
Software Systems Seminar
Department of Computer Sciences

University of Salzburg

The K42 Operating System: A Research Context Survey

Thomas Aschauer

July 13, 2007

Abstract

K42 is a research project at IBM Research that ex-
plores operating system design by building a com-
plete operating system kernel from the ground up.
This survey identifies K42’s key concepts and de-
sign decisions and gives an overview of related re-
search systems and literature.

1 Introduction

Large-scope research projects in the field of oper-
ating systems have been rather rare the past few
years. However, there are quite some challenging
problems1 in this field that would best be tack-
led by comprehensive research efforts [KAR+06,
p. 134], [HLTW05].

K42 Goals

The K42 project [KAR+06], [SKW+06] was initi-
ated in 1996 to build a complete research operat-
ing system kernel without the burden of legacy re-
quirements and design decisions, and whose design
would support several policies and implementations
simultaneously, extensibility for new policies and
implementations, and good performance. In detail,
the primary goals include:

• Considerable performance: K42 should scale
well from small to large multiprocessor systems

1”The products of forty years of OS research are sitting
in everyone’s desktop computer, cell phone, car, etc. — and
it is not a pretty picture.” [HLTW05, p. 1]

and enable good performance for small as well
as for large applications.

• Customizability: Applications should be able
to define how the operating system manages
their resources. Moreover, automatic adjust-
ment of management policies according to
changing workload requirement should be pos-
sible.

• Applicability: K42 should be applicable to
wide variety of applications and problem do-
mains. Adaptability of the system to meet
the requirements of new system architectures
should be provided and K42 should support
systems of any size.

• Availability: Availability to a large commu-
nity of researchers and straightforward imple-
mentation of specialized components for exper-
imentation purposes also are key factors for
K42.

Based on a handful of technology predictions and
and the project’s goals, the K42 designers formu-
lated a clear technological course to follow.

K42 Status Quo

As stated in [KAR+06], the system now comprises
a basic kernel infrastructure and an OS person-
ality emulation layer, which supports the Linux
API (Application Programming Interface) and the
Linux ABI (Application Binary Interface). Large
scale applications such as web servers, databases

1



and all kinds of benchmarks can be run on K42,
which allows for a direct performance comparison
to standard Linux distributions.

2 Key Concepts

The design decisions made by the K42 project team
where, of course, driven by the requirements stated
in section 1. The subsequent sections 2.1 to 2.4
shortly describe the basic principles they followed
to achieve their goal. For every key concept a short
introduction is given, then related research projects
are listed and finally the application in K42 is de-
scribed.

2.1 System Structure

Today, many commodity operating systems avail-
able still are implemented in a monolithic manner.
This approach has the drawbacks of limited mod-
ularity, high complexity and high development and
maintenance costs.

Micro-Kernel

The micro-kernel approach is a well-known alter-
native to monolithic implementations [TK95, p. 5],
[SGG01, p. 79]. In a micro-kernel structured oper-
ating system, the kernel provides just an essential
set of services like process management, memory
management, IPC(Interprocess Communication),
and device support. All other operating system
functions are implemented in separate services that
preferably run in user space. This separation in-
creases the system’s flexibility, and has the side ef-
fect that it is possible for the kernel to support dif-
ferent operating system personalities, either simul-
taneously or at different times [Cah96]. Moreover,
modification of the servers is simpler that chang-
ing parts of a monolithic system, which improves
flexibility.

However, this structure can lead to performance
penalties through frequent context switches [TK95,
p. 5], [DPM02, p. 457]. In addition, another draw-
back of monolithic operating systems still applies
to micro-kernel systems: Abstractions of machine
resources and their implementation are fixed.

According to [EKJO95, p. 251], the micro-kernel
structure is not appropriate. Three main reasons
are mentioned:

• Applications can not provide domain specific
optimizations for their specific needs.

• Changing the implementation of existing ab-
straction is discouraged.

• New abstractions are hard to add and thus the
flexibility of application developers is rather
limited.

