
- 1 -

Surviving Software Failures

A survey on the research context of "Rx: Treating Bugs as Allergies – A

Safe Method to Survive Software Failures" by F. Qin, J. Tucek, J.

Sundaresan, and Y. Zhou.

Johannes Pletzer, 9920310

Software and System Seminar, SS2007, University Of Salzburg, Austria

ABSTRACT

This paper is a survey on approaches to survive software failures at runtime.

After introducing different types of bugs described in literature, various methods

to survive them are presented and discussed regarding their effectiveness and

feasibility.

1. Introduction

In the early years of computing hardware faults were mostly responsible for the

failure of a computer system. As hardware got more and more reliable over the

years, the top cause for failures today are software faults or the bugs which cause

them. It is clear that ways to cope with bugs at runtime would increase the

reliability of applications. This is especially desirable for server applications where

downtime typically leads to decreased productivity and subsequently to financial

loss.

It is vital to understand why software fails at all and therefore in chapter 2 the

major types of software bugs are introduced. Subsequently chapter 3 presents

different approaches for surviving software failures. Chapter 4 concludes with a

short summary.

2. Types of Bugs

Gray [3] identified two major kinds of software bugs: The first type are "hard"

software bugs that always cause a failure when a specific code region of an

application is executed. These bugs are also called deterministic bugs or

Bohrbugs, a name inspired by the simple atomic model by Niels Bohr. Because

such bugs can be reproduced rather easily, Gray argues that most of them are

found and fixed during software development. The second type of bugs are bugs

that are non-deterministic and occur in specific situations and environmental

conditions. They are for example related to synchronization problems in

multithreaded software. Gray called them Heisenbugs in analogy to the

Heisenberg Uncertainty Principle. Such bugs cause "soft" failures and are similar

to transient hardware failures and can also be cured by similar approaches than

those used to cope with hardware failures, namely reboot or retry. Unlike

Bohrbugs, Heisenbugs often disappear when the problematic code region is

executed again as environmental condition such as the order of thread execution

might be different.

- 2 -

Another special kind of bugs are aging-related bugs. Aging refers to changes

during the runtime of an application. It has been observed that certain bugs or

faults are more likely to manifest themselves the longer an application runs

continuously. This phenomenon is called software aging. A typical example would

be memory leaks that cause an application to run out of memory after a certain

amount of time.

While Gray's hypothesis [3] is that most software faults are caused by

Heisenbugs, Chandra and Chen [6] suggest the contrary. In their study of faults

in Apache, GNOME and MySQL they found 72-87% deterministic Bohrbugs and

only 5-14% transient Heisenbugs. Also another study by Sullivan and Chillarege

[7] yielded similar results. This discrepancy can be explained by today's feature-

driven software culture which puts features before reliability and also the fact that

Heisenbugs are less likely to be reported as they mostly cannot be reproduced.

3. Approaches to Survive Software Failures

The different approaches found in the literature for coping with software failures

range from simply removing the bugs that cause them to rather unconventional

strategies such as manufacturing values to cope with illegal memory reads. The

following sections try to categorize them and to describe a few significant

contributions in detail while pointing out notable drawbacks and limitations.

3.1. Removing Bugs

The safest and most effective way to survive software failures is obviously to

prevent them in the first place, i.e. to make the code as dependable as possible.

Among these "proactive approaches" are the use of safe languages such as Java

and compilers and code analysis tools that aid in the production of code with as

few bugs as possible. During development and testing one should not forget that

fixing bugs in the operational phase is estimated to be by a factor of 5 to 100

times more expensive than fixing them before [9].

3.2. Reboot/Restart Approaches

Inspired by techniques for surviving transient hardware failures, which can

normally be coped with by rebooting the system, some approaches try to apply

this also for tolerating software faults.

Software Rejuvenation [11] bases on the assumption and also observation in

some applications that the performance of software degrades during its runtime

and that software failures are becoming more likely to occur. A well known

example of a software fault caused by software aging is the failure of the Patriot

missile defense system in 1991 [10] where the inaccuracies in time measurement

increased over the runtime of the system. Software rejuvenation requires that an

application is restarted periodically in order to restore a clean internal state.

Research in this field focuses on determining the optimal rejuvenation frequency

and time instant, e.g. during phases when a server is idle anyway in order to

reduce the cost causes by the downtime during the reboot.

Microrebooting [5] tries to avoid the potentially very long reboot times introduced

by software rejuvenation. Rather than rebooting the whole application, only small

components are rebooted upon failure. Microrebooting also allows rejuvenating a

complete application without ever shutting it down completely. Because

microreboots are very fast they can be invoked upon the slightest hint of a failure

and can be masked from end users for example by buffering requests for a short

- 3 -

amount of time in which the microreboot can be performed. A significant

disadvantage of the microrebooting approach however is that a redesign of an

application is necessary so that is consists of numerous small, loosely coupled

components which store all important state externally in dedicated state stores.

