
Survey on Scheduling Algorithms for Multiprocessing
Systems

Dayton Bishop

Department of Computer Sciences
University of Salzburg, Austria

ABSTRACT
The goal of this paper is to give an overview of the different
types of scheduling algorithms for Multiprocessing
systems. To better understand the purpose and difficulties
concerning schedulers running on multiprocessor systems,
the first part of this paper will give a rudimentary
introduction to the thematic by explaining scheduling on a
single processor. Then the transition to the multiprocessor
systems will be made in order to compare the different
approaches that were made multiprocessing systems.

Next a detailed analysis of the work stealing algorithm will
be presented, comparing it to the other known approaches.

Finally, the systems the incorporate the presented work
stealing algorithms will be presented.

Why Scheduling in general

The basic functionality of software on a system is that code
is stored in memory that should be executed on the
processor. The operating system handles the requests of
different programs for the execution. The part of the
operating system that is responsible for the deciding what
task to execute is the scheduler.

Since at any one time there are multiple tasks that the
processor should compute, the idea to switch between these
tasks in order to allow all the tasks to make progress on
their executions arose, thus called scheduling. Some of
these tasks may require that another tasks be executed first,
a so called dependency. Therefore some tasks could be
executed simultaneously, where as others would have to
executed in file.

Also there are some tasks that should be executed
immediately, they would be given a higher priority by the
user, and others that can take more time to finish, a lower
priority task. Since basically every system would like to
differentiate between these two types of tasks, most
schedulers are priority driven.

So far the consideration was directed at single processor
systems. Of course there are new considerations for the
implementation for a scheduling algorithm running on a
multiprocessor system. Multiprocessors have been accepted
as means to improve the speed, performance and enhance
reliability or availability of the computation. These systems
however require a new approach that adds a whole new
level of complexity to the operating system design and
implementation.

Scheduling algorithms for a single processor

This is a presentation of the concepts of the scheduling
algorithms. These are the basis for the designs of the
scheduling algorithms for multiprocessor systems. There
are three rudimentary types [36] of scheduling in an
operating system.

The first is known as the long term scheduler. This
scheduler decides what tasks can be scheduled in order to
meet certain time constraints.

The second is the most common and are known as the mid
term scheduling algorithms.

These algorithms swap processes in and out of the memory
when processes have been blocked, are waiting or require
more space than available in the memory. Therefore these
schedulers usually are implemented with virtual memory.

The last is the short term scheduler that decides after each
interrupt (clock, IO or a system call), what process to
execute next. Therefore this scheduler will latest at then end
of each time slice decide what process to execute next.

A combination of these different types is also thinkable.
Each of these different types can also be implemented as a
preemptive or a non preemptive scheduler meaning, that the
processes running can be interrupted in order to execute
another process.

dbishop@cosy.sbg.ac.at

 1

Here are a few examples of common scheduling designs
[37]:

- Earliest Deadline First
- Round Robin
- FIFO
- Priority
- SJF (Shortest Job First)

Scheduling algorithms for a multi processor

Based on the scheduling algorithms for single processors,
new algorithms were developed for the multi processor
environment [31]. These new designs are confronted with
new requirements such as scalability, work load balancing
[23, 30] and even the consideration of heat produced by the
system [19].

The scalability issue is discussed in the PhD thesis by J.
Mohan [20] where the problem of designing a flexible
runtime structure is addressed. The question analyzed is
whether it is possible to have any number of run time
queues used by an arbitrary number of processors.

Work load distribution [35] is also the task of the scheduler
in the multiprocessor environment. In order to fully utilize
the potential of a multiprocessor system, all the processors
should be shouldering an equal workload.

Basically the process scheduling on parallel machines is a
NP - hard problem [22].

The schedulers on multiprocessor systems can be static or
dynamic, distributed or centralized in their implementation.

In the static version, each process is assigned a fixed
amount of processors it receives each time it is executed.

