Introduction	The IDS 000 0000000	System call classification o oo	Implementation		Conclusion
	A	0		- 1 ¹	

presented by Silviu Craciunas

Darren Mutz¹, Fredrik Valeur¹, Giovanni Vigna¹ Christopher Kruegel²

¹Department of Computer Science University of California, Santa Barbara

²Department of Computer Science Technical University of Vienna

22 May 2007

Silviu Craciunas

University of Salzburg, Austria

Introduction	The IDS 000 0000000	System call classification 0 00	Implementation	Conclusion

Outline

1 Introduction

- Basics
- Models
- System call classification
 - Classification
 - Bayesian networks
- Implementation
- 5 Evaluation
- 6 Conclusion

Silviu Craciunas

University of Salzburg, Austria

Introduction	The IDS 000 0000000	System call classification o oo	Implementation	Conclusion

What is an IDS?

- The defender's problem:
 - The defender needs to plan for everything... the attacker needs just to hit one weak point
 - Being overconfident is fatal: King Darius vs. Alexander Magnus, at Gaugamela (331 b.C.)
- An IDS is a system, not a software!
- An IDS works on an information system, not on a network!

Introduction	The IDS 000 0000000	System call classification oo	Implementation	Conclusion

Two types of IDS

- Misuse-based
- Anomaly-based

Why system calls?

Sequences of system calls executed by running processes are a good discriminator of normal behavior.

Silviu Craciunas

University of Salzburg, Austria

ヘロマ ヘロマ ヘロマ イ

Introduction	The IDS 000 0000000	System call classification	Implementation	Conclusion

Two types of IDS

- Misuse-based
- Anomaly-based

Why system calls?

Sequences of system calls executed by running processes are a good discriminator of normal behavior.

Silviu Craciunas

University of Salzburg, Austria

< D > < B > < E > <</p>

Introduction	The IDS 000 0000000	System call classification o oo	Implementation	Conclusion

Two types of IDS

- Misuse-based
- Anomaly-based

Why system calls?

Sequences of system calls executed by running processes are a good discriminator of normal behavior.

Silviu Craciunas

University of Salzburg, Austria

Introduction	The IDS ●00 ○000000	System call classification oo	Implementation	Conclusion
Basics				
Basics				

- Application-specific analysis of individual system-calls
- Input consists of an ordered stream S = {s₁, s₂, ...} of system call invocations recorded by the operating system
- Every $s \in S$ has $r_s, \langle a_1^s, a_1^s, ..., a_n^s \rangle$
- For every *s* a distinct profile is created

Silviu Craciunas

Introduction	The IDS ○●○ ○○○○○○○	System call classification 0 00	Implementation	Conclusion
Basics				
Learnin	g			

- The model is trained and the notion of normality is developed by inspecting samples
- Learning on-the-fly or learning from a training set

Important

Training phase must be as exhaustive and free from anomalous events as possible.

Silviu Craciunas

University of Salzburg, Austria

Introduction	The IDS 00● 0000000	System call classification 0 00	Implementation	Conclusion
Basics				
Detectio	on			

The task of a model is to return the probability of occurrence of an argument value based on the model's prior training phase. This value reflects the likelihood that a certain feature value is observed, given the established profile.

Introduction	The IDS ○○○ ●○○○○○○	System call classification o oo	Implementation	Conclusion
Models				
String I	ength			

- Arguments represent canonical filenames(open, stat, execv)
- Attacker must create a filename that triggers a format string vulnerability
- In such attacks the argument is a string of several hundred bytes

Introduction	The IDS ○○○ ○●○○○○○○	System call classification o oo	Implementation	Conclusion
Models				
String le	ength d detection			

- Approximate the actual distribution of the lengths of a string argument
- Mean μ
 μ and variance σ
 ² are approximated using μ and σ
 ² for the lengths l₁, l₂,..., l_n
- Probability for I: Cebyshev inequality $p(|x \mu| > t) < \frac{\sigma^2}{t^2}$

•
$$p(I: I > \mu) = p(|x - \mu| > |I - \mu|) = \frac{\sigma^2}{(I - \mu)^2}$$
 for $I > \mu$

