
ACDC-JS: Explorative Benchmarking of
JavaScript Memory Management

Martin Aigner+ Thomas Hütter+ Christoph M. Kirsch+

Alexander Miller+ Hannes Payer∗ Mario Preishuber+
+University of Salzburg ∗Google, Inc.

firstname.lastname@cs.uni-salzburg.at hpayer@google.com

Abstract
We present ACDC-JS, an open-source1 JavaScript memory man-
agement benchmarking tool. ACDC-JS incorporates a heap model
based on real web applications and may be configured to expose
virtually any relevant performance characteristics of JavaScript
memory management systems. ACDC-JS is based on ACDC [11],
a benchmarking tool for C/C++ that models periodic allocation and
deallocation behavior (AC) as well as persistent memory (DC). We
identify important characteristics of JavaScript mutator behavior
and propose a configurable heap model based on typical distri-
butions of these characteristics as foundation for ACDC-JS. We
describe heap analyses of 13 real web applications extending ex-
isting work on JavaScript behavior analysis [13]. Our experimental
results show that ACDC-JS enables performance benchmarking
and debugging of state-of-the-art JavaScript virtual machines such
as V8 and SpiderMonkey by exposing key aspects of their memory
management performance.

Categories and Subject Descriptors D3.4 [Programming Lan-
guages]: Memory Management

General Terms Performance, Measurement

Keywords benchmarking; automatic heap management; program
behavior

1. Introduction
JavaScript performance is an important issue for supporting the
next generation of web applications. Browser vendors compare
their products mainly by presenting JavaScript benchmarking re-
sults. As a consequence, development of JavaScript virtual ma-
chines is driven by industry-standard benchmarking suites. How-
ever, recent studies suggest that such benchmarks do not reflect the
behavior of real web applications [13]. Speedups based on such
benchmarks do therefore not necessarily translate into speedups
of real web applications [16] since JavaScript implementations

1 https://github.com/chromium/ACDC4GC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DLS ’14, October 20–24, 2014, Portland, OR, USA.
Copyright c© 2014 ACM 978-1-4503-3211-8/14/10. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2661088.2661089

are tuned to perform well on such benchmarks. Furthermore, the
benchmark suites only cover a small set of possible workloads.

One important issue in JavaScript performance is memory
management which affects all important performance dimensions
namely throughput and latency as well as memory consumption.
However, the most common JavaScript benchmarking suites Oc-
tane (Google) [5], Kraken (Mozilla) [4], and SunSpider (We-
bKit) [9] focus mainly on throughput and only two recent bench-
marks in Octane (SplayLatency and MandreelLatency) provide
information on garbage collection latency and compiler latency,
respectively. No memory consumption is reported by any bench-
marking suite because there is no portable way to measure memory
consumption from within JavaScript running in a browser.

We propose ACDC-JS, an open source JavaScript memory man-
agement benchmarking tool based on ACDC which is a tool for
benchmarking memory allocators for C/C++ [11]. ACDC-JS im-
plements an configurable allocation model that allocates objects of
different sizes periodically (AC) as well as permanently (DC). Ad-
ditionally, ACDC-JS may be configured to create heap structures
to emulate data structures found in real applications. ACDC-JS re-
ports throughput and latency of memory allocation and access as
well as memory consumption. ACDC-JS may thus expose trade-
offs of implementation details of JavaScript garbage collectors.

In this work we extend recent studies on the allocation behavior
of real JavaScript applications [13] and use this information to im-
plement a configurable mutator model for benchmarking JavaScript
memory management systems. Although we believe that it is not
possible to have the realistic benchmark, we do believe that hav-
ing a configurable workload generator based on properties found
in real web applications is useful to cover a large set of possible
and meaningful workloads. We also verify experimentally that the
allocation behavior of ACDC-JS is comparable to the average allo-
cation behavior of the real JavaScript applications.

Our experimental evaluation of the state-of-the-art JavaScript
virtual machines V8 and SpiderMonkey shows that ACDC-JS is
capable of exposing differences in all relevant performance dimen-
sions as well as exposing trade-offs of different garbage collection
policies implemented in different configurations of the VMs. The
evaluation follows a 4-step process for performance debugging that
begins with selecting an expected performance characteristic of a
given memory management feature, e.g., high allocation through-
put with generational GCs on workloads with mostly short-living
objects. We then design a workload that exposes this characteristic
and, ideally, still resembles the memory usage of real applications.
The third step is to configure ACDC-JS such that it emulates this
workload. The final step is to run ACDC-JS in this configuration
and compare the result with our expectations.

