
Semantics-Preserving and Incremental
Runtime Patching of Real-Time Programs†

Christoph M. Kirsch
University of Salzburg
ck@cs.uni-salzburg.at

Luı́s Lopes
CRACS/University of Porto

lblopes@dcc.fc.up.pt

Eduardo R. B. Marques
University of Porto
edrdo@dcc.fc.up.pt

Abstract

We propose semantics-preserving and incremental run-
time patching of real-time programs as a robust means for
reconfiguring hard real-time systems at runtime. We con-
sider programs that describe non-functional aspects of pro-
cesses such as their timing properties and communication
behavior, and give examples written in the Hierarchical
Timing Language (HTL). Runtime patching is the process
of replacing portions of such programs at runtime by new
code. It is semantics-preserving if the switch to the result-
ing code and the code itself could have been compiled be-
forehand, had the patch been known. It is incremental if
analyzing and generating the code only involves an effort
proportional to the size of the patch, not the patched pro-
gram. This can even be done with system-wide properties
such as schedulability by exploiting HTL-specific features.

1. Introduction
Software has the great advantage of being flexible. In

fact, for now, it probably remains the single most flexible
concept for engineering even the most complex systems.
The majority of IT industries exploit that flexibility and
sometimes even use it as foundation for their business mod-
els. There are important exceptions though. Large portions
of the real-time systems industry, in particular, the ones
working on mission- and safety-critical applications essen-
tially ignore software-related flexibility. There are goodrea-
sons after all. Getting large software systems and, in partic-
ular, real-time systems right is still extremely difficult.How
can we then even think about modifying such systems while
they are running? Clearly, adaptivity is not just a nice-to-
have feature, especially in real-time systems where it may

†C. M. Kirsch is supported by a 2007 IBM Faculty Award, the EU
ArtistDesign Network of Excellence on Embedded Systems Design, and
the Austrian Science Fund No. P18913-N15. L. Lopes is partially sup-
ported by project CALLAS from Fundação para a Ciência e Tecnologia
(contract PTDC/EIA/71462/2006). E. R. B. Marques is supported by the
SFRH/BD/29461/2006 grant from Fundação para a Ciência eTecnologia.

We would like to thank João Sousa and Raja Sengupta for inspiration
in this work and Sebastian Fischmeister for some relevant suggestions and
comments.

give rise to unforeseen application scenarios and software
development methodologies. What is even more exciting
though is that the essential, enabling technologies may cur-
rently be shaping up to make adaptivity of even hard real-
time systems a reality.

We believe there are two key ingredients. Adaptivity
needs a strong semantical foundation and non-trivial scal-
ability. We need to know what reconfiguration means and
how to do it fast, even on large systems. There is a growing
research trend towards so-called semantics-preserving exe-
cution environments for real-time systems such as the real-
time language Giotto [9] and its successors but also other
work on synchronous reactive languages [2], which provide
notions of composability that go beyond the typical schedu-
lability guarantees of more traditional real-time languages
and operating systems. For example, Giotto programs can
be modified without changing the relevant properties of the
unmodified portions as long as there are sufficient computa-
tional resources. Relevant properties are not just schedula-
bility but also task functionality, intertask communication,
and I/O times. Nevertheless, checking schedulability and
other system-wide properties remains necessary but is of-
ten difficult and may limit scalability of reconfiguration at-
tempts. Recent work, however, on incremental schedulabil-
ity analysis of traditional task models [5] but also language-
based models [7], in combination with stronger, semanti-
cal notions of composability, may lead to fast, scalable, and
semantics-preserving reconfiguration of real-time systems.

In this paper, we propose semantics-preserving and in-
crementalruntime patchingof real-time programs as a ro-
bust means for reconfiguring even large systems at runtime,
and give examples written in HTL [7], a Giotto succes-
sor. So far, we have only studied the idea conceptually and
worked with examples. Our plan is to design and imple-
ment runtime patching support in our existing HTL infras-
tructure [1] and perform experiments with unmanned vehi-
cles in Salzburg [4] and Porto [12]. In Section 2, we give an
intuitive overview of our approach. In Section 3, key con-
cepts of HTL are provided, followed by a presentation of an
HTL-based runtime patching model in Section 4.