The dynamic version assigns the number of processors,
each time the process is scheduled. The tradeoff that the
dynamic version makes, is the overhead needed to assign
the processors anew each time. The static implementation
is, on the other hand, not always able to use the full
processing power at hand.

A comparison was made [8, 42] with the result, that the
dynamic implementation is better if the overhead is small
and the workload is high.

A centralized scheduler means that the run - time scheduler
resides on a dedicated processor. The distributed scheduler
can be invoked from different processors [8].

For the basic understanding of the different approaches of
schedulers, it is necessary to realize that in comparison to
single processor systems, there are multiple ways to
construct multiprocessors. For scheduling we are mainly
interested in the type of memory access used in the system.
There are NUMA (non uniform memory access) and UMA
(uniform memory access) access methods to the memory.

A NUMA architecture, in contrast to the UMA that requires
the memory not only be accessed in the same fashion but
also in the same time therefore being limited to around 32
processors [37], therefore leads to totally different memory
management design choices. Memory consistency is only
guaranteed for local memory and caches, or must be
specifically enforced by shared memory. This architectural
form exposes the existing memory architecture to
programmers. The benefit is that the programmer can
address what memory access is to be used, the more
expensive remote memory accesses or the fast local access.
Therefore also the number of context switches can be
minimized and potential contention can be avoided,
whereas these considerations do not include the cache
memory [29].

Considerations for a scheduler

Even though scheduling design has been well researched,
an evaluation of the scheduling algorithms is hard to come
by. Most papers have no comparison at all, where as other
papers at least compare themselves to one of the other
known schedulers. The trouble in analyzing the schedulers
is that maximization of the system utilities is not directly
observable. However the byproduct of a quality scheduler
can be measured such as performance, fairness and
predictability [41]. These measures however are
interdependent thus only allowing weak statements like
“one of the factors has increased, whereas the others are
held equal”. The representation is often to be found as a
matrix.

Performance is the most common quality evaluated in the
comparison of schedulers. Performance is often measured
using variation of response time [9, 33]. That is the time a
task needs, before its completion. Users prefer a quick
response time, even though the exact correlation is not
identifiable [10]. This quickly becomes clear, when we use
a scheduler that exclusively executes fast running jobs
when possible may easily achieve a quick response time
thereby creating a low productivity in starving the heavier
processes.

 Therefore the second measure is fairness that should be
supported on a chip multiprocessor architecture, meaning
that each task is treated equal and no tasks are starved. This
effect is difficult to measure but often implemented by
queues [21] or time slices [11] that are assigned to each of
the processes or threads. Fairness is often a tradeoff to
performance, even though the relationship is not explicit.

Predictability is required by real time systems and is the
users expected execution time versus the actual execution
time [40]. In order achieve predictability, resources have to
be assigned and job execution times have to be anticipated.

Here the functionality of the scheduling algorithms is
explained that evolved from the designs current on the
single processors.

The Single shared ready Queue

This design is that all processes are stored in a global ready
queue [22]. Each processor then retrieves a process from
the ready queue when free and returns the processes that are
blocked or waiting. This approach requires a UMA, but
simplifies the implementation of scheduling policies so far,
that approaches used single processors, such as FIFO (first
in first out), FCFS (first come first serve) and SJF(shortest
job first) can be used [41].

Backfilling

The backfilling algorithm [7, 17] divides the jobs into
categories by giving the jobs a priority and certain
predefined guidelines. There are different approaches in the
implementation of the backfilling algorithm.

The non - backfilling simply executes the job with the
highest priority that is able to execute. If one of the
processors of the highest priority job is blocked then the
scheduler waits, until the resources are available.

The classical backfilling scheduler is similar to the non -
backfilling scheduler, except if the higher priority job is
blocked, the resources are filled with lower priority jobs.