In total, we present three experiments: (1) throughput of gener-
ational garbage collection, (2) latency of incremental marking, and
(3) performance robustness against varying object sizes. The first
experiment confirms the performance advantage of generational
garbage collection on workloads with mostly short-living objects.
This experiment also reveals the impact of incremental marking
on throughput, latency, and memory consumption in the presence
of long-living objects. The second experiment follows up on the
first with an in-depth analysis of the full throughput, latency, and
memory consumption trade-off with incremental marking, and in
turn reveals the cost of barriers for generational garbage collection.
The third experiment checks performance robustness against vary-
ing object sizes and reveals a potential performance bug in V8 that
produces large variations in latency for neighboring size classes.

This paper makes the following contributions: (1) An analysis
of popular and JavaScript-intensive real web applications to obtain
distributions of object size and heap structure properties (confirm-
ing existing studies on the distribution of object types and lifetimes)
and (2) a JavaScript implementation of the ACDC benchmarking
tool that is enhanced to incorporate (1) and capable of exposing
performance differences and anomalies in various configurations
of V8 and SpiderMonkey by exploring a large range of workloads.

2. Related Work
Given the importance of JavaScript for programming web appli-
cations, there are surprisingly few papers on JavaScript perfor-
mance analysis. Developers of JavaScript implementations rely on
benchmark suites like Octane (Google) [5], Kraken (Mozilla) [4],
and SunSpider (WebKit) [9] to evaluate the performance impact
of certain implementation details. However, behavioral analysis
and comparison to the behavior of real-world applications sug-
gest that the benchmark suites are not representative of real work-
loads [13, 14, 16].

Recent literature [16] proposes a record-and-replay approach to
create macro benchmarks automatically based on real web appli-
cations. While this approach improves the representativeness of a
benchmark it does not allow to create workloads for exposing cer-
tain performance characteristics of a JavaScript implementation.
ACDC-JS, on the other hand, aims at preserving the representa-
tiveness of real world applications (macro benchmarks) while also
providing the ability to test the performance of specific implemen-
tation details (micro benchmarks). However, since ACDC-JS can
never emulate all possible real applications we believe that replay-
ing traces of real applications can be a meaningful extension to the
synthetic nature of ACDC-JS.

Previous work on real JavaScript application behavior [13, 14]
performed an extensive analysis in terms of the execution of func-
tions and code, heap allocation of objects and data, and the perfor-
mance of event handling. In our work we focus on heap allocation
behavior and extend previous work [13] with an analysis of object
size distribution and heap graph properties to provide a more de-
tailed allocation model that covers all relevant aspects of memory
management performance in JavaScript implementations.

Another approach to extend the understanding of JavaScript
behavior focuses on the use of dynamic language features, e.g.,
changing the prototype chain, adding or deleting properties, or the
use of eval, rather than the utilization of dynamic memory [15, 17].
Although ACDC-JS does not aim at modeling dynamic features of
JavaScript we rely on the conclusion that they are rarely used in
real applications and therefore do not employ such features in our
implementation with the additional benefit of avoiding their side
effects on ACDC-JS’s execution.

The approach of model-based performance analysis is based on
ACDC [11], here denoted ACDC-C, where empirical data on prop-
erties of real applications allows the implementation of a workload

model that preserves representativeness of benchmarks but can also
be configured to expose corner cases in the performance of mem-
ory management systems. However, ACDC-C focuses on explicit
allocation and deallocation in C/C++. Our model requires differ-
ent parameters and a different implementation to represent memory
management workloads of JavaScript applications. Section 4 gives
a short overview of ACDC-C and describes our adaptations towards
ACDC-JS.

A lot of work has been published on benchmarking Java virtual
machines including their memory management performance. The
DaCapo benchmark suite [12] seems to be the gold standard for
Java performance analysis today. However, the DaCapo suite is a
selection of real applications covering a large range of workloads
and thus very different from ACDC’s approach. We have ported
ACDC-C to Java as well but a release incorporating our experiences
with ACDC for Java is future work. To the best of our knowledge
there is also no benchmarking suite for other managed languages
that is similar to our approach.