2. Runtime Patching
We consider programs that describe non-functional as-

pects of processes such as their timing properties and com-
munication behavior. The syntax tree of such a programP

is depicted schematically in the left portion of Fig. 1. The
program describes a set of processes as illustrated in the
right portion of Fig. 1. We assume that there is a means to
identify subprograms of a given program, for instance, by
unique path names. The syntax tree in Fig. 1 shows such a
pathσ to a subprogramS of P . We also assume that there is
a homomorphic relationshipF between (syntactic) program
and (semantical) process composition in the sense that a
strict subprogram of a given program can only affect the rel-
evant behavior of a strict subset of the processes described
by the program, i.e.,F (P \ S + S) = F (P \ S) + F (S).
Fig. 1 indicates that subprogramS only affects the rele-
vant behavior of a strict subset of all processes described
by programP . Examples of relevant behavior are process
functionality, periodicity, and I/O times while resource con-
sumption such as CPU usage is not. Processes described by
S may share resources with processes described by other
parts ofP and may therefore affect their access to resources.
We discuss how to check resource consumption in principle
below.

Figure 1. Syntax and semantics

By runtime patching we intuitively mean the process of
identifying a subprogramO of a programP by a pathσ

and then replacingO in P by a new programN , logically
instantaneous at runtime, i.e., during the execution ofP ,
resulting in a programP ′, as shown in Fig. 2. The time
instant when the patch takes effect is called the install in-
stantI. Applying a runtime patch may take time and may
therefore be started some time beforeI. However, a runtime
patch should only take effect atomically atI, similar to, for
example, atomic transactions in databases. Runtime patch-
ing enables software adaptivity because patches (σ andN )
do not need to be known at compile time, and programs do
not need to be stopped for patching. Patch operator imple-
mentations may require some form of dynamic loading and
linking as well as possibly incremental compilation, unless
programs are interpreted.

We do not intend runtime patching to extend the expres-
siveness of the language in which patched programs are
written. In fact, we advocate runtime patching to preserve
the exact original language semantics. In other words, there
must be a programQ that is syntactically equivalent toP
but with O replaced by a conditional expression choosing

Figure 2. Patching

betweenO andN as illustrated in Fig. 3. During the exe-
cution ofQ, the conditional expression, depicted by a box,
mimicks runtime patching by switching fromO to N ex-
actly atI, i.e., whenO in P is patched to becomeN . Run-
time patching is thus a semantics-preserving means to mod-
ify programs at runtime in a way that could have been done
at compile time, if the timing of the patch (I) and the patch
itself (σ andN ) had already been known.

Figure 3. Preserving semantics
Runtime patching involves program analysis and code

generation. If a patch requires re-checking program-wide
properties such as overall resource consumption, or even
full re-compilation, runtime patching may either be limited
in scale or may take too long and make the application of
the patch ineffective. However, incremental compilation,
i.e., incremental program analysis and code generation, may
enable fast and scalable runtime patching. With incremen-
tal program analysis, checking if the patched programP ′ is
correct, given that the original programP is correct, should
only involve an effort proportional to the size of the patch
(σ andN ) and some contextC of the patch but independent
of P , as shown in Fig. 4. The size ofC should be deter-
mined by the size of the patch. Similarly, code generation
should be proportional to the size of the new programN ,
and linking should only involve considering contextC.

Figure 4. Scalability
Incrementally checking even global properties such as

overall resource consumption may also be possible by tak-
ing advantage of language properties such as, ifP is correct
(e.g., resource-compliant) and programN is in some sense



compatible with contextC, thenP ′ is also correct. This
property reduces checking global correctness to checking
local compatibility. For example,C may contain an abstract
specification implicitly describing a possibly infinite setof
concrete programs for which the resulting patched program
is guaranteed to be correct, i.e., without re-checking global
correctness. Then, checking if a concrete program is com-
patible with the abstract specification is sufficient for global
correctness (but not necessary since there might be concrete
programs that are incompatible but for which the patched
program is correct anyway).