The preemptive – backfill version now is also allowed to
preempt the lower priority tasks to execute the higher
priority tasks. There are three basic approaches in deciding
what task to execute. The first is the highest priority task
that uses the available resources is used. The second is to
take the job that uses the resources most effectively without
considering the priority. The third is to combine different
jobs in order to maximize effectivity.

The multiple queue backfilling algorithm [18] additionally
introduces partitions. These partitions are each assigned
different execution times, for example the first partition
may accept jobs that need 100 ms to 1s. Each partition has
its own priority listing. Now if a job from the longest
execution partition is not able to execute because of the lack
of resources, the next lower partition is considered.

The relaxed backfill [39] algorithm is similar to the
preemptive backfilling version, except that the preemption
is executed after the higher priority process has waited a
predefined amount of time.

Gang Scheduling

The gang scheduling algorithm is used to achieve a high
level of parallelism for a single job. This algorithm is
especially useful when the different processes of this job
need to communicate often. This way the system can evade
some context switches. Also it allows the processes to
interact using the busy lock, thereby evading the risk of
waiting for a task that is currently not running.

There are many possible ways to implement the gang
scheduling algorithm. I will quickly introduce three policies
employed in a distributed system [16].

The considerations that can be included in the scheduling
algorithm are the different ways to schedule gangs. Gangs
are all the processes of one job.

The adopted first come first serve (AFCFS) method
attempts to schedule a job as soon as a assigned processor is
available. If there are not enough processors to assign a
large job in the front of the queue, smaller jobs are
scheduled. This results in the smaller jobs being favored
above the larger jobs.

The largest gang first served (LGFS) method places the
largest jobs on the top of the processor queues. The job for
which the assigned processors are available is executed
first, whereas the job on top is considered first and then the
following jobs on the work queue. This method is
especially beneficiary for massively multiprocessing
environments such as supercomputer centers

First come first serve (FCFS) method is fair to the jobs in
the wait queue, however it mostly results in suboptimal
performace.

Shortest time first (STF) method chooses the jobs that
require the shortest I/O time. Since this method chooses the
fastest I/O services this method is expected to yield the
most throughput. This assumes that the I/O times are known
in advance and therefore can only be executed if this
information is available.

There have been many different policies for gang
scheduling. To name a few Feitelson and Rudolph [11],
Feitelson and Rudolph [12], Feitelson and Jette [13], Karatza
[15], Karatza [16], Sobalvarro and Weihl [32], Squillante [34]
and Wang [38].
As parallel programs become widespread, it will become
increasingly difficult to keep parallel program execution
well adjusted, so that users will demand the ability to use
the CPUs with maximum efficiency while executing at high
multiplicity. A more in depth research on this scheduling
design was conducted by Ousterhout[24] who proposed the
different subcategories of this design, the matrix,
continuous and undivided approach.

 3

Round Robin

There are two different versions of multiprocessor round
robin schedulers [22]. The first version is based on a shared
memory system, where the round robin scheduler is used in
much the same way as the round robin scheduler on the
single processor system. The new processes that arrive are
put at the end of the global queue and the tasks are then
executed. The second schedules jobs instead of processes,
where just as before each job execution gets a time slice.
This version is often implemented so that all processors
execute the one job the scheduler has assigned the time
slice to.

For a more detailed explanation of the second round robin
approach there are a few additional considerations that have
to taken into account. First we have the number of
processes q in a job. The second is we have a certain
number of processors p at our disposal. If the number of
processes in a job is less or equal the number of processors,
the solution is simple, each processor is give on of the
processes.

If the number of processes exceeds the number of
processors, we have two different ways in which to resolve
the conflict. The first is that the larger number of processes
is devided equally amoung the processors.

The second is that an additional round robin scheduling is
introduced, that distributes p processes from the job for one
quanta of execution time.

The main problems that have to be solved when using this
round robin are that frequent context switches can occur,
when the number of processes is very high.

On the other hand if the number of processes does not
exceed the number of processors, the affinity for a certain
processor may become a problem.

