
Indentation Sensitive Languages

Leonhard Brunauer
lbrunau@cosy.sbg.ac.at

Bernhard Mühlbacher
bmuehl@cosy.sbg.ac.at

July 14, 2006

Abstract

In this work, we present a theoretical and practical approach for dealing with a
complier related problem. Although, most of modern programming languages
use explicit grouping of nested statements by means of special begin and end
tokens, there are programming languages that use indentation for this purpose.
The most famous example for such a language is Python. We show that lan-
guages, using this kind of syntax, cannot be generated by a context free grammar
and present an extension to context free grammars that is suitable to handle
the problem of determining the nesting level. Furthermore, we present a set of
techniques that make it possible to construct an efficient parser out of it.

1 Introduction

Most of todays common imperative programming languages allow arbitrary
nesting of statements by using some kind of BEGIN and END tokens (or some
variant thereof, like C’s ‘{’ and ‘}’). Some languages, however, determine the
nesting level by counting indentation symbols. Usually, each statement has its
own line and the compiler counts the number of tabulators - or whichever in-
dentation symbol else - at the beginning of each line. Examples for this kind of
languages are Python and Haskell.

Example 1. First of all, let us give an example to make this difference more
obvious.

def sign(i: int) -> int:
if i < 0:

return -1
elif i == 0:

return 0
else:

return 1

Creating a grammar for a language that uses indentation for determining
the nesting level - named indentation sensitive language in the following - is
not generally possible, as we will see in Section 2. Python and Haskell solve
the problem by doing some preprocessing by translating indentation symbols to

1

BEGIN and END like tokens. The actual implementation can be found in [1] and
[2], respectively.

In this work we tried to define an extension to context free grammars, that
is able to recognize indentation sensitive languages. Using such an extended
grammar, there is no need to perform preprocessing. Although, this type of
grammar is more powerful than the context free one, we can construct efficient
parsers for it and show how to do so in Section 3.

2 Grammar

A first look at the problem of indentation suggests, that a grammar that de-
scribes an indentation sensitive language must have some concept of counting.
The need for counters immediately arises, because an automaton that recognizes
an indentation sensitive language must keep track of the current indentation
level and count the level for each new line. Furthermore, it must be able to
compare counters.

Definition 1. Let Σ be an alphabet. A counter Cn
t for some symbol t ∈ Σ and

some number n ∈ N is defined by:

1. C0
t = ε and

2. Cn+1
t = Cn

t ◦ t , where ◦ is the concatenation symbol.

Referring to Definition 1, a counter obviously generates a string of length
n that does not contain any other symbol than t. We define an indentation
sensitive grammar to be a context free grammar extended by counters.

Definition 2. An indentation sensitive grammar ISG is a 5-tuple (V,Σ, C, R, S),
where

1. V is a finite set of non-terminal symbols,

2. Σ is a finite set of terminal symbols,

3. C is a set of counters

C = {Cn
t | t ∈ Σ and n ∈ N}

4. R is a finite set of rules, where the left-hand side is a string of zero or one
counter and exactly one non-terminal and the right-hand side is a string
of non-terminals, terminals, and counters, and

5. S ∈ V is the start symbol.

This definition is an extension to that of a context free grammar CFG. A
closer look at it suggests that it is more powerful than a CFG since a counter
might be used to hold context information.

Example 2. Let us look at a simplified programming language that is generated
by an indentation sensitive language. The language has a statement that re-
quires nesting if, a simple statement assignment, and a symbol for indentation
→. A program may look like

2

if True:
→ if True:
→ → a = 1

The grammar for this language is defined by G = (V,Σ, C,R, S), where

1. V = {S, 〈Stmt〉, 〈Simple〉, 〈Nesting〉, 〈Cond〉}

2. Σ = {“if“, identifier, intLiteral, “ : “, “ = “,newline,→}

3. C = {Cn
→ | n ∈ N}

4. R is defined by:

S → C0
→〈Stmt〉 | ε

Cn
→〈Stmt〉 → Cn

→〈Stmt〉Cn
→〈Stmt〉 | Cn

→〈Nesting〉 | Cn
→〈Simple〉

Cn
→〈Nesting〉 → Cn

→“if“ 〈Cond〉 “ : “ newline Cn+1
→ 〈Stmt〉

〈Simple〉 → identifier “ = “ intLiteral newline
〈Cond〉 → identifier

Theorem 1. G is not context free.