3. HTL Overview
The Hierarchical Timing Language (HTL) [7] is a co-

ordination language for distributed hard real-time applica-
tions. HTL programs specify timing properties and commu-
nication behavior of interacting real-time tasks that are po-
tentially distributed across multiple hosts but not task func-
tionality, which is assumed to be implemented in some other
language than HTL. Prior to execution, HTL programs are
compiled into E code [10], or HE code [8], which supports
separate compilation. E and HE code are interpreted in real
time by a virtual machine, which uses an EDF scheduler for
executing the tasks. The ability to compile parts of HTL
programs separately [8] and check their schedulability in-
crementally [7] is a prerequisite for incremental runtime
patching of HTL programs.

Figure 5. Tasks and communicators

Tasks and communicators. An HTL task is defined by a
sequential code procedure with no internal synchronization,
a set of input/output variables calledports, a period for ex-
ecution, and a worst-case execution time (WCET). Tasks
with different periods interact by exchanging port values
throughcommunicators, which are timed variables that can
be read and written at logical time instants according to the
communicators’ own periods. This interaction is illustrated
in Fig. 5. The periods of interacting tasks must be multiples
of the involved communicator periods. Tasks with the same
period may interact with other tasks through their ports as
long as the tasks read from have completed and the reading
tasks have not yet started executing, which gives rise to task
precedence constraints.

An HTL task has alogical execution time(LET) given
by its releaseandterminationevents, which are defined by

communicator read and write actions: the release time is
the latest time instant for a communicator read and the ter-
mination time is the earliest time instant for a communicator
write. Fig. 5 illustrates this for taskst1 andt2 and their
interaction through communicatorsc1 to c4. This task
model is a generalization of the LET model in Giotto [9], to
tasks with input and output ports interacting through com-
municators. The key advantage of the LET model is that the
relevant behavior of LET programs (functionality but also
exact I/O times) is preserved across different hardware plat-
forms and software workloads as long as there are sufficient
computational resources [9].

Figure 6. An HTL program

Program structure. Building up on the foundation of
tasks and communicators, the other structuring concepts in
HTL are modes, modules, programs, and hierarchical pro-
gram refinement. Fig. 6 gives an overview of their assembly
and execution.

A modeis a set of tasks with the same period (the mode’s
period) and an acyclic graph that expresses data flow among
input and output ports of the tasks in the mode. A mode’s
execution equals the logical execution of all its tasks un-
der communicator timing constraints (to interact with tasks
external to the mode) but also under task precedence con-
straints. For example, in Fig. 6,t2 in modem1 is only
released aftert1 has completed, even thought2’s release
time (the access toc1) is actually earlier. Amoduleis set of
modes and a set of boolean predicates calledmode switches
that are evaluated over communicators and ports. At any
time, exactly one mode executes within a module, and, at
the end of its period, execution is either switched to a dif-
ferent mode in the module or continued in the same mode,
according to the evaluation of mode switches. For example,
in Fig. 6, in moduleM2, the mode switchs3 is evaluated
at time instant 6 at the end of the execution of modem2
and changes execution to modem3. A set of modules and
a set of communicator declarations form aprogram, and a
program’s execution equals the parallel execution of all its
modules with the tasks interacting through the program’s
communicator set. For example, in Fig. 6, programP1 con-
sists of modulesM1 andM2 as well as communicatorsc1,
c2, andc3.



Hierarchical program structure is expressed usingrefine-
mentof a mode by an entire program, as shown in Fig. 6 for
modem3 and programP2. A mode being refined, called
the parent mode, may have declaredabstract tasksthat
have no implementation and simply act as schedulability-
conservative place-holders forconcrete tasksin the refine-
ment program conforming to a set of syntactic restric-
tions [7]. The refinement constraints preserve schedulabil-
ity and simplify program analysis: if the parent mode is
analyzed and asserted as schedulable, then the refinement
program is also known to be schedulable. Checking refine-
ment constraints is generally faster and more scalable than
checking schedulability and can therefore be done incre-
mentally. The former is linear in the size of the refinement
program whereas the latter may be exponential in the size
of the refined mode because of higher-level mode switching.
We have also studied refinement constraints with so-called
logical reliability of communicator updates instead of task
schedulability [3] but have not yet considered it in runtime
patching.