Exokernel

Taking the micro-kernel approach one step further
leads to the so-called exokernel [DPM02, p. 457],
[EKJO95]. In an exokernel operating system all
system services run in user space and the small
kernel just provides an abstraction of the under-
lying hardware resources. Untrusted library oper-
ating systems, running in user space, manage the
resources by using the rather low-level kernel inter-
face. Here the challenge is to provide library oper-
ating systems as much freedom as possible for the
management task, but without undermining the
protection from each other. Thus, three basic tasks
have to be performed by an exokernel [EKJO95,
p. 253]:

• Track the ownership of resources

• Ensure protection for bound resources

• Revoke access to resources

Ideally, the library operating systems allow for
very specific optimizations of resource management
policies, such that application designers can choose
the right one for their particular problem domain.

K42

K42’s structure design is guided by the exoker-
nel approach. The kernel is structured around
a client-server model, where most servers are im-
plemented as user-level libraries. For example,
thread scheduling is implemented in a library in
user space [SKW+06, p. 35], and also a fast sig-
naling mechanism for interprocess communication
is implemented in a user level library [KAR+06,
pp. 138-139]. This design allows applications to
choose specific services that serve their very specific
requirements as good as possible. Furthermore, the

2



mapping to a certain OS personality2 is done in
user space to reduce overhead [KAR+06, p. 134].

2.2 Object-Oriented Design

Operating systems usually are large an inher-
ently complex systems. The paradigm of object-
orientation provides a methodology for managing
complexity and thus improving understandability
and maintainability. The well-known software en-
gineering advantages of object-oriented design in-
clude, but are not limited to, encapsulation, reuse,
flexibility and portability.

Using object-oriented design methods for build-
ing operating systems has become a trend in the
early 1990s [TK95, p. 6, sec. 3.4]. However,
[Cah96, pp. 7-8] distinguishes between operating
systems that use object-oriented techniques for im-
plementation purposes, and operating systems that
are designed in an object-oriented fashion, such
that the system provides its services in terms of
system objects. Such designs result in systems that
are highly customizable.

Choices

Choices is a research project exploring the appli-
cability of object-orientation for building operat-
ing systems [CIRM93], [Tou05, pp. 7-8]. Similarly
to K42, the OO paradigm is employed through-
out the whole system, which means that hard-
ware interfaces, application interfaces, system re-
sources, mechanisms and policies are modeled as
objects. Moreover, the system architecture com-
prises a number of frameworks for subsystem design
[CIRM93, p. 117-118], [DCC+06, p. 45]. Choices
is implemented in C++; some custom OO exten-
sions are provided that the plain language is lacking
(i.e. garbage collection, first-class classes3, dynamic
loading and advanced debugging support for classes
and objects).

The Choices team reported that object-
orientation can indeed have a positive impact
on the design of operating systems and increases
both, development productivity and the ease of

2The current implementation just supports the LINUX
personality. However, K42 initially was designed to support
multiple OS personalities.

3First-class classes means that classes themselves are
represented by special objects at runtime. This is necessary
for dynamic loading in an object-oriented language.

innovative enhancements through code reuse and
proper abstractions. The use of framework tech-
nology has an additional positive effect through
architectural design-reuse [CIRM93, p. 125].

[Cah96, p. 27] lists Choices as probably the best
know object-oriented research operating system,
and as a highly influential one, since it showed the
applicability of the OO paradigm along with its ad-
vantages without leading to noticeable performance
degradation.

Spring

Spring is an object-oriented, distributed, multi-
server microkernel system [HK93], which was de-
veloped at Sun Microsystems Laboratories. The
major project goals of Spring were to support dis-
tributed applications in a highly secure environ-
ment.

In Spring, all system resources and operating sys-
tem services are presented as objects in the OO-
sense. A strong focus is on strong interfaces be-
tween operating systems components. Thus, these
components can be treat as replaceable, substi-
tutable parts. To define the interfaces, the inter-
face description language Spring IDL is used. For
structuring, the Spring developers chose to follow
the microkernel approach; all user-mode services
such as file systems, naming, paging, etc. are pro-
vided as dynamically loadable modules.

For distributed applications, Spring supports dis-
tributed objects by providing a secure and location
transparent invocation mechanism [Cah96, pp. 24-
27].