3. JavaScript Heap Analysis
Modeling a configurable allocation behavior requires understand-
ing the properties of the allocation behavior of real-world applica-
tions. Recent work on JavaScript application behavior [13, 14, 16]
provides empirical data of real web applications and shows that
state-of-the-art benchmarks do not reflect their allocation behav-
ior. Unfortunately, not all aspects that we would like to model
in ACDC-JS are covered, namely distribution of object sizes and
structural information of typical JavaScript heaps. In this section
we describe our analysis of real-world JavaScript applications and
present the results that we incorporate in our allocation model of
ACDC-JS.

Our heap analysis is based on sampling the JavaScript heap in
regular intervals. The applications and user interactions we have
analyzed are listed in Table 1. For comparability, the selection is
similar to previous work on JavaScript application behavior [13].

We utilize the heap snapshot facility of the Chrome Dev-
Tools [3] which is part of the V8 JavaScript virtual machine. Note
that we modified V8 to create a heap snapshot automatically at a
sample rate of 4 KB, i.e., a snapshot is created whenever 4KB of
new objects are allocated by the application. Taking a heap snap-
shot triggers a full GC cycle so the resulting snapshot is a graph
representation of all reachable objects on the JavaScript heap. It
contains information about the size of the objects, their type, and
also the structure of the heap through references between the ob-
jects. The web applications are executed in the Chromium browser
running our modified version of V8 and the user interactions are
automated by the Selenium browser automation framework [8].
Note that performing our analysis based on V8 might have side
effects not visible in other VMs. However, we believe that for our
purpose the abstraction of the heap snapshots is portable enough to
create a configurable mutator model.

For our model, we are interested in the distribution of object
types, sizes and lifetimes, the number of outgoing edges, and the
distance from the GC roots to the objects. For each property, we
now describe the way in which we have retrieved the distribution
from the snapshots and discuss the results.

The object type distribution is a histogram of the types of all ob-
jects allocated in each workload. The object type is provided in the
heap snapshots. No additional processing of the snapshot data was
necessary. Figure 1 illustrates the object type distribution for all
workloads. Note that the heap snapshots also contain information
specific to the V8 virtual machine and the DevTools heap snapshot-
ting mechanism, namely hidden classes that describe object prop-
erties in V8, and so-called synthetic nodes that represent GC roots.
We disregard such information here. The type distribution in our

Site User interaction

CNN Read start page news, switch to category
cnn.com Europe, read first article of Top Europe Stories.

The Economist Read start page news, switch to category
economist.com Science & technology, read first article.

ESPN Read start page news, switch to NASCAR, click
espn.com on Results and read site.

Hotmail Sign in, check inbox, send email, read an email,
hotmail.com delete it, and sign out.

Gmail Sign in, check inbox, send email, read an email,
www.gmail.com delete it, and sign out.

Bing Search Search for New York and look at
bing.com resulting images and news.

Google Search Search for New York and look at
google.com resulting images and news.

Facebook Login and post a message.
facebook.com

Google+ Login and post a message.
plus.google.com

Bing Maps Search for directions from Austin to
maps.bing.com Houston by car and walk.

Google Maps Search for directions from Austin to
maps.google.com Houston by car and walk.

amazon Search book Quantitative Computer
amazon.com Architecture, add to shopping cart, look at cart.

eBay Search for the book
www.ebay.co.uk Quantitative Computer Architecture.

Table 1: User interactions performed for the heap analysis of real
web applications. The selection is based on the work of Livshits et
al. [13].

 0

 0.2

 0.4

 0.6

 0.8

 1

google plus

facebook

bing search

eBay

google search

am
azon

google m
aps

hotm
ail

espn
bing m

aps

the econom
ist

average

re
la

ti
v
e
 a

m
o
u
n
t
o
f
o
b
je

c
t
ty

p
e
s

workload

array
string
object
code

closure
regexp

number

Figure 1: Histogram of the object type distribution for all work-
loads, confirms the work of Livshits et al. [13].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 32 64 96 128 160 192 224 256

re
la

ti
v
e
 a

m
o
u
n
t
o
f
o
b
je

c
ts

 l
a
rg

e
r

th
a
n
 s

iz
e
 x

size in byte

array
string

object
code

closure
regexp

number

Figure 2: Size distribution of real web applications.