Hands off scheduling

Another consideration that is made in the choice of a
scheduler is if the system should support deadlines (e.g. in a
real time system). The hands off scheduler [22] is a kernel
level scheduler, that can be manipulated directly by the
user.

There are two fashions in which the user can address the
scheduler. The first is the discouragement hint, that hints
that the particular thread should be discouraged when
considering what task to execute. There are three levels,
that can be given, mild, strong or weak.

The second fashion in which the user can influence, is the
hands - off hint. It is used to have the scheduler run a
certain thread, where as the current thread hands off the
processor to another thread without creating a scheduler
interference.

These again are split into three subcategories:

1. Hard real time systems
2. Firm real time systems
3. Soft real time systems

Distributing the work load is of course the goal every
multiprocessor environment. Load balancing is in general
not worth the extra effort, as only a small gain in the
execution time of tasks can be achieved and is mostly
outweighed by the effort expended to maintain the load
balance. More reasonable approaches are the work sharing
and work stealing algorithms.

The work sharing algorithm

The work sharing algorithm performs load sharing by using
a global scheduling. If processors have too many tasks to
handle, the load balancer offloads some of the work to
processors less busy or even in idle [4].

The work stealing algorithm

The functionality of the work stealing algorithm [3] is that
instead of all the processors trying to share the processes
held in a central queue each processor has its own queue. At
the beginning of a job, one of the queues of the processors
receives the first process of a job. The processor then starts
the execution of the processes thereby spawning other
processes.

As soon as the first process is initialized, the other
processors start trying to steal the work that is on the stack
of the processor that the job was initialized on.

As soon as the process being executed waits for an IO
operation or waits on another process, it is pushed to the
processor’s own stack (picture below). Then this processor
also tries to steal workload from the other processors.

Systems that incorporate the presented scheduling
algorithms

There are many operating systems that have been developed
for a multiprocessor environment. The systems presented
here use some of the schedulers explained above and should
provide a better insight into the functionality of these
schedulers.

- Cilk [6] is an operating system that uses the work
stealing algorithm.

- HYDRA [5, 25, 26, 27, 28] uses the round robin
scheduling

- PRESTO [1, 2] uses a single shared ready queue
with a pool of threads

CONCLUSION
In the field of multiprocessor scheduling there are yet many
improvements to be achieved with promising results. Even
though in the scheduler is such a small component when
looking at an entire operating system it still is greatly
responsible for the systems efficiency.

This paper provides a short overview of scheduling
algorithms that have appeared in journals and conferences. I
hope this survey may be of use when interested in the
different approaches that have so far been suggested. I
conclude by apologizing to the many system developers
that I did not mention in this paper.

REFERENCES

1. B. Bershad, E. Lazowska, and H. Levy. Presto: A
system for object-oriented parallel programming.
Software: Practice and Experience, 18(8):713–732,
August 1988.

2. B. Bershad, E. Lazowska, H. Levy, and D. Wagner. An
open environment for building parallel programming
systems. In Proceedings of the Symposium on Parallel
Programming: Experience with Applications, Languages
and Systems, pages 1–9, July 1988.

3. Robert D Blumofe and Charles E. Leiserson, Scheduling
Multithreaded Computations by Work stealing, MIT
Laboratory for Computer Science

4. Barbara M. Chapman, Lei Huang, Haoqiang Jin,
Gabriele Jost, and Bronis R. de Supinski, Toward
Enhancing OpenMP’s Work-Sharing Directives

5. Jr. E.M. Chaves, P.C. Das, T.L. LeBlanc, B.D. Marsh,
and M.L. Scott. Kernel-kernel communication in a
shared-memory multiprocessor. Concurrency: Practice
and Experience, 5(3):171–192, May 1993.