Proof. We assume that G is a context free grammar and obtain a contradiction.
Let p be the pumping length for G that is guaranteed to exist by the pumping
lemma. For the sake of clarity, we will abbreviate “if identifier: newline” by if
and “identifier = intLiteral newline” by ass. This is no loss of generality since
a sequence of terminals cannot be pumped anyway. We use the string

s = if◦ → ◦if◦ → ◦ → ◦if◦ → ◦ → ◦ → ◦if ◦ . . . ◦ (→)p ◦ ass

or in a more readable representation:

s = if ◦
→ ◦ if ◦
→ ◦ → ◦ if ◦
→ ◦ → ◦ → ◦ if ◦
...
→ ◦ ◦ →︸ ︷︷ ︸

p times

◦ ass

Clearly s is a member of G and of length at least p. The pumping lemma states
that s can be pumped, but we show that it cannot.

1. vxy = ”if”: pumping v leads to a string like if ◦ if . . . and such a string is
not in of G, because if requires the next statement’s indentation level to
be increased by one, i.e. the next line must have an additional → symbol.

3

2. vxy = ”if◦ → ”: pumping v, we also get a string that is not in G, if i > 1
(we pump more than once). The string will look like:

if ◦
→ ◦ if ◦
→ ◦ if◦

and consequently violates the mandatory increment of the indentation
level after if , too.

3. vxy = ” → ”: pumping v again results in a string that is not in G. The
string will look like:

if◦ → ◦ → ◦ . . .

Since the indentation level of a statement following if has to be incre-
mented by exactly one, this string is not in G, too.

4. vxy = ”ass”: in this case condition 1 of the pumping lemma is violated if
i = 0, because an assignment ass is required.

5. vxy = ”→ ◦ . . . ◦ →︸ ︷︷ ︸
p times

◦ ass”: this string violates condition 1 if i = 0,

because there is no successive ass. Furthermore, condition 3 is violated,
because |v| > p.

2.1 Upper bounds for Counters

Property 1. Let Cn
t be a counter. The counter’s target value n is finite and

bounded by the length of the input string.

Proof. This property is obviously true because the number of counter symbols
cannot exceed the input string.

For the grammar of Example 2, we can even improve upon this upper-bound.

Theorem 2. Let n be the length of the input string and m the number of
derivations. If we allow to increase the indentation level after each derivation
by at most k, then the highest possible indentation level is O(

√
n)

Proof. The worst case example for k = 1 is as follows:

s = if ◦
→ ◦ if ◦
→ ◦ → ◦ if ◦
...
→ ◦ → ◦ → ◦ if◦︸ ︷︷ ︸

m

The maximal indentation level m− 1. We can state the following equation:

n =
m∑

i=1

i =
m ∗ (m + 1)

2
=

(m2 + m)
2

4

Or for some arbitrary choice of k:

n = k ∗
m∑

i=1

i = k ∗ (m2 + m)
2

If we solve this quadratic equation, we get:

m2 + m− 2 ∗ n

k
= 0

⇒ m = −1
2

+

√
1
4

+
2n

k
=

1
2
∗

(
−1 +

√
1 +

8 ∗ n

k

)

3 Parser

Since the initial motivation for this project was related to programming lan-
guages, we choose to solve our problem by using the rather pragmatic approach
of implementing a parser, rather then constructing some automaton that is able
to recognize an indentation sensitive language. Counters are a small add-on to
CfG, so we tried to construct a parser that is only a slight modification of some
already existing parser architecture. For a purely practical reason, we tried to
implement an LL recursive descent parser, because this architecture is easier to
construct and understand than those of LR parsers. From this point on, we will
thus focus on this parser architecture and not further consider LR parsers.