K42

One of the key design decisions of K42 was to
use object-orientation design throughout the whole
system [KAR+06, p. 134]. Two factors serve
as rationale: First, structuring operating system
data structures according to the object-oriented
paradigm can enhance multiprocessor performance.
This has already been shown by the tornado system
[GKAS99], which is a direct predecessor of K42.
Second, a promising research question is to exam-
ine the software engineering advantages of the OO-
paradigm in the context of a large scale operating
system project.

3



The project team reported that the object-
oriented design had been a critical success factor
for achieving the goals of scalability and customiz-
ability, and also is valuable for rapid prototyping
and experimentation purposes. The maintainabil-
ity issue has yet to be shown as a larger commu-
nity contributes to the system. One potential draw-
back of the OO-design also has been identified: As
all resources and services are modeled as dynamic
interconnected objects, the static code paths be-
come non-obvious. This, as a consequence, makes
it harder for new developers to get a grip on some
important implementation details [KAR+06].

2.3 Customizability

One of the primary goals of an operating system is
efficient operation of the computer system [SGG01,
p. 6]. In other words, the operating system should
provide resources to application programs in an ef-
ficient and fair way [DPM02, p. 450]. For that
reason, an operating system has to implement a
multitude of policies for allocating and sharing re-
sources like memory, processor time and communi-
cation facilities. In operating systems with a fixed
set of built in policies the designers have to find
compromises to support as many applications as
possible with a reasonable performance. Naturally,
this leads to suboptimal behavior for certain appli-
cations that do not match the criteria chosen by
the policy designers. For example, traditional file
systems and their buffering algorithms are not the
optimal way to present storage to certain database
applications [EKJO95, p. 252], [BSP+95, p. 267],
[DPM02, p. 451]

A solution for this dilemma is to give applica-
tions the freedom to adjust the policies for their
specific needs. This can be done in quite a wide
variety of approaches. The surveys [DPM02] and
[Tou05] both develop a set of classification criteria
for extensibility in operating systems. The most
important ones are the following:

• Granularity and depth specify the size of the
units of customization and to which level the
operating system can be adapted to specific
needs.

• Time describes whether the customization can
be performed at build-time, installation-time
or run-time.

• Integrity deals with the determination of a va-
lidity of a customization task.

• Initiation tells whether the adaption is per-
formed manually, autonomically by the appli-
cation or automatically by the operating sys-
tem.

An important design issue for customizable sys-
tems is performance: While application specific
policies potentially lead to a better performance
for certain applications, the customizability mech-
anisms are not free of charge. The overhead they
may introduce can lead to performance penalties
that even outweigh the original performance gain
[DPM02, p.451]. However, customizability in op-
erating systems has been subject to research inves-
tigations for quite some time, and it still is a hot
research topic [HLTW05].

Exokernel

In the exokernel system, customizability is achieved
by exchangeable user-level libraries. Due to the fact
that the kernel exposes the hardware abstractions
at a very low level to the library operating systems,
an application can choose an implementation that
best suits its needs. However, customization still is
limited to build-time [EKJO95],[Tou05, pp. 9-10].

Choices

The Choices system models all operating system
concepts as objects, thus they can be specialized
and it allows applications to dynamically load new
services into the kernel. Thus, an application can
customize the system at runtime, but with the
restriction that possible service requests have to
be known in advance at compile-time [CIRM93],
[DPM02, p. 456] ,[Tou05, pp. 7-8].

SPIN

SPIN is a customizable operating system written
in Modula-3. Applications can provide so-called ex-
tensions to the the kernel that are invoked on cer-
tain events. A primary goal of SPIN is to provide a
safe extension mechanism. The mechanism’s imple-
mentation is tight bound to Modula-3, as language
features such as type-safety, interface boundaries
and enforced modularity are employed for safety

4



checks. This approach, as the authors of [BSP+95]
argue, is promising because it provides a reasonable
fast extension mechanism without compromising
performance. However, the safety policy is defined
by the semantics of the programming language, and
the extension model does not define how extension
can be removed [DPM02, p. 463] [Tou05, p. 17].