Using such state stores can

As Bohrbugs will occur again after a (micro)reboot, the above approaches only

are able to tackle Heisenbugs. Consequently, their effectiveness relies on the

fraction of software faults that are actually caused by Heisenbugs - a number that

is rather disputed as discussed above.

3.3. Design Diversity Approaches

Design diversity refers to having multiple different implementations of a given

functionality or application. The idea is that independent programming teams

won't make the same mistakes i.e. the different versions won't contain the same

bugs.

N-Version Programming [4] refers to a methodology which requires two or more

software versions that implement a given initial specification. The development of

these versions should be completely independent and may also incorporate the

use of different programming languages and algorithms. The different program

versions are then executed by an execution environment which runs multiple

versions of program blocks concurrently. The results of these blocks is compared

at certain points in time called cross-check points. At such a point a generic

decision algorithm is used to compare the results - also called comparison vectors

- in order to obtain a consensus result. The result can for example be determined

by majority voting. The result is then passed on to the next program blocks for

which again multiple versions exist. Note that the partitioning of the whole

application into software units that provide comparable output needs to be part of

the initial specification as well.

Recovery Blocks [12] is another approach based on design diversity. It requires

that an application consist of a collection of code blocks or functions called

recovery blocks. Each recovery block contains a primary block, an acceptance

test, and zero or more alternate blocks. The primary block contains an

implementation of the desired functionality the block should execute. After

execution the acceptance test determines whether the primary block produced

correct results. If the acceptance test fails an alternate block is executed. This is

repeated until either the acceptance test completes successfully or there are no

more alternate blocks left.

Both design diversity approaches are very expensive as they require the

development of multiple versions of an application. Therefore they are only used

for systems which required exceptional high dependency such as flight control or

train switching systems. They are however able to avoid a certain number of

Bohrbugs as it is indeed not very likely that the independently developed versions

contain the same bugs.

3.4. Rollback & Recovery Approaches

Rollback & recovery approaches base on the idea of rolling back an application to

a recent checkpoint - a snapshot of the complete state of a program - and then

retry execution from there again.

Lowell, Chandra and Chen [2] explored the limits of general application recovery

by rollback and re-execution approaches. General recovery refers to recovery that

is performed by the operating system and is transparent to the user and does not

- 4 -

require any changes in the application software. The idea is that the operating

system generates the illusion of failure-free operation. They identified two

invariants that must be fulfilled in order to allow the successful recovery from

software failures called Save-work and Lose-work. Save-work refers to the

requirement that an application must store enough state so that the user is not

exposed to a failure whereas Lose-work states that on the other hand sufficient

state must be lost to prevent the repeated manifestation of a failure which makes

recovery impossible. Their findings are that for stop failures - failures caused by

application-external factors which make it stop abruptly for example because of a

power failure - failure transparency is possible as only Save-work must be upheld.

For propagation failures - where an erroneous state of the application is involved

- the Save-work and Lose-work invariants often directly conflict and therefore

recovering from such failures can only work with the help from the application

itself.

Note that Bohrbugs cannot be survived by simple rollback & recovery approaches

as they will manifest again during a repeated execution. An innovative re-

execution methodology called Rx [13] tries to overcome this limitation. The idea

is to rollback an application to a recent checkpoint upon a software failure and to

re-execute it under a modified environment. This is inspired by allergy treatment

in real life which includes removing the allergen from the environment. After

passing the problematic code region the original environment is restored again as

the environmental changes may introduce performance penalties. The

environmental changes employed by Rx range from memory-related changes

such as zero-filling newly allocated memory and padding allocated memory blocks

to scheduling and message order changes and the dropping of user requests

made to a server application. The memory management changes do overcome

certain deterministic bugs - and therefore Bohrbugs - such as uninitialized reads

and buffer overflows. The scheduling changes can tolerate certain Heisenbugs

related to data race conditions. Dropping user requests may help against

malicious requests made to a server while other requests are still processes

correctly.

Rollback & recovery approaches rely on an efficient checkpointing algorithm as

during runtime checkpoints must be made frequently all the time. Every single

checkpoint needs to store the complete state of a running application. Discount

checking [14] is such a low-overhead checkpointing method that is for example

also used in the Rx system. It is built on reliable main memory and high-speed

transactions. Reliable memory is provided by the Rio file cache [15] which

protects memory from operating system crashes. Vista [16] builds on Rio to

provide fast transactions which are used to allocate areas of persistent memory

and to perform atomic, durable transactions on it. Transactions and checkpointing

are equivalent as the interval between checkpoints is equivalent to the memory

locations a transaction changes and taking a checkpoint is equivalent to

committing the current transaction. Using additional optimizations Discount

Checking manages to only slow down applications by 0.6%, even with very

frequent checkpoints.

3.5. Speculative Approaches

Some recent approaches rely on speculative fixes for bugs that do no longer

guarantee the original functionality of the application.