6. Cilk

http://www.supertech.csail.mit.edu/cilk/manual-
5.3.2.pdf

7. B. Cramer, Universität Paderborn, Single – site
scheduling

8. G. Dimitriou, Simulation of static an dynamic task
scheduling on multiprocessor systems, PhD thesis at the
Universtiy of Illinois at Urbana – Champaign, 1994

9. C. Ernemann, V. Hamscher, U. Schwiegelshohn, A.
Streit, and R. Yahyapour. On Advantages of Grid
Computing for Parallel Job Scheduling. In Proceedings
of the 2nd IEEE International Symposium on Cluster
Computing and the Grid (CC-GRID 2002

10. Feitelson D. G., L. Rudolph, U. Schwiegelshohn, K. C.
Sevcik, and P. Wong. Theory and Practice in Parallel
Job Scheduling. In D. G. Feitelson and L. Rudolph,
editors, Job Scheduling Strategies forParallel
Processing, pages 1–34. Springer Verlag, 1997.

11. Feitelson D. G. and L. R. L. Scheduling. Parallel Job
Scheduling: Issues and Approaches. In D. G. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for
Parallel Processing – IPPS’95 Workshop, volume 949,
pages 1–18. Springer, 1995.

12. Feitelson D.G. and Rudolph L. 1996. “Evaluation of
Design Choices for Gang Scheduling Using Distributed
Hierarchical Control”. Journal of Parallel and
Distributed Computing, Academic Press, New York, USA,
Vol. 35. Pp18-34.

13. Feitelson D.G. and Jette M.A. 1997, “Improved
Utilisation and Responsiveness with Gang Scheduling”.
In Job Scheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science, Springer-Verlang,
Berlin, Germany. Vol. 1291. Pp238-26.

14. Karatza H. D., Performance analysis of gang scheduling
in a distributed system under processor failures

15. Karatza H.D. 1999a, “A Simulation-Based Performance
Analysis of Gang Scheduling in a Distributed System”.
In Proc. of the 32nd Annual Simulation Symp. (San
Diego, CA, USA, April) IEEE Computer Society, Los
Alamitos, CA, USA. Pp26-33.

16. Karatza H.D. 2000a, “Gang Scheduling and I/O
Scheduling in a Multiprocessor System”. In Proc. of
2000 Symp. on Performance Evaluation of Computer
and Telecommunication Systems (Vancouver, Canada,
July) SCSI, San Diego, CA, USA. Pp245-252.

17. Barry G. Lawson, Evgenia Smirni Department of
Computer Science College of William and Mary
Williamsburg, VA 23187-8795, USA, Multiple-queue
Backfilling scheduling with Priorities and Reservations
for Parallel Systems.

18. Barry G. Lawson, Evgenia Smirni: Multiple–Queue
backfilling Scheduling with Priorities and Reservations
for Parallel Systems in Job Scheduling Strategies for
Parallel Processing 8th. Workshop 2002

 5

http://www.supertech.csail.mit.edu/cilk/manual-

19. A. Merkel, F. Bellosa. EUROSYS 2006, Balancing
Power Consumption in Multiprocessor Systems.

20. Joseph Mohan, Performance of parallel programs:
Model and Analysis. PhD thesis, Computer science
department, Carnegie – Mellon University. Pittsburgh,
Pa, July 1984

21. A. Mu’alem and D. Feitelson. Utilization, Predictability,
Workloads, and User Runtime Estimates in Scheduling
the IBM SP2 with Backfilling. In 12th Intl.Parallel
Processing Symposium, pages 542–546, April 1998.

22. B. Mukherjee, K. Schwan, P. Gopinath, A survey of
Multiprocessor Operating systems, College of
computing, Georgia Institute of Technology

23. M. Norman, P. Thanisch, Models of Machines and
Computations for Mapping in Multicomputers,
Edinburgh Parallel computing centre, University of
Edinbourgh

24. J. Ousterhout, Scheduling techniques for concurrent
systems. In Proceedings of Distributed Computing
Systems Conference, pages 22–30, October 1982.