analysis is dominated by arrays, strings, and user-defined objects.
The analysis of object type distribution in the work of Livshits et
al. [13] appears to record less arrays than we do in our analysis. The
discrepancy is caused by growing arrays. Whenever an array grows
in a way that requires copying the original content, we treat the new
array as a logically new heap object. This, of course, increases the
number of allocated arrays and shortens their average lifetime, but
we believe that from the point of view of the memory management
system a copied or moved array is in fact a new object because the
old array can be reclaimed by the GC. This policy is also reflected
in the results on the lifetime of arrays below.

Objects in the heap snapshots have a unique identifier. More-
over, the heap snapshots also contain the size of each object. Hence
we are able to count the number of objects of a certain size of all
snapshots of all workloads. The results are illustrated in Figure 2.
On the x axis we have the size in bytes and on the y axis the relative
amount of objects that are larger than the size on the x axis. Since
the size heavily depends on the object type, we give the size distri-
bution for each type separately. The results are similar to the size
distribution in allocation intensive C programs [18] in the sense that
small objects occur very frequently whereas the amount of large
objects is small. The fixed sizes for numbers, regular expressions
(regexp), and closures are V8 specific and will not be considered in
our model.

For our analysis of object lifetime, we count the number of sub-
sequent snapshots where an object with a certain identifier occurs.
As a consequence, the accuracy of our object lifetime analysis is
limited by the snapshot sampling rate of 4 KB. We present the ob-
ject lifetime distribution in allocated bytes rather than in survived
snapshots to be independent from the snapshot sampling rate. By
allocated bytes we mean the amount of memory newly allocated af-
ter a given object is allocated until this object is identified as dead.
The results are illustrated in Figure 3. The x axis gives object life-
time in KB and the y axis gives the relative amount of objects with
a lifetime longer than x for each object type. Compared to the work
by Livshits et al. [13] arrays live shorter in our analysis for the same
reason discussed above: we treat growing arrays as new objects re-
sulting in a higher occurrence of arrays with shorter lifetime.

We are also interested in the structure of a typical JavaScript
heap. Therefore we analyze the number of outgoing edges of the
heap nodes, called out-degree. Since heap snapshots are graph rep-
resentations we directly derive this property from the snapshots.
Figure 4 shows the out-degree distribution of the analyzed appli-
cations for each object type. On the x axis we have the out-degree

cnn.com
economist.com
espn.com
hotmail.com
www.gmail.com
bing.com
google.com
facebook.com
plus.google.com
maps.bing.com
maps.google.com
amazon.com
www.ebay.co.uk

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 128 256 384 512 640 768 896 1024 1152 1280

re
la

ti
v
e
 a

m
o
u
n
t
o
f
o
b
je

c
ts

 l
iv

in
g
 l
o
n
g
e
r

th
a
n
 x

object lifetime in allocated KB

array
string

object
code

closure
regexp

number

Figure 3: Lifetime distribution of real web applications, confirms
the work of Livshits et al. [13].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

re
la

ti
v
e
 a

m
o
u
n
t
o
f
o
b
je

c
ts

 w
it
h
 a

n
 o

u
t-

d
e
g
re

e
 g

re
a
te

r
th

a
n
 x

out-degree

array
string

object
code

closure
regexp

number

Figure 4: Out-degree distribution of real web applications.

and on the y axis the relative amount of objects with an out-degree
greater than x. Most arrays have a low out-degree which suggests
that JavaScript arrays usually contain primitive types rather than
references to other JavaScript objects.

The in-degree of the graph nodes is also directly derived from
the heap snapshots and presented in the same dimensions as the out-
degree. The results illustrated in Figure 5 suggest that most objects
are referenced by only a few other objects.