One such approach is the Reactive Immune System [1]. Its aim is to create "self-

healing" software programs by localizing failures, detecting failures in the

problematic code region and letting the function containing the region return an

error value. This is done by running the faulty code region with an emulator and

- 5 -

analyzing every instruction taking into consideration the reported cause of the

fault, e.g. a division by zero. Then the function containing the fault is forced to

return an error return value which is determined by some heuristics based on the

return type of the function, e.g. -1 upon an integer return type. The approach

relies on proper error handling of the application which according to the authors is

mostly the case. Running the whole application in this "supervised" fashion would

cause an enormous slowdown, but doing so for small code regions results in

performance penalties of 30 to 100%.

Failure-oblivious computing [8] enables server applications to execute without

memory corruption despite of erroneous memory access. It is a special C

compiler that detects invalid memory accesses and replaces them with code that

ignores invalid writes to memory and returns manufactured values for illegal read

accesses. The idea is to avoid memory corruption in server applications triggered

by malicious requests from clients and let the server's error handling logic deal

with them which typically results in rejection of the problematic requests. This

prevents the server from crashing and from entering dangerous execution paths

and overall leads to increased availability and robustness. The major drawback of

this approach and similar speculative approaches is that it is possible that

because of the changes introduced by them the application may take an

unanticipated and unintended execution path leading to unacceptable results. The

authors argue that a software fault leads to such a behavior anyway and that

nevertheless it is worth a try to attempt recovery by such methods.

4. Conclusion

The most effective way to survive software failures still seems to be preventing

bugs in the first place and the use of "safer" languages such as Java. Note that

for example the Bohrbugs that are potentially avoided in the Rx system and the

failure-oblivious computing approach are all memory related. These bugs would

not occur when using the Java programming language which has a much safer

memory abstraction than for example the C programming language.

There seems to be a tendency to reference the right study that shows a specific

distribution ratio of Heisenbugs and Bohrbugs so that the authors can argue that

their approach to surviving failures is feasible. Probably it would be fairer to admit

that most Bohrbugs cannot be survived safely and the frequency of them in

applications varies significantly, also depending on how much effort was put on

removing them during software development.

Nevertheless generic recovery techniques seem to be interesting for Heisenbugs

and especially for server applications that demand high availability. With

adequate rollback mechanisms and additional strategies such as dropping

malicious user requests that crash the server they can help to keep up at least

degraded operation with only a small time of service interruption.

References

[1] S. Sidiroglou, M. Locasto, S. Boyd, and A. Keromytis. Building a reactive

immune system for software services. In USENIX Annual Technical

Conference, 2005.

[2] D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failure transparency

and the limits of generic recovery. In Proceedings of the 4th USENIX

Symposium on Operating Systems Design and Implementation, 2000.

- 6 -

[3] J. Gray. Why do computers stop and what can be done about it? In Proc.

Fifth Symposium on Reliability in Distributed Software and Database

Systems, 1986.

[4] A. Avizienis. The Methodology of N-Version Programming. In Software

Fault Tolerance, John Wiley & Sons Ltd, 1995

[5] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot--

A Technique for Cheap Recovery. In Proceedings of the 6th Symposium on

Operating Systems Design and Implementation (OSDI), 2004.

[6] S. Chandra and P. M. Chen. Whither generic recovery from application

faults? A case study using open-source software. In Proc. International

Conference on Dependable Systems and Networks, New York, NY, 2000.

[7] M. Sullivan and R. Chillarege. Software defects and their impact on system

availability - a study of field failures in operating systems. Digest 21st

International Symposium on Fault-Tolerant Computing, 1991.

[8] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and J. W Beebee.

Enhancing server availability and security through failure-oblivious

computing. In Proceedings 6th Symposium on Operating Systems Design

and Implementation (OSDI), 2004.

[9] B. Boehm and V. R. Basili. Software Defect Reduction Top 10 List. IEEE

Computer, 34(1):135--137, 2001.

[10] M. Grottke and K. Trivedi. Fighting Bugs: Remove, Retry, Replicate, and

Rejuvenate. IEEE Computer, pp. 107-109, February 2007.

[11] Y. Huang, C. M. R. Kintala, N. Kolettis, and N. D. Fulton. Software

rejuvenation: Analysis, module and applications. In Proc. 25th

International Symposium on Fault-Tolerant Computing, Pasadena, CA,

1995.

[12] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith, B. Randell. A Program

Structure for Error Detection and Recovery. International Symposium on

Operating Systems, 1974.

[13] F. Qin, J. Tucek, J. Sundaresan, Y. Zhou. Rx: treating bugs as allergies - a

safe method to survive software failures. Symposium on Operating

Systems Principles, 2005.

[14] D. E. Lowell and P. M. Chen, Discount checking: Transparent, low-

overhead recovery for general applications, Tech. Rep. CSE-TR-410-99,

November 1998.

[15] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Lowell.

The Rio File Cache: Surviving Operating System Crashes. In Proceedings

of the Seventh International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 1996.

[16] D. E. Lowell and P. M. Chen. Free transactions with Rio Vista. In

Proceedings of the 16th ACM Symposium on Operating Systems Principles,

1997.