25. M. Scott, T. Leblanc, and B. Marsh. Design rationale for
psyche, a general purpose multiprocessor operating
system. In Proceedings of the 1988 International
Conference on Parallel Processing (V II - Software),
pages 255–262, August 1988.

26. M. Scott, T. Leblanc, and B. Marsh. Evolution of an
operating system for large scale shared-memory
multiprocessors. Technical Report TR 309, Department
of Computer Science, University of Rochester, March
1989.

27. M. Scott, T. Leblanc, and B. Marsh. Multi-model
parallel programming in psyche. In proceedings of the
Second ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 70–78, March
1990.

28. M. Scott, T. Leblanc, B. Marsh, T. Becker, C. Dubnicki,
E. Markatos, and N. Smithline. Implementation issues
for the psyche multiprocessor operating system.
Computing Systems, 3(1):101–137, Winter 1990.

29. Seongbeom Kim, Dhruba Chandra and Yan Solihin, Fair
Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture in the Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques (PACT), 2004.

30. Shirazi, Hurson, and Kavi, Scheduling and Load
Balancing in Parallel and Distributed Systems [Shirazi
et al., 1995].

31. Singhal and Shivaratri, Advanced Concepts in Operating
Systems [Singhal and Shivaratri, 1994].

32. Sobalvarro P.G. and Weihl W.E. 1995, “Demandbased
Coscheduling of Parallel Jobs on Multiprogrammed
Multiprocessors”. In Job Scheduling Strategies for
Parallel Processing, Lecture Notes in Computer
Science, Springer-Verlang, Berlin, Germany. Vol. 949.
Pp106-126.

33. Sobalvarro P. G., S. Pakin, W. E. Weihl, and A. A.
Chien. Dynamic Coscheduling on Workstation Clusters.
Lecture Notes in Computer Science, 1459:231–256,
1998.

34. Squillante M.S., Wang F. and Papaefthymioy M. 1996,
“Stochastic Analysis of Gang Scheduling in Parallel and
Distributed Systems”, Performance Evaluation,
Elsevier, Amsterdam, Holland, Vol. 27&28 (4). Pp273-
296.

35. Squillante M.S. and R. Nelson, Analysis of task
migration in shared-memory multiprocessor scheduling,
Proceedings of the 1991 ACM SIGMETRICS
conference on Measurement and modeling of computer
systems

36. Stallings, William (2004). Operating Systems Internals
and Design Principles (fifth international edition).
Prentice Hall. ISBN 0-13-147954-7

37. Tanenbaum, A.S.: Modern Operating Systems Prentice
Hall, Prentice Hall, 952 pages, 2001

38. Wang F., Papaefthymiou M. and Squillante M.S. 1997,
“Performance Evaluation of Gang Scheduling for
Parallel and Distributed Systems”. In Job Scheduling for
Parallel Processing, Lecture Notes in Computer
Science, Springer-Verlang, Berlin, Germany. Vol. 1291.
Pp184-195.

39. William A. Ward et al.: Scheduling Jobs on Parallel
Systems Using a Relaxed Backfill Strategy in Job
scheduling Strategies for Parallel Processing 8th.
Workshop 2002

40. A. Wierman and M. Harchol-Balter. Classifying
scheduling policies with respect to higher moments of
conditional response time. In SIGMETRICS ’05:
Proceedings of the 2005 ACM SIGMETRICS
International conference on Measurement and modeling
of computer systems, pages 229–240, New York, NY,
USA, 2005. ACM Press.

41. J. Weinberg, Job Scheduling on parallel systems
42. J. Zahorjan and C McCann, Processor scheduling in

shared memory multiprocessors, In proceedings of the
1990 ACM SIGMETRICS conference on measurement
and modeling of computer systems, pages 214 - 225,
May 1990

http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0131479547

	Survey on Scheduling Algorithms for Multiprocessing Systems
	ABSTRACT
	CONCLUSION
	REFERENCES