Another structural heap property we have analyzed is the short-
est distance from the GC roots to an object. The heap snapshots
contain special nodes to represent the GC roots. Starting from these
nodes we performed a depth first search to all nodes of each work-
load to obtain the minimal root distance. The results for the root
distance distribution are illustrated in Figure 6. On the x axis we
have the minimum root distance and on the y axis we present the
relative amount of object with a minimum root distance greater than
x for each object type. This suggests that 80% of the objects can be
traced from the roots in less than 10 steps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

re
la

ti
v
e
 a

m
o
u
n
t
o
f
o
b
je

c
ts

 w
it
h
 a

n
 i
n
-d

e
g
re

e
 g

re
a
te

r
th

a
n
 x

in-degree

array
string

object
code

closure
regexp

number

Figure 5: In-degree distribution of real web applications.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

re
la

ti
v
e
 a

m
o
u
n
t
o
f
o
b
je

c
ts

 w
it
h
 a

 r
o
o
t
d
is

ta
n
c
e
 g

re
a
te

r
th

a
n
 x

minimum root distance

array
string

object
code

closure
regexp

number

Figure 6: Minimum root distance distribution of real web applica-
tions.

4. Overview of ACDC-C and ACDC-JS
Our approach to benchmarking JavaScript implementations is
based on ACDC-C [11], a multi-core scalable mutator emulation
of allocation intensive C/C++ programs for benchmarking explicit
memory management systems. In this section we will give a brief
overview of ACDC-C and describe our modifications and exten-
sions that enable a detailed analysis of the memory management in
JavaScript virtual machines.

ACDC-C implements an allocation, object sharing, access, and
deallocation model based on the behavior of real-world applica-
tions. Moreover, ACDC-C allows to configure models for explor-
ing corner cases of mutator behavior. Size and liveness of allocated
objects are determined based on random distributions that reflect a
behavior where more small and short-living objects than large and
long-living objects are allocated. For that, ACDC-C implements
a logical notion of time that advances whenever a configurable
amount of memory called the time quantum has been allocated.

ACDC-C distinguishes object liveness and lifetime. Object live-
ness is the time between allocation and last access whereas object
lifetime is the time between allocation and deallocation. The time
between last access and deallocation is called deallocation delay
and emulates deficiencies in identifying dead objects.

String

Array 1 2 ... n

Root

fo
rw

ar
d

re
fe

re
nc

e

Object

References

Payload

Properties

Object

Figure 7: A list-based lifetime-size-class. List nodes support differ-
ent object types and forward references emulate root distance.

ACDC-C collects detailed per-thread information on allocation,
access, and deallocation performance. For each allocation and deal-
location it counts the number of CPU cycles spent in the malloc
and free functions of the allocator. After each newly allocated time
quantum it also counts the CPU cycles spent in accessing the live
objects. This allows to not only compare the allocation and deal-
location performance of allocators and their scalability to multiple
threads but also indicates the quality of the memory layout created
by the allocators.

The experiments [11] suggest that ACDC-C is indeed capable
of exposing differences in all relevant performance dimensions.

While both C/C++ and JavaScript are general purpose program-
ming languages, they differ in many aspects and usually serve dif-
ferent purposes. The remainder of this section discusses their sim-
ilarities and differences as well as the resulting modifications of
ACDC-C that lead to the allocation model of ACDC-JS.

Our analysis of real-world JavaScript programs and related
work [13] suggests that the distribution of object size and live-
ness in JavaScript programs is very similar to C/C++ programs. We
therefore reuse the size and liveness model of ACDC-C.

JavaScript has no language support for concurrency and even
recent asynchronous programming models like web workers [10]
do not support a shared state but implement a message passing
paradigm. As a consequence, we disregard all multi-threading and
object sharing concepts of ACDC-C.

Memory allocators for C/C++ are not aware of the object type
an allocated chunk of memory is supposed to represent in the ap-
plication. This is not the case in JavaScript implementations where,
e.g. number objects might be allocated differently than string ob-
jects. ACDC-JS therefore needs to support allocation of different
data types. Our analysis of real-world JavaScript applications com-
bined with previous work [13] allows us to model such an alloca-
tion behavior.

For ACDC-JS we have also extended the structure of the heap
allocated by ACDC-C since our heap structure analysis suggests
that the original ACDC-C model is not sufficient anymore. ACDC-
C models a very simple relation between allocation and access or-
dering by gathering objects of the same size and liveness in so-
called lifetime-size-classes which are either lists (accesses hap-
pen in allocation order) or binary trees (allocation in pre-order,
left to right, and accesses in pre-order, right-to-left). ACDC-JS
also supports list-based lifetime-size-classes but extends the tree-
based lifetime-size-classes to support more than two child nodes to
emulate objects containing multiple references, shortcuts from the
lifetime-size-class root to certain elements to control the distance
between the objects and the GC roots, and back references from
certain elements to elements at higher levels to emulate cycles in
the object graph. We call such structures heap-based lifetime-size-

Root

...

