
Survey on Idle Resources Utilization

Gerd Dauenhauer

Department of Computer Sciences

University of Salzburg, Austria

Gerd.Dauenhauer@cs.uni-salzburg.at

Salzburg, July 11 2007

1 Introduction

As cited in papers on performance measure-
ment and profiling [14], [15], computing power
of desktop workstations is available, i.e. un-
used 50− 70% of the time – not only on week-
ends and during the night but also during bus-
iest working hours. Since computing capacity
steadily increases, these numbers are likely to
grow. Usual resource request patterns, how-
ever are bursty, i.e. phases of multiple con-
secutive requests and phases of idleness are
alternating. Although the papers focused on
the CPUs, the term resource is of course much
wider. This survey therefore also presents pa-
pers specifically dealing with using disks and
network interfaces, as well as a paper dealing
with resources for background use in general.

2 Process and Data Migration

Systems

Process and data migration systems are a clas-
sical concept, used to distribute resource inten-
sive jobs between nodes in a pool of computing
nodes. Processes or work packages are prefer-
ably transferred to idle nodes to maximize the
overall performance.

2.1 V-System

The idea of the V-System is to treat idle work-
stations as a pool of processors – although in
[16], there is no explanation about how to iden-
tify idleness. The designers concentrated on
a transparent execution environment should
be transparent, which means that processes
should not notice whether they are executed
on the local machine or remotely. Another as-
pect is the migration of a process, i.e. copying
its state must be an atomic action. A process
also must not depend on the computer it is
currently executed on, i.e. it must not create
temporary files locally.

The System is implemented on Sun hard-
ware using a kernel server and manager pro-
cesses. Tools for executing processes on specific
hosts and migrating processes between hosts
are provided. The V-System project seems to
be inactive now.

2.2 Condor

The Condor system [6] provides a processor
pool abstraction based on single workstations.
The projects main research aspects were:

• The analysis of workstation usage pat-
terns. Observations cited in [10] showed
that only 30% of the machine’s resources
were utilized – even during the busiest

1



hours – with long intervals of idleness.

• Management and allocation algorithms for
resources. Jobs demanding much capac-
ity should be granted a large time share,
without slowing down other jobs to much.
The Up-Down algorithm [13] is proposed
to provide fair access.

• The implementation of remote execution
facilities. In [10] on an early version, mul-
tiple implementations are mentioned, in-
cluding the V-System [16] and the Remote
UNIX (RU) facility [11].

Condor is still in use today and has evolved to
support grid-style computing on most UNIX
and Windows NT/2000 platforms.

2.3 Mether

Mether [12] is based on the idea of a distributed
shared memory, based on SunOS 4.0 worksta-
tions connected by Ethernet. Processes ac-
cess this shared memory by opening a special
mether raw device and mapping this device
into memory. Mether therefore allows a pro-
cess to utilize unused memory of remote ma-
chines.

2.4 SETI@home, Genome@home

and Folding@home

SETI@home [18], Genome@home and Fold-
ing@home [9] are examples of data migration
systems. Instead of copying processes to re-
mote machines, these systems feed applications
already installed on remotemachines with data
(work units) to process. The X@home projects
all make use of idle computing power of tens of
thousands of workstations – the accumulated
CPU time of such systems can go up to 400, 000
years within three years [9]. Idleness of these
workstations is usually detected in an ad-hoc
way, like CPU-usage below some threshold, no
user logged in or running screensaver.

2.5 BOINC

BOINC [5] is a generalization of the ideas
behind SETI@home, Folging@home and
Genome@home. It emphasizes on public-
resource computing, which contrasts with
Grid computing – Grid computing usually de-
pends on organizationally-owned computers.
The BOINC framework supports a wide range
of languages (C, C++ and FORTRAN) and
computer platforms (Mac OS X, Windows,
Linux, UNIX).