When constructing a parser, efficiency is an important issue. However, a
parser for an indentation sensitive language does not perform well per se. Some
modifications of the grammar may be necessary to get rid of nondeterminism
and backtracking. In the following, we will show some techniques to do this.

3.1 Eliminating left recursion

Left recursions are virtually always undesirable, because it may introduce non-
determinism. For a recursive descent parser, nondeterminism may result in an
infinite recursion, thus preventing the parser form terminating. Left recursions
are introduced by rules of the form

A → Aα | β

In this case FIRST (A) = β, thus the choice introduces nondeterminism. For-
tunately, techniques for eliminating left recursions exist. For instance, we can
get around it by introducing an extra rule, as described in [3]

A → βA′

A′ → αA′ | ε

Example 3. Taking again Example 2, the rule

Cn
→〈Stmt〉 → Cn

→〈Stmt〉Cn
→〈Stmt〉 | Cn

→〈Nesting〉 | Cn
→〈Simple〉

5

includes left recursion. Using the above rule, we can make our grammar deter-
ministic by splitting it to

Cn
→〈Stmt〉 → Cn

→〈Nesting〉Cn
→〈Stmt〉′ | Cn

→〈Simple〉Cn
→〈Stmt〉′

Cn
→〈Stmt〉′ → Cn

→〈Stmt〉Cn
→〈Stmt〉′ | ε

or even simpler

Cn
→〈Stmt〉 → Cn

→〈Nesting〉Cn
→〈Stmt〉′ | Cn

→〈Simple〉Cn
→〈Stmt〉′

Cn
→〈Stmt〉′ → Cn

→〈Stmt〉 | ε

It should be obvious that this grammar is deterministic and it gets even
more obvious, if we look at the FIRST symbols.

FIRST (〈Nesting〉) = {“if“}
FIRST (〈Simple〉) = {identifier}

FIRST (〈Stmt〉) = FIRST (〈Nesting〉) ∪ FIRST (〈Simple〉)
= {“if“, identifier}

3.2 Counter binding

To make efficient parsing of indentation sensitive languages possible, we intro-
duce a concept called counter binding. A counter Cn

t can be bounded to a vari-
able A, which means that in further derivation steps A must not appear without
this counter, i.e, the variable and its counter are treated as if they were a single
variable. To enable deterministic parsing, we require that t /∈ FIRST (A).

Binding of a counter Cn
t and a variable A is done explicitly, if Cn

t A appears
on the RHS of a rule. If such a rule is applied, only rules of the form Cn

t A → . . .
can be used for further derivations, in particular, no rules of the form A → . . .
must be used.

The motivation for introducing counter binding is that constructing a parser
can be done almost the standard way. A counter that is bounded to a variable
is considered to be just another variable, while a counter that is not bounded
is treated like a sequence of terminals. It may be worthwhile noting, that the
number of variables is not finite in the strict sense, but may depend on the
length of the input string. This is the case, because Cn

t A and Cm
t A are different

variables if n 6= m. The set of rules, on the other hand, is really finite.

Example 4. Let us look again at Example 2 and apply counter binding to it.
If we eliminate left recursion, as we did in Example 3, the grammar looks as
follows

S → C0
→〈Stmt〉 | ε

Cn
→〈Stmt〉 → Cn

→〈Nesting〉 Cn
→〈Stmt〉′ | Cn

→〈Simple〉 Cn
→〈Stmt〉′

Cn
→〈Stmt〉′ → Cn

→〈Stmt〉 | ε

Cn
→〈Nesting〉 → Cn

→“if“ 〈Cond〉 “ : “ newline Cn+1
→ 〈Stmt〉

〈Simple〉 → identifier “ = “ intLiteral newline
〈Cond〉 → identifier

6

In every derivation, 〈Stmt〉 is bounded to a counter, since the binding is done
immediately when deriving the start variable S. Therefore, every rule that
derives 〈Stmt〉 must have Cn

→〈Stmt〉 on its LHS.
This also applies to 〈Nesting〉 and 〈Stmt〉′, however it does not for 〈Simple〉

and 〈Cond〉. These variables are never bounded to counters and hence no special
rules have to be introduced.