K42

As mentioned in the introduction, customizability
was a primary goal of the K42 design. In K42,
the key design idea is to represent every single re-
source instance by a different set of one or more ob-
ject instances. As these objects manage the given
resource, replacing them by specialized object in-
stances allows applications to perform very fine
grained customizations. This granularity makes it
possible, for example, that the same application
sets up two different page replacement policies for
two distinct files. Moreover, as different usage pat-
terns for these two files may apply, the page re-
placement policies may even be adapted on the fly
to reflect changing workload demands. The mech-
anism for dynamically replacing an object instance
by another one is referred to as hot swapping in
K42 terminology. The question of how to deter-
mine whether a given configuration is safe or not is
not subject to investigation in this system; safety
is defined by interface signature compliance.

Reported performance measurements show that
the approach can lead to performance gains for
several standard benchmark suites [SAH+03, p.2],
[BHA+05].

2.4 Object Distribution

Using object-oriented techniques for developing dis-
tributed applications is faced with the problem that
the objects may be located at different computation
nodes. The technique of remote method invoca-
tion deals with these aspects. The Spring system
[HK93], for example, provides a secure mechanism
for location transparent invocation.

Another approach is to design objects such that
they are partitioned or replicated to reside locally
on each of the nodes they are to be invoked on.
The idea is that logically there exists just one ob-
ject in the system. Its implementation (or parts
of it) physically are distributed on several nodes.

The representative objects on these nodes repre-
sent themselves as if they were just this one ob-
ject. Thus, the designers of the representatives can
take advantage of the awareness of distribution to
provide efficient implementations that, for example,
limit the amount of communication needed, while
the distribution is transparent to the clients.

Fragmented Objects

In [MGNS94] the authors propose a uniform con-
cept for designing distributed object-oriented appli-
cation called Fragmented Objects. The mechanism
for distributing objects is used for reasons of perfor-
mance, availability, protection and load balancing.

K42

K42 introduces the term Clustered objects for a
similar mechanism [KAR+06, p. 135, pp. 137-138],
[GKAS99] It is presented as a way to scalable im-
plementations of concurrently accessed objects in
a distributed environment using distribution, repli-
cation and partitioning.

Clustered objects are used heavily throughout
the whole operating system. This enables a sys-
tem service of be distributed among different pro-
cessors of a system, which in the context of NUMA
(non-uniform memory access) systems can maxi-
mize locality. The project team reports that this
approach can lead to significantly improved system
performance [AAS+03]. Moreover, clustered object
are key building blocks for supporting customizabil-
ity.

3 Conclusion

This survey presents an overview of the research
context of K42. Key construction principles of the
system are identified. They are described briefly
and references to other research operating systems
employing similar principles are given.

References

[AAS+03] J. Appavoo, M. Auslander, D. Silva,
O. Krieger, M. Ostrowski, B. Rosen-
burg, R. Wisniewski, J. Xenidis,
M. Stumm, B. Gamsa, R. Azimi,

5



R. Fingas, A. Tam, and D. Tam. En-
abling scalable performance for general
purpose workloads on shared memory
multiprocessors. Technical Report IBM
Research Report RC22863, IBM Re-
search, 2003.

[BHA+05] Andrew Baumann, Gernot Heiser,
Jonathan Appavoo, Dilma Da Silva,
Orran Krieger, Robert W. Wisniewski,
and Jeremy Kerr. Providing dynamic
update in an operating system. In
ATEC’05: Proceedings of the USENIX
Annual Technical Conference 2005 on
USENIX Annual Technical Conference,
pages 32–32, Berkeley, CA, USA, 2005.
USENIX Association.

[BSP+95] B. N. Bershad, S. Savage, P. Pardyak,
E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers.
Extensibility safety and performance
in the spin operating system. In
SOSP ’95: Proceedings of the fifteenth
ACM symposium on Operating systems
principles, pages 267–283, New York,
NY, USA, 1995. ACM Press.

[Cah96] Vinny Cahill. Flexibility in object-
oriented operating systems: A review.
Technical Report TCD-CS-96-05, Uni-
versity of Bologna, 1996.

[CIRM93] Roy H. Campbell, Nayeem Islam,
David Raila, and Peter Madany. De-
signing and implementing choices: an
object-oriented system in c++. Com-
munications of the ACM, 36(9):117–
126, 1993.