University of Salzburg, Austria

Silviu Craciunas

Introduction	The IDS ○○○ ○○●○○○○○	System call classification o oo	Implementation	Conclusion
Models				

String character distribution

- Strings have a regular structure therefore we measure the frequencie values (not distribution)
- For a safe string the relative frequencies decrease in value, in malicious string the frequencies drop fast
- Idealized character distribution :

$$\mathfrak{ICD}:\mathfrak{D} \mapsto \mathfrak{B}$$
 with $\mathfrak{D} = \{n \in \mathsf{N} | 1 \leq n \leq 256\},\$

$$\mathfrak{B} = \{ p \in \mathfrak{R} | 0 \le p \le 1 \},\$$

$$\sum_{i=1}^{256} \Im \mathfrak{CD}(i) = 1.0$$

University of Salzburg, Austria

Silviu Craciunas

Introduction	The IDS ○○○ ○○○●○○○○	System call classification o oo	Implementation	Conclusion
Models				

String character distribution

Learning and detection

- Learning phase :
 - Character distribution is stored for each argument string
 - ICD is calculated as an approximation of the average of all stored character distributions
- Detection :
 - Calculate the probability that the character distribution of an argument is a sample of the ICD

Introduction	The IDS ○○○ ○○○○●○○	System call classification o oo	Implementation	Conclusion
Models				
Structu	ural infor	onco		

- Analyze the argument's structure, in our case it is the regular grammar that describes all legitimate values
- Conclude from this grammar by analyzing a number of legitimate strings

Example

Consider a simple open system call when an attacker exploits it trough a vulnerability and opens "/etc/passwd".

Introduction	The IDS ○○○ ○○○○○●○	System call classification	Implementation	Conclusion
Models				
Structu	ral inferent	ence		

- Two choices: grammar that contains exactly the training data and a grammar that allows production of arbitrary strings
- First is too simple, second is too general
- Solution: generalize the grammar as long as it seems reasonable using probabilistic grammar
- The goal is to find a NFA(non-deterministic finite automata) of the probabilistic grammar that has the highest likelihood for the given data

Introduction	The IDS ○○○ ○○○○○○●	System call classification o oo	Implementation	Conclusion
Models				
Token f	inder			

- Determines if the values of a argument are drawn from a limited set of possible alternatives
- The number of different argument values are bound
- Random values from type's value domain
- Decision between an enumeration and random identifiers can be made using the non-parametric Konglomorov-Smirnov variant
- Model returns 0 or 1 if he value is drawn from an enumeration depending on the correctness or in the case of random identifiers always 1

Introduction	The IDS 000 0000000	System call classification	Implementation	Conclusion
Classification				
Classifi	cation			

- A model *m_i* assigns an anomaly score *as_i*
- $C(as_1, as_2, \ldots, as_k, I) = \{normal, anomalous\}$
- In other systems C is a sum function, here, a Bayesian network

Introduction	The IDS 000 0000000	System call classification ○ ●○	Implementation	Conclusion
Bayesian networks				
Definitio	n			

- A probabilistic graphical model that represents a set of variables and their probabilistic dependencies
- Formally, Bayesian networks are directed acyclic graphs whose nodes represent variables, and whose arcs encode the conditional dependencies between the variables
- ∀ vertexes v, ∄ nonempty directed path that starts and ends in v

Silviu Craciunas

Introduction	The IDS 000 0000000	System call classification ○ ○●	Implementation	Conclusion
Bayesian network	ks			
The me	echanisr	n		

- Root node is a variable with two states: normal and anomalous
- One child node is introduced for each model (there might also be dependencies between models represented by connections)
- Additionally we have a confidence value represented by a node connected to the model node

Introduction	The IDS 000 0000000	System call classification o oo	Implementation	Conclusion
Overvi	ew			

- Input from audit facilities(eg. Linux) or audit logs(eg. Solaris' BSM)
- Monitors security-critical applications(eg. setuid)
- For each program the IDS maintains data structure that characterizes the normal profile
- A profile consists of :
 - set of models for each argument
 - functions that calculates the anomaly scores