3.3 Eliminating Backtracking

Backtracking is a process, where the scanner is reseted to some state in the past
(i.e., tokens are “unread” somehow). This is necessary, if the choice among two
derivation rules cannot be made by looking at their FIRST symbols. Of course,
this is undesirable for parser construction.

As we will see in the following, the concept of counters adds nondeterminism
to a grammar. Later on we will show how to get rid of it, which is our last step
towards an efficient parser.

Consider the rule

Cn
t A → Cn

t B1 | Cn
t B2

Obviously, we cannot assume that FIRST (Cn
t B1) ∪ FIRST (Cm

t B2) = ∅. In
this simple case however, the choice among the two options is rather easy if
FIRST (B1) ∪ FIRST (B2) = ∅, because we can simply delay it and try to
read n t-tokens first.

In case we have

Cn
t A → Cn+c

t B1 | Cn
t B2

for some c ∈ N+, the problem gets trickier. Again, we try to delay the choice to
avoid backtracking. Let us first try to fetch n + c t-tokens from the scanner. If
the fetch fails due to some other token appearing, we would have to backtrack
and reset the token stream to the first t. Obviously, that doesn’t make sense
since its easier to hold additional information of how much ts have already been
read.

We therefore add the additional field value to a counter Cn
t . (It should

be noted, that value is a variable field, while t and n are constant). value is
initially set to zero and incremented by one, every time a t is fetched from the
scanner. Let us introduce the following naming convention:

Definition 3. We say that a counter Cn
t is applied, if we try to fetch t-tokens

until value = n. We say that a counter has not been fully applied if value < n.

Using this convention and the above example, we try to apply Cn+c
t and if

the counter has not been fully applied, we switch to the second option and try
to apply Cn

t .

Example 5. Let us come back to our example and take the resulting grammar
after eliminating left recursion and introducing variable binding as shown in
Example 4. Let us assume we want to derive Cn

→〈Stmt〉 and we apply the rule

Cn
→〈Stmt〉 → Cn

→〈Nesting〉 Cn
→〈Stmt〉′

7

Applying the rule for Cn
→〈Nesting〉 yields

Cn
→〈Stmt〉 ⇒∗ Cn

→ “if“ 〈Cond〉 “ : “ newline Cn+1
→ 〈Stmt〉 Cn

→〈Stmt〉′

An if statement requires at least one nested statement. Let us assume this is a
simple statement, then we get

Cn
→〈Stmt〉 ⇒∗ Cn

→ “if“ 〈Cond〉 “ : “ newline Cn+1
→ 〈Simple〉 Cn+1

→ 〈Stmt〉′ Cn
→〈Stmt〉′

Next we try to derive Cn+1
→ 〈Stmt〉′ and start to read → symbols. However,

〈Stmt〉′ may be derived to ε and hence we may have to reset the scanner and
“unread” all the →’s already read. The above technique to eliminate backtrack-
ing helps us to omit this step.

3.4 Parser construction

Before starting the actual implementation, we have to take some preprocessing
steps. First we have to eliminate left recursion, bind counters to variables, and
eliminate backtracking as described in Sections 3.1, 3.2, and 3.3, respectively.

Functions that derive a bounded counter, must be passed additional infor-
mation of the counter state. If we have a counter Cn

t , this information includes
the symbol to be counted t, the target value n, and an additional value. The
value is used for backtracking as described in Section 3.3.

Example 6. In the following, we present the essential parts of a compiler
implementation for the grammar defined in Example 2. All sample code is
written in Python (the complete parser code can be found in Appendix B). As
we mentioned in Section 3.3, the data structure of a counter is made up of three
fields:

class Counter(object):
def __init__(self, sym, target, value):

self.sym = sym # symbol to be counted (constant)
self.target = target # target value (constant)
self.value = value # current value (variable)

We now need a function for applying the counter. This function tries to
fetch the symbol to be counted until the counter’s value equals its target value.

def applyCounter(self, counter):
while counter.target > counter.value:

if self.current <> counter.sym:
break # stop on any other symbol

self.readToken()
counter.value = counter.value + 1

All parser functions that do not derive a bounded counter are implemented
straight forward, so we do not mention them further. Let us look at the function
for Cn

t 〈Stmt〉, which derives a counter bounded to a variable. boundedStatement
is the function deriving Cn

t 〈Stmt〉′.