3 Network Priorization Sys-

tems

Using idle network resources can help to in-
crease the user-perceived service quality of
an application: the application, e.g. a web
browser, may speculatively pre-fetch and cache
large amounts of data to answer future re-
quests. Caching data relates to use of idle disk
resources, described later.

3.1 Bandwidth Capacity Allocation

The framework for explicit allocation of net-
work bandwidth described in [1] is based on an
extension to the traditional internet protocols.
Its aim is to provide different levels of service,
increasing the overall utilization of network re-
sources. It also provides means for charging for
usage.

Where the internet protocols provide best
effort service, the bandwidth allocation pro-
vides a predictable service for different types of
data. Network congestion is handled based by
a ranking of packets by price. Only those pack-
ages are served, that are willing to bid above
the cutoff price.

2



3.2 TCP Nice, TCP-LP

As stated in [17], today’s applications could
benefit from making large backround transfers
of data, no user is currently waiting for. This
pre-fetched data would increase the perceived
service quality. Hand tuning these background
requests, however is a challenge.

The authors of TCP Nice therefore present
another congestion algorithm for the TCP pro-
tocol – applications could choose between tra-
ditional congestion control and the new al-
gorithm, specifically designed for background
traffic. The reference implementation for
Linux allows senders to select between algo-
rithms on a per connection basis, without any
modifications on the receiver side.

Another TCP extension very similar to TCP
Nice is TCP-LP [8], which also provides sup-
port for low priority background transfer. The
major difference between both algorithms is
how sense for congestion: TCP-LP uses one-
way delay, where TCP Nice uses round trip
time.

4 Disk Scheduling

Usage of idle disk resources has two aspects:
use of the free capacity for caching and schedul-
ing disk access between low and high prior-
ity processes. Such low priority processes that
should not interfere with foreground processes
are e.g. maintenance tasks such as virus scan-
ning or disk de-fragmentation.

4.1 Anticipatory Disk Scheduling

Traditional disk schedulers are work conserv-
ing, which means that as soon a request is
finished, the next waiting request is served.
Application that frequently issue synchronous
disk requests, followed by short pauses like in-
tervals of computation, could therefore be de-
layed by concurrently running applications also

issuing disk requests – the disk scheduler makes
its decision to handle this concurrent disk re-
quests to early, causing delays by positioning
the disk head.

The anticipatory disk scheduler [7] tries to
solve this problem by introducing short delays
before a new disk request is handled. This way,
the overall system performance is increased
and low priority background processes do not
interfere with foreground processes that make
heavy use of disks.

The scheduler was first implementation as
a FreeBSD kernel extension. A more general
solution, supporting arbitrary resources is pre-
sented in [3].

5 Preemption Intervals

The idletime scheduler with preemption inter-
vals is a general concept, applicable to any
class of resources. The implementation pre-
sented in [3] supports disks and network inter-
faces.

The idea is to relax the work conserving
principle for resources used by low priority
processes: Requests from foreground processes
with higher priority are executed by the sched-
uler as soon as they arrive, while the sched-
uler imposes a short delay after each request
from a low priority background process. If no
new foreground request arrives, one enqueued
background request is served. If, on the other
hand, a new foreground request arrives, the
background request is delayed again.

The current algorithm, however, requires
manual tuning and therefore does not seem to
be useful in this form.

The scheduler was implemented as an ex-
tension to the FreeBSD kernel. Further details
and performance evaluations are presented in
[4].

3



6 Application Level Mecha-

nisms

6.1 MS Manners

MS Manners [2] is a library for regulating
progress of Windows applications based on
monitoring the applications progress. Little
progress is an indicator for resource contention,
where low priority background processes would
be throttled.

Usually, programs would use a single func-
tion for measuring the progress, but the au-
thors also described a progress regulator imple-
mented as an external program which measures
progress of an application by evaluating its
Windows performance counters and suspend-
ing the threads accordingly.

The framework does not require any ker-
nel modifications and no manual tuning. Ex-
ample applications include a disk defrag-
menter, which does not interfere with fore-
ground work.