[DCC+06] Francis M. David, Jeffrey C. Carlyle,
Ellick M. Chan, David K. Raila, and
Roy H. Campbell. Exception Han-
dling in the Choices Operating System.
In C. Dony, J. L. Knudsen, A. Ro-
manovsky, and A. Tripathi, editors,
Advanced Topics in Exception Han-
dling Techniques, volume 4119 of Lec-
ture Notes in Computer Science, pages
42–61. Springer-Verlag Inc., New York,
NY, USA, 2006.

[DPM02] G. Denys, F. Piessens, and F. Matthijs.
A survey of customizability in operat-
ing systems research. ACM Computing
Surveys, 34(4):450–468, 2002.

[EKJO95] D. R. Engler, M. F. Kaashoek, and
Jr. J. O’Toole. Exokernel: an operat-
ing system architecture for application-
level resource management. In SOSP
’95: Proceedings of the fifteenth ACM
symposium on Operating systems prin-
ciples, pages 251–266, New York, NY,
USA, 1995. ACM Press.

[GKAS99] Ben Gamsa, Orran Krieger, Jonathan
Appavoo, and Michael Stumm. Tor-
nado: maximizing locality and concur-
rency in a shared memory multiproces-
sor operating system. In OSDI ’99:
Proceedings of the third symposium on
Operating systems design and imple-
mentation, pages 87–100, Berkeley, CA,
USA, 1999. USENIX Association.

[HK93] G. Hamilton and P. Kougiouris. The
spring nucleus: A microkernel for ob-
jects. In Proc. of the Summer 1993
USENIX Conference, pages 147–159,
Cincinnati, OH, 1993.

[HLTW05] Galen C. Hunt, James R. Larus, David
Tarditi, and Ted Wobber. Broad new
os research: challenges and opportuni-
ties. In HOTOS’05: Proceedings of the
10th conference on Hot Topics in Op-
erating Systems, Berkeley, CA, USA,
2005. USENIX Association.

[KAR+06] Orran Krieger, Marc A. Auslander,
Bryan S. Rosenburg, Robert W. Wis-
niewski, Jimi Xenidis, Dilma Da Silva,
Michal Ostrowski, Jonathan Appavoo,
Maria A. Butrico, Mark F. Mergen,
Amos Waterland, and Volkmar Uhlig.
K42: building a complete operating
system. In Proceedings of the 2006
EuroSys Conference, Leuven, Belgium,
pages 133–145, 2006.

[MGNS94] Mesaac Makpangou, Yvon Gourhant,
Jean-Pierre Le Narzul, and Marc

6



Shapiro. Fragmented objects for dis-
tributed abstractions. In T. L. Casa-
vant and Singhal M., editors, Read-
ings in distributed computing systems,
pages 170–186. IEEE Computer Soci-
ety Press, 1994.

[SAH+03] Craig A. N. Soules, Jonathan Appavoo,
Kevin Hui, Robert W. Wisniewski,
Dilma Da Silva, Gregory R. Ganger,
Orran Krieger, Michael Stumm,
Marc A. Auslander, Michal Ostrowski,
Bryan S. Rosenburg, and Jimi Xenidis.
System support for online reconfigu-
ration. In USENIX Annual Technical
Conference, General Track, pages
141–154, 2003.

[SGG01] Abraham Silberschatz, Peter Baer
Galvin, and Greg Gagne. Operating
System Concepts. John Wiley & Sons,
Inc., New York, NY, USA, 2001.

[SKW+06] Dilma Da Silva, Orran Krieger,
Robert W. Wisniewski, Amos Wa-
terland, David Tam, and Andrew
Baumann. K42: an infrastructure for
operating system research. SIGOPS
Operating Systems Review, 40(2):34–
42, 2006.

[TK95] Anand R. Tripathi and Neeran M.
Karnik. Trends in multiprocessor and
distributed operating systems designs.
The Journal of Supercomputing, 9(1-
2):23–49, 1995.

[Tou05] Jean-Charles Tournier. A survey of
configurable operating systems. Tech-
nical Report TR-CS-2005-43, Depart-
ment of Computer Science, University
of New Mexico, November 2005.

7