8

def boundedStatement(self, counter):
self.applyCounter(counter)

if counter.value <> counter.target:
self.error("Counter mismatch before statement")

nested statement
if self.current == ifToken:

self.boundedNesting(counter)

simple statement
elif self.current == identifier:

self.simple()

parse next statement within this level
counter.value = 0
self.boundedStatement_(counter)

else:
self.error("Expecting \’if\’ or identifier")

Let us now turn to backtracking. Backtracking is used within if statements.
There must be at least one statement that within the statement sequence of this
if. For every further statement, the parser does not know in advance which level
this statement belongs to until it has counted all indentation symbols. Note,
that the counter for the nested statement sequence is really a new object.

def boundedNesting(self, counter):
self.applyCounter(counter)

if counter.value <> counter.target:
self.error("Counter mismatch before if")

if self.current == ifToken:
self.readToken()
self.condition()

if self.current == colon:
self.readToken()

else:
self.error("Expecting \’:\’")

if self.current == newline:
self.readToken()

else:
self.error("Expecting newline")

c = Counter(counter.sym, counter.target + 1, 0)
self.boundedStatement(c)

if c.value < c.target:

9

switch back to old level
counter.value = c.value
self.boundedStatement_(counter)

else:
self.error("if expected")

4 Conclusion

In this work, we showed that programming languages that use indentation for
determining the nesting level, cannot generally be described by a context free
grammar. We also presented a definition of how to extend context free grammars
to solve this problem. A major focus of this work was put on describing a way
to construct an efficient parser out of an indentation sensitive grammar. We
presented several generally applicable techniques, and used them to construct a
parser for a simplified programming language.

References

[1] G. van Rossum. Python Reference Manual, 2006. Available at:
http://www.python.org/.

[2] S.P. Jones. The Haskell 98 report, 2002. Available at: http://www.haskell.org/.

[3] J.D. Ullman A.V. Aho, R. Sethi. Compilers. Addison Wesley, 1986.

10

A Lexical Analyzer (lexer.py)

import string

unknown = 0

error = 1

identifier = 2

integerLiteral = 3

stringLiteral = 4

assign = 5

colon = 6

indent = 7

newline = 8

eof = 9

keywords

ifToken = 10

keywords = [’if’]

def isLetter(c):

return c in string.ascii_letters

def isDigit(c):

return c in string.digits

def getTokenNr(keyword):

return ifToken + keywords.index(keyword)

class Lexer(object):

’’’Lexical analyzer for a python-like syntax. This lexer

recognizes a regular language.

’’’

def __init__(self, filename):

’’’Init a new lexer on an input stream for FILENAME.

’’’

self.input = open(filename, ’r’)

self.line = 1

self.column = 0

self.__readChar()

def __iter__(self):

return self

def next(self):

’’’Get a list of tokens by reading the input stream.

’’’

if not self.current:

return (eof, ’’)

11

while self.current == ’ ’:

self.__readChar()

attr = ’’

token = unknown

identifier and keywords

if isLetter(self.current):

attr = self.current

self.__readChar()

while isLetter(self.current) or isDigit(self.current):

attr = attr + self.current

self.__readChar()

if attr in keywords:

token = getTokenNr(attr)

attr = ’’

else:

token = identifier

integer literals

elif isDigit(self.current):

attr = self.current

self.__readChar()

while isDigit(self.current):

attr = attr + self.current

self.__readChar()

token = integerLiteral

assignment

elif self.current == ’=’:

token = assign

self.__readChar()

elif self.current == ’:’:

token = colon

self.__readChar()

elif self.current == ’\t’:

token = indent

self.__readChar()

elif self.current == ’\n’:

token = newline

self.__readChar()

return (token, attr)

def __del__(self):

’’’Perform clean up on deletion.

