not what they are or do.

Modular systems

= components
— components heavily depend on each other
— fit into one specific application environment

Component based systems
= components + glue code

— alot of highly specific glue code
— hard to maintain

Reo
= components + glue code components

Reo: a channel-based coordination model
for component composition

2/24

Reo

Motivation Concepts Channels and Connectors Implementation Composition Summary

Reo comes from the Greek word PEW

(pronounced ‘rhe-oh’, means ‘ flow* as water in streams and channels)

Reo is

 glue code in component based software systems
* acoordination model for exogenous coordination (= orchestration)
of entities =component instances

with complex coordinators = connectors
— compositionally construction of connectors
— simplest connector: channels
» glue code that only contains interaction protocol (e.g. ordering, timing, data dependency)

Coordinate Components without knowing what they are and what they do!

Motivation Concepts

Example

Channels and Connectors

Implementation

Composition Summary

e == —————

il -—-

Component instance

* Black box

* non-empty set of active entities
like process, agent, thread, actor

* Only means of communication is I/O
operation on channels

* Executed on physical or logical
devices in a location

Reo: a channel-based coordination model
for component composition

Channel
Connecting two
component
instances

Connector
3-way connector
6-way connector

4/24

Channels

Motivation Concepts Channels and Connectors Implementation Composition Summary
channel
[O
channelend 1 channel end 2

* Point-to-point medium of communication
* Atomic connector
* Directionless
* Used to transfer data using input/output operations
* Has exactly two channel ends
Channel end:
— Types
e Sources: data enters into the channel
* Sinks: data leaves the channel

— Connected to at most one component instance
— Can be used by any active entity inside the component instance

Channel Types

Motivation Concepts Channels and Connectors

Implementation Composition

Summary

Synchronous Channels:

Synchronous channel

@ { > @
— i
source sink

Synchronous drain

P —\ V' ®
I—V _l
source source

Synchronous spout

@ <] { > @
) N— -
sink sink

Lossy synchronous channel
sink accepts data only when matching 1/0
operation exists

Filter channel
transfers only data items matching a pattern

Asynchronous Channels:

FIFO channel
N
source sink

Asynchronous drain

° —N\ o
I—V _l
source source

Asynchronous spout

[<] | > @
) N i
sink sink

Lossy FIFOn channel

drop newest data when buffer is full

Shift FIFOn channel

drop oldest data when buffer is full

Connectors

Motivation Concepts Channels and Connectors Implementation Composition Summary
node
2 —o node
node

e Set of channel ends with connecting channels
e Directionless

* Organized in a graph with nodes and edges
— A node has 0 or more channel ends
— Every channel end is at exactly one node
— An edge between two nodes is a channel

— Source node: all channel ends are sources
— Sink node: all channel ends are sinks
— Mixed node: source and sink channels coincide on the node

* Every channelis a (simple) connector

Reo: a channel-based coordination model

- 7/24
for component composition

C1 .
- Component Instances

create forget connect disconnect read take write wait move join split hide

Node Operations

Motivation Concepts Channels and Connectors Implementation Composition Summary

Join and Split operations

By joining the sink and the source ends of two channels, a new connector is
created.

° —> ° ® —> — o
source sink source sink

join split

————— — e

source mixed node sink

join split

mixed node mixed node

Reo: a channel-based coordination model

. 11/24
for component composition

* Flow-through connector

data items flow through junction node

* Merger

b and d form a common node

non-deterministic merge of values from a and b

Channel Composition

Motivation Concepts Channels and Connectors Implementation Composition Summary

* Take-cue regulator

a blc d
i
fe

e can count or regulate data flow from ab to cd
* take operations on f regulate the flow

* Write-cue regulator

= D
.—-_b.c_-_;

e write operations on f regulate the flow

Channel Composition

Motivation Concepts Channels and Connectors Implementation

Composition

Summary

* Encapsulation and abstraction

T 7

The whole box is a ‘connector component’

Channel Composition

Motivation

Concepts

Channels and Connectors

Implementation Composition Summary

* Generic write-cue regulator

WCRegulator (n
<a, x1> = create(Sync)
<x2, b> = create(Sync)

create (SyncDrain)

1)
xX2)

<X, y> =
connect (x
connect (

)

join (x, x1)
join (x1, x2)

hide (x)

c = <>

for i = 1 to n do
<u, w> =
c = c o (u)
connect (w)
Jjoin(y, w)

done

hide (y)

return <a, b, c>

create (Sync)

WCRegulator(1)
“a write to c enables transfer of a value from a to b”

WCRegulator(2)
“a write to c1 or c2 enables transfer of a value from a to b”

cl c2

Channel Composition

Motivation Concepts Channels and Connectors Implementation Composition

Summary

* Ordering

Flow of data items written to a and b is ordered

al, bl, a2, b2, a3, b3, ...
c = (ab)*

Remember: A value can only be written from a to c if a value on b is available

Channel Composition

Motivation Concepts Channels and Connectors Implementation Composition Summary

* Sequencer

O

a b c d

I U FE S 2

* Take data out only in strict left-right order
* Generic Sequencer Controller: add or remove channels

Reo: a channel-based coordination model

- 19/ 24
for component composition

Channel Composition

Motivation Concepts Channels and Connectors Implementation Composition Summary

e Utility of sequencer |

b e ——> o —> Cﬁ
a e —>
Sequencer
c = (ab)*

Write to a succeeds without availablity of value in b

e Utility of sequencer Il

b e ———) o — C*
a @ ‘
Sequencer

take

Philos Philos -~ -.

~o
~
-~
~
~
-~
~
-~
~

free

Philo Philos

Philos Philo

Philo Philos

Summary

Motivation Concepts Channels and Connectors Implementation Composition Summary

* Reo is a powerful expressive coordination language.

* Means for coordination are connectors.

 Complex connectors are built out of simpler ones.

* Connectors don’t know about entities that use them.

* Concept is intuitive because of the relation to physical data flows.
* Concept allows visual programming.

* Topology of connectors is dynamic and mobile.

 Secure implementation possible (shared data space everybody can

look, with channels not)