...

forward reference

Object

References

Payload

Properties

Object

Figure 8: A heap-based lifetime-size-class. Forward references em-
ulate root distance.

classes. Similar to tree-based lifetime-size-classes in ACDC-C, the
access order of elements in heap-based lifetime-size-classes is dif-
ferent from the allocation order because shortcuts and cycles are
randomly added. As a consequence, we preserve the configurabil-
ity of allocation-order access versus out-of-order access but are also
able to emulate complex heap structures that may occur in real-
world applications. Figure 7 and 8 illustrate the structure of the
lifetime-size-classes implemented in ACDC-JS.

Finally, JavaScript does not offer a portable way to gather per-
formance metrics at the same level of granularity than C/C++. We
discuss the limitations in detail in Section 5.1.

5. Implementation Details of ACDC-JS
We reuse the model for typical object size and liveness distributions
from ACDC-C [11] since the JavaScript heap analysis suggests that
the size and liveness distributions of real applications are similar, in
this regard, to those of C/C++ programs. However, we extend the
model with the type distribution discussed in Section 3. The types
dominating typical JavaScript heaps are arrays, strings, and objects.
We adapt the allocation model of ACDC-C accordingly to account
for the relative amount of occurrences of these types.

For emulating realistic memory allocation at runtime ACDC-
JS first selects an object size from a uniformly distributed, dis-
crete interval [2r, 2r+1] where r is selected from a uniformly dis-
tributed, discrete interval [log2(min. size), log2(max. size)). Next,
ACDC-JS selects an object liveness from a uniformly distributed,
discrete interval [min. liveness, max. liveness] and adds the config-
ured deallocation delay to obtain an object lifetime. Then, ACDC-
JS calculates the number of objects to be allocated based on the
previously selected size and liveness with the following formula
defined in [11]:

number of objects = (log2(max. size)− log2(selected size) + 1)2

∗(max. liveness − selected liveness + 1)2

Finally, ACDC-JS also emulates type distribution. In particular,
ACDC-JS randomly selects an object type to be either a string, an
array, or a user-defined object. The average type distribution of real
applications illustrated in Figure 1 shows about the same number
of occurrences of strings and user-defined objects but about 1.5
times more arrays. ACDC-JS approximates this type distribution by
multiplying the number of objects with that factor if the randomly
selected type is an array.

Note that we do not account for types when selecting size and
liveness to keep the allocation model simple and because the size
and lifetime distributions show a similar trend for either arrays,

Parameter Value
time quantum 1024 KB
benchmark duration 100
min. size 8 B
max. size 64 B
min. liveness 1
max. liveness 10
min. root distance 1
max. root distance 20
min. number of references 0
max. number of references 5
list-based ratio determined by type distribution
access live objects TRUE
read-only access FALSE

Table 2: Default settings

strings, and objects. A more detailed allocation model of ACDC-JS
accounting for different liveness based on type information remains
future work.

Strings and arrays are implemented as standard JavaScript
types. User-defined objects types are implemented with a com-
mon object representation illustrated in Figure 7. Payload repre-
sents the random object size and References models the out-degree
(discussed below).

ACDC-JS implements lifetime-size-classes different from ACDC-
C where the list and tree references are stored in the object’s pay-
load. Since JavaScript does not allow pointer arithmetic, list-based
lifetime-size-classes require separate list nodes as illustrated in
Figure 7.

Heap-based lifetime-size-classes, illustrated in Figure 8, differ
from tree-based lifetime-size-classes in ACDC-C to support more
than two child objects. The size of References is chosen randomly
between the parameters min. number of references and max. num-
ber of references upon allocation to approximate the out-degree dis-
tribution with a common object model. Heap-based lifetime-size-
classes also emulate cycles by randomly selecting a cycle length
between the parameters min. cycle length and max. cycle length.
Heap levels with a distance of the randomly selected cycle length
are connected through a back reference to emulate cycles in a Java-
Script heap.