Introduction	The IDS 000 0000000	System call classification 0 00	Implementation	Conclusion

System architecture

Silviu Craciunas

University of Salzburg, Austria

ntroduction

The IDS

System call classifie

Implementation

Evaluation

Conclusior

Bayesian network for open and execve

Silviu Craciunas

University of Salzburg, Austria

ntroduction	The IDS	System call classification	Implementation	Evaluation	Conc
	000 0000000	0			

Classification Effectiveness

Application	Total System Calls	Attacks	Identified Attacks	False Alarms
eject	138	3	3 (14)	0
fdformat	139	6	6 (14)	0
ffbconfig	21	2	2(2)	0
ps	4,949	14	14 (55)	0
ftpd	3,229	0	0	14
sendmail	71,743	0	0	8
telnetd	47,416	0	0	17
Total	$127,\!635$	25	0	39

Silviu Craciunas

University of Salzburg, Austria

• E •

A D > A B >

Inti	rad	LIOT	nn	
		111.11	וונא	

The IDS

ystem call classification

Implementation

Evaluation

Conclusion

Classification Effectiveness

	Sequ	iences	Sysc	all Bags	K-Ne	earest	Clu	ster	Our \$	System
Application	FN	FP	FN	FP	FN	FP	FN	FP	FN	FP
eject	1	1	1	1	2	1	0	1	0	0
fdformat	2	0	2	0	0	0	0	0	0	0
ffbconfig	0	0	0	0	0	0	0	0	0	0
ps	0	12	0	0	0	47	12	25	0	0
ftpd	0	21	0	15	0	21	0	20	0	14
sendnail	0	75	0	1	0	89	0	106	0	8
telnetd	0	99	0	99	0	21	0	6	0	17
Total	3	208	3	116	2	179	12	158	0	39

University of Salzburg, Austria

Silviu Craciunas

Introduction	The IDS 000 0000000	System call classification o oo	Implementation	Evaluation	Conclusion

System Efficiency

 $\langle \Box \rangle \langle \Box \rangle$

Silviu Craciunas

Introduction	The IDS 000 0000000	System call classification	Implementation	Conclusion

Conclusion

Learning based algorithm

- Includes system call arguments
- Combining multiple anomaly scores using Bayesian networks
- Outperforms the top 4 learning based IDS on a well known intrusion detection evaluation data set
- Low computational and memory overhead

Image: A matrix

Introduction	The IDS 000 0000000	System call classification 0 00	Implementation	Conclusion

- Learning based algorithm
- Includes system call arguments
- Combining multiple anomaly scores using Bayesian networks
- Outperforms the top 4 learning based IDS on a well known intrusion detection evaluation data set
- Low computational and memory overhead

Introduction	The IDS 000 0000000	System call classification o oo	Implementation	Conclusion

- Learning based algorithm
- Includes system call arguments
- Combining multiple anomaly scores using Bayesian networks
- Outperforms the top 4 learning based IDS on a well known intrusion detection evaluation data set
- Low computational and memory overhead

Introduction	The IDS 000 0000000	System call classification o oo	Implementation	Conclusion

- Learning based algorithm
- Includes system call arguments
- Combining multiple anomaly scores using Bayesian networks
- Outperforms the top 4 learning based IDS on a well known intrusion detection evaluation data set
- Low computational and memory overhead

Silviu Craciunas

University of Salzburg, Austria

Introduction	The IDS 000 0000000	System call classification o oo	Implementation	Conclusion

- Learning based algorithm
- Includes system call arguments
- Combining multiple anomaly scores using Bayesian networks
- Outperforms the top 4 learning based IDS on a well known intrusion detection evaluation data set
- Low computational and memory overhead

Introduction	The IDS 000 0000000	System call classification 0 00	Implementation	Conclusion

Thank you! Any questions? (Hopefully NOT!)

Silviu Craciunas

University of Salzburg, Austria

Introduction	The IDS 000 0000000	System call classification o oo	Implementation	Conclusion

Bayesian network validation

- If there is a causal relationship between models ⇒ ∃ corelation between model scores.
- Calculate correlation value for all pairs of models

Silviu Craciunas

University of Salzburg, Austria