’’’

12

self.input.close()

def __readChar(self):

self.current = self.input.read(1)

if self.current == "\n":

self.line = self.line + 1

self.column = 0

else:

self.column = self.column + 1

if __name__ == ’__main__’:

l = Lexer(’test.py’)

for token in l:

print token

B Parser (parser.py)

from lexer import *

class Counter(object):

""" A counter has three fields:

- counter symbol (constant)

- counter target (constant)

- counter value (variable)

A counter is said to be satisfied, if target equals value.

"""

def __init__(self, sym, target, value):

self.sym = sym

self.target = target

self.value = value

class Parser(object):

""" Parser for a simplifed programming language described

by an indentation sensitive grammar.

"""

def __init__(self, filename):

""" Init lexer for the input file and set current token.

"""

self.lexer = Lexer(filename)

self.current = (0, ’’)

self._readToken()

def parse(self):

""" Run the actual parser.

"""

self._program()

13

def _readToken(self):

""" Read a new token from scanner.

"""

self.current = self.lexer.next()

print "reading ", self.current

def _mark(self, msg):

""" Print an error message and stop parsing.

"""

raise Exception("Error at %d,%d: %s" %(self.lexer.line, self.lexer.column, msg))

def _applyCounter(self, counter):

""" Try to read counter symbols until the counters

value equals the counters target.

"""

while counter.target > counter.value:

if self.current[0] <> counter.sym:

break

self._readToken()

counter.value = counter.value + 1

def _program(self):

""" Start variable in grammar.

S -> C_t^0 <Stmt>’

"""

self._boundedStatement_(Counter(indent, 0, 0))

def _boundedStatement_(self, counter):

""" C_t^n <Stmt>’ -> C_t^n <Stmt> | epsilon

"""

self._applyCounter(counter)

if counter.value == counter.target and self.current[0] <> eof:

self._boundedStatement(counter)

def _boundedStatement(self, counter):

""" C_t^n <Stmt> -> C_t^n <Nesting> | C_t^n <Simple>

"""

self._applyCounter(counter)

if counter.value <> counter.target:

self._mark("Counter mismatch before statement")

print "level ", counter.target

nested statement

if self.current[0] == ifToken:

14

self._boundedNesting(counter)

simple statement

elif self.current[0] == identifier:

self._simple()

use current counter to parse next statement within this level

counter.value = 0

self._boundedStatement_(counter)

else:

self._mark("Expecting \’if\’ or identifier")

def _boundedNesting(self, counter):

""" C_t^n <Nesting> -> C_t^n if <Cond> : \n C_t^n+1 C_t^n <Stmt>’

"""

self._applyCounter(counter)

if counter.value <> counter.target:

self._mark("Counter mismatch before if")

nested statement

if self.current[0] == ifToken:

self._readToken()

self._condition()

if self.current[0] == colon:

self._readToken()

else:

self._mark("Expecting \’:\’")

if self.current[0] == newline:

self._readToken()

else:

self._mark("Expecting newline")

c = Counter(counter.sym, counter.target + 1, 0)

self._boundedStatement(c)

if c.value < c.target:

switch back to old level

counter.value = c.value

self._boundedStatement_(counter)

else:

self._mark("if expected")

def _condition(self):

""" <Cond> -> identifier

"""

if self.current[0] == identifier:

self._readToken()

else:

15

self._mark("identifier expected")

def _simple(self):

""" <Simple> -> identifier = intLiteral

"""

if self.current[0] == identifier:

self._readToken()

else:

self._mark("identifier expected")

if self.current[0] == assign:

self._readToken()

else:

self._mark("Expecting \’=\’")

if self.current[0] == integerLiteral:

self._readToken()

else:

self._mark("Expecting integer")

if self.current[0] == newline:

self._readToken()

else:

self._mark("newline expected")

if __name__ == "__main__":

import sys

if len(sys.argv) > 1:

p = Parser(sys.argv[1])

p.parse()

else:

print "Usage: %s INFILE" % sys.argv[0]

16