References

[1] David D. Clark and Wenjia Fang. Ex-
plicit allocation of best-effort packet de-
livery service. IEEE/ACM Trans. Netw.,
6(4):362–373, 1998.

[2] John R. Douceur and William J.
Bolosky. Progress-based regulation of
low-importance processes. In SOSP ’99:
Proceedings of the seventeenth ACM sym-
posium on Operating systems principles,
pages 247–260, New York, NY, USA,
1999. ACM Press.

[3] Lars Eggert and Joseph D. Touch. Idle-
time scheduling with preemption in-
tervals. SIGOPS Oper. Syst. Rev.,
39(5):249–262, 2005.

[4] Lars Rene Eggert. Background use of
idle resource capacity. PhD thesis, 2003.
Adviser-Joseph D. Touch.

[5] BOINC Project Homepage.
http://boinc.berkeley.edu/.

[6] Condor Project Homepage.
http://www.cs.wisc.edu/condor/.

[7] Sitaram Iyer and Peter Druschel. An-
ticipatory scheduling: a disk scheduling
framework to overcome deceptive idleness
in synchronous i/o. In SOSP ’01: Proceed-
ings of the eighteenth ACM symposium on
Operating systems principles, pages 117–
130, New York, NY, USA, 2001. ACM
Press.

[8] Aleksandar Kuzmanovic and Edward W.
Knightly. Tcp-lp: low-priority service via
end-point congestion control. IEEE/ACM
Trans. Netw., 14(4):739–752, 2006.

[9] Stefan M. Larson, Christopher D. Snow,
Michael Shirts, and Vijay S. Pande. Fold-
ing@home and genome@home: Using dis-
tributed computing to tackle previously
intractable problems in computational bi-
ology.

[10] Michael Litzkow, Miron Livny, and
Matthew Mutka. Condor - a hunter of idle
workstations. In Proceedings of the 8th
International Conference of Distributed
Computing Systems, June 1988.

[11] Michael J. Litzkow. Remote unix: Turn-
ing idle workstations into cycle servers. In
Proceedings of the Summer 1987 Usenix
Conference, pages 381–384, June 1987.

[12] Ronald G. Minnich and David J. Farber.
The Mether system: Distributed shared
memory for SunOS 4.0. pages 51–60,
Summer 1989.

4



[13] Matt Mutka and Miron Livny. Schedul-
ing remote processing capacity in a
workstation-processing bank computing
system. In 7th International Conference
on Distributed Computing Systems, pages
2–9, Berlin, Germany, September 1987.

[14] Matt W. Mutka and Miron Livny. Pro-
filing workstations’ available capacity for
remote execution. In Performance ’87:
Proceedings of the 12th IFIP WG 7.3 In-
ternational Symposium on Computer Per-
formance Modelling, Measurement and
Evaluation, pages 529–544, Amsterdam,
The Netherlands, The Netherlands, 1988.
North-Holland Publishing Co.

[15] Matt W. Mutka and Miron Livny. The
available capacity of a privately owned
workstation environment. Perform. Eval.,
12(4):269–284, 1991.

[16] Marvin M. Theimer, Keith A. Lantz, and
David R. Cheriton. Preemptable remote
execution facilities for the v-system. In
SOSP ’85: Proceedings of the tenth ACM
symposium on Operating systems princi-
ples, pages 2–12, New York, NY, USA,
1985. ACM Press.

[17] Arun Venkataramani, Ravi Kokku, and
Mike Dahlin. Tcp nice: a mechanism
for background transfers. In OSDI ’02:
Proceedings of the 5th symposium on Op-
erating systems design and implementa-
tion, pages 329–343, New York, NY, USA,
2002. ACM Press.

[18] Dan Werthimer, Jeff Cobb, Matt Lebof-
sky, David Anderson, and Eric Korpela.
Seti@homemassively distributed comput-
ing for seti. Comput. Sci. Eng., 3(1):78–
83, 2001.

5