4. A Runtime Patching Model for HTL

Runtime patching for HTL requires a mechanism to load,
analyze, and apply patches at runtime. We propose to use a
patch supervisorprocess that monitors a running HTL pro-
gram and allows its patching. The patch supervisor is not
meant to be an HTL entity itself but one that operates on
top of it in the sense of a program rewriting other programs
in congruence with our principle that syntax and semantics
of the patched programs are preserved. The patch supervi-
sor should apply instrumentation in a way that at any time
instant the running program is a proper instance of the orig-
inal language in which it was written. Also, it should be
executed at a lower priority than the patched program, so
that the real-time performance requirements of the latter are
not compromised, and only declare a patch as ready to take
effect once all required time-consuming aspects of readying
the patch are done. Its typical cycle will be: attend to pro-
gram patch requests, perform program re-compilation, and
apply patches logically instantaneous at time instants that
ensure coherent atomic transitions between the original and
patched program.

Figure 7. An HTL program patch

Patch specification. Fig. 7 displays an HTL programP
in the form of a simplified syntax tree and a patch applied
to it yielding programP ′. A patch may consist of mul-
tiple program transformations, expressed at the syntactic,
source-code level, through rewriting of the program’s syn-
tax tree. The diamond notation represents a program trans-
formation through patching, with the original subprogram
on the left and the new subprogram on the right. The patch
shown consists of changes at the mode level for module
M1 (transformationsϕ1 to ϕ5) and at the module level for
the top-level program (ϕ6 andϕ7). Patching at the mode
level within a module can change an existing mode (ϕ1 to
ϕ3), delete a mode (ϕ4), and add a new mode (ϕ5). Patch-
ing an existing mode may change timing properties like a
mode’s period, as inϕ2, but also other aspects (e.g., within
ϕ1 andϕ3) like task precedences, communicator accesses
and WCET estimate, as well as functional aspects like task
and mode switch implementations. Patching at the mod-
ule level may remove (ϕ6) and add modules (ϕ7). Program
patching may also be recursive and apply to refinement pro-
grams. In constrast to [6], which describes a mechanism
for semantics-preserving replacement of real-time program
functionality for the Timing Definition Language (TDL), a
subset of Giotto and thus of HTL, our approach generalizes
to patching concurrent modules and, in particular, modes,
besides considering scalability aspects for patching.

Figure 8. Runtime compilation

Runtime compilation. Compilation of a patched HTL
program at runtime must validate the program syntactically
to assert the program as valid, analyze the schedulability
of the program depending on the type of transformations
applied, and re-generate and link code for the changed pro-
gram parts. Syntactic validation needs to consider only a
context composed of the modified parts and their dependen-
cies, which are induced by program refinement and commu-
nicator writes that may be performed by pre-existing mod-
ules (which could result in race conditions). Code gener-
ation for HTL may adopt a separate compilation strategy
even down to the level of modes [8]. Thus it is possible to
re-generate code only for the modified parts of a patched
HTL program.

The subprogram context for syntactic validation and
code generation for each transformation in our patching ex-
ample is illustrated by Fig. 8. Syntactic validation and code
generation is required for all changed and added functional-
ity, as shown. Assuming there are no dependencies induced
by communicator writes in the example, there is, however,
a need to account for the dependencies of program parts



changed by program refinement: even though the refine-
ment program form1 does not require re-compilation, it
must nevertheless be re-checked with respect to syntactic
refinement constraints to make sure that the patched pro-
gram is still schedulable.

In general, schedulability analysis, however, may not be
scalable if the patch targets top-level specifications. If tim-
ing behavior is patched, schedulability analysis is only in-
cremental to changes if the patched program is a refine-
ment but not a top-level program since only refinement con-
straints preserve schedulability. If a top-level program is
in question, as in our example, then schedulability may be
asserted through full program analysis but with exponen-
tial time complexity in the size of the program, or poten-
tially faster through other incremental schedulability analy-
sis techniques such as in [5], assuming they can be general-
ized to cover mode switching.

Figure 9. Patched execution
Patched execution. For the patch supervisor to instru-
ment running HTL programs logically instantaneous in a
semantics-preserving way, we consider the timing and in-
tegrity effects of patching. A runtime patch at the level of
modules executing concurrently within an HTL program is
constrained by the transformations it involves: (1) modules
added by the patch must not be started before the time in-
stant that marks the beginning of the least common multiple
of all communicator periods in the module, so that the mod-
ule has a coherent time origin, (2) modules removed by the
patch must terminate execution as soon as the current mode
ends execution (the outcome of mode switch evaluation will
be ignored), and (3) modules changed by the patch must
switch to the patched behavior when execution of the cur-
rent mode ends, including the evaluation of mode switches
which must yield a mode that is defined in the patched pro-
gram, i.e., one that has not been removed.

The time instants to which patching is constrained by
(1) to (3) determine the set of possible install instants for
the patch. We assume that activating the patched program
takes logically zero time. As discussed before, all time-
consuming aspects of runtime compilation complete before
the install instant. In the sense of the various aspects sur-
veyed in [11], the runtime patching model we consider is
thereforesynchronous. If the patch involves more than one
kind of transformation, the install instant must satisfy all
of their timing constraints, i.e., be a valid synchronization
point for all transformations. This condition may be relaxed

for simultaneous module updates and removals to happen
before additions. New modules could start after all mod-
ule updates and removals have been completed. This mode
of operation can be interesting for defining more flexible
patching schemes. However, it would imply an interval of
logical time for patching, rather than a logical time instant,
and require additional schedulability analysis, as inasyn-
chronouspatching [11]. In any case, a patch supervisor has
the flexibility of applying different transformations thatmay
be part of a set of patches at different appropriate time in-
stants, so the above constraints may not be too restrictive.

Fig. 9 illustrates patched execution for our example. The
patch is applied logically at time instant 4 in line with the
constraints stated above. Time instant 4 is the least com-
mon multiple of all communicator periods (1, 2, 4 forc1,
c2, andc3 in Fig. 7), so thatM4 can be started at that time
assuming that mode execution forM1 (modified) andM3
(deleted) properly terminates. The patched execution within
moduleM1 shows changed components and sample mode
switching behavior. When patching has completed, execu-
tion is switched fromm1 (according to the specification of
old code form1) to the patched version of itself. Any other
switch would also be valid as long as the target mode is
defined in the patched program (m2, m3, or m5). A mode
switch tom4 at time instant 4 would invalidate the patching
operation since the patch specifiesm4 to be deleted.

References
[1] J. Auerbach, D. Bacon, D. Iercan, C. Kirsch, V. Rajan,

H. Röck, and R. Trummer. Java takes flight: Time-portable
real-time programming with Exotasks. InProc. LCTES, 2007.

[2] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis. Semantics-
preserving multitask implementation of synchronous pro-
grams.ACM TECS, February 2008.

[3] K. Chatterjee, A. Ghosal, D. Iercan, C. Kirsch, T. Henzinger,
C. Pinello, and A. Sangiovanni-Vincentelli. Logical reliability
of interacting real-time tasks. InProc. DATE, 2008.

[4] S. Craciunas, C. Kirsch, H. Röck, and R. Trummer. The
JAviator: A high-payload quadrotor UAV with high-level pro-
gramming capabilities. InProc. AIAA GNC, 2008.

[5] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremental
schedulability analysis of hierarchical real-time components.
In Proc. EMSOFT, 2006.

[6] S. Fischmeister and K. Winkler. Non-blocking deterministic
replacement of functionality, timing, and data-flow for hard
real-time systems at runtime. InProc. ECRTS, July 2005.

[7] A. Ghosal, T. Henzinger, D. Iercan, C. Kirsch, and
A. Sangiovanni-Vincentelli. A hierarchical coordinationlan-
guage for interacting real-time tasks. InProc. EMSOFT,
2006.

[8] A. Ghosal, D. Iercan, C. Kirsch, T. Henzinger, and
A. Sangiovanni-Vincentelli. Separate compilation of hierar-
chical real-time programs into linear-bounded embedded ma-
chine code. InOnline Proc. APGES, 2007.

[9] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-
triggered language for embedded programming.Proc. of the
IEEE, January 2003.

[10] T. Henzinger and C. Kirsch. The Embedded Machine: pre-
dictable, portable real-time code. InProc. PLDI, 2002.

[11] J. Real and A. Crespo. Mode change protocols for real-time
systems: A survey and a new proposal.RTS, Springer, 2004.

[12] Seascout LAUV. http://whale.fe.up.pt/seascout.