Another extension to both types of lifetime-size-classes is em-
ulating the root distance distribution by randomly selecting a root
distance between the parameters min. root distance and max. root
distance. The root distance distribution is approximated by forward
references to nodes having a root distance of a multiple of the ran-
domly selected root distance.

The default parameters of ACDC-JS are listed in Table 2. For
all experiments described in Section 6 we use these settings unless
stated otherwise.

5.1 Metrics and Probes
Along with total script execution time, ACDC-JS also reports tem-
poral metrics in average allocation time and average memory ac-
cess time. The data is collected from within ACDC-JS. We keep
track of the time it takes to allocate each time quantum and—in
case ACDC-JS is configured to access memory—the time required
to traverse (and optionally also write) all live lifetime-size-classes
after a time quantum has been allocated. For both the allocation
time and access time samples, we report the arithmetic mean and
the sample standard deviation. The allocation and access time jitter
is also reported as the coefficient of variation, i.e., standard devia-
tion divided by arithmetic mean.

In JavaScript there is no way to retrieve information about mem-
ory consumption from within the mutator. Therefore we sample the
resident set size reported by the operating system at a sample rate
of 1 millisecond. We also report the maximum resident set size over
an execution of ACDC-JS.

5.2 Accurate Time Measurement in JavaScript
The most portable time measurement facility in JavaScript is the
Date.now() method [2] which is supported by all major JavaScript
implementations. However, it only provides millisecond resolution.
As a consequence, modern browsers support high-resolution time
measurement through the performance.now() method [7], speci-
fying microsecond accuracy. Unfortunately, the stand-alone Spi-
derMonkey shell does not provide the performance object. In or-
der to report time with the highest resolution possible, we em-
ploy the PerfMeasurement object [6] available for SpiderMonkey
on Linux. PerfMeasurement reports CPU cycles which we scale to
microsecond-accurate time values using the clock speed of our ex-
perimental environment. We have checked the timing results of a
simple JavaScript loop without GC interference to verify that per-
formance.now() in V8 and PerfMeasurement in SpiderMonkey pro-
vide comparable results.

6. Experimental Evaluation
All experiments ran on a desktop machine with an Intel i5-2400
4-core 3.1 GHz processor, 32 KB L1 and 256 KB L2 data cache
per core, 6 MB shared L3 cache, 8 GB of main memory, and Linux
kernel version 3.2.0. We repeated each experiment 10 times. For
each metric we report the arithmetic mean and sample standard
deviation of the repetitions.

The goal of our experiments is to demonstrate the capabilities
of ACDC-JS and not to provide a qualitative comparison of Java-
Script virtual machines although the differences between the sys-
tems under test might be interesting for VM developers. To expose
the performance impact of different implementations and configu-
rations we run ACDC-JS directly on V8 and SpiderMonkey. Both
virtual machines can easily be configured to enable or disable cer-
tain GC features. We also run ACDC-JS in Chrome and Firefox to
study the performance impact of the actual browsers around V8 and
SpiderMonkey.

The experimental analysis follows a 4-step process. First, we
pick an expected performance characteristic of a particular memory
management feature. Second, we define a workload that exposes
this very characteristic and still complies with typical JS memory
usage found in our heap analysis in Section 3. The third step is
to configure ACDC-JS to emulate the workload. The fourth and
final step is to measure the performance quantities in actual runs on
the JavaScript VMs and compare the results with our expectations.
Contradictory results indicate potential performance bugs.

We demonstrate ACDC-JS’s capabilities on three performance
characteristics: (1) memory management throughput for increas-
ing object liveness, (2) memory management latency for increasing
heap size, and (3) memory management robustness for increasing
object sizes. The throughput experiment reveals speedup character-
istics and promotion thresholds of generational GCs and also illus-
trates the throughput, latency, and memory consumption trade-off
with incremental marking. The latency experiment follows up on
that trade-off and provides an in-depth analysis which also reveals
in turn the cost of write barriers with generational GCs. The robust-
ness experiment checks whether throughput, latency, and memory
consumption are continuous in object size. This experiment reveals
a potential performance bug in V8. Finally, we also provide an ex-
periment that does not intend to reveal performance differences in
VMs but instead verifies that ACDC-JS’s allocation behavior is in-

deed comparable to the object size and lifetime distributions ob-
tained from the 13 real web applications in Section 3.

We compiled and executed the JavaScript virtual machines in
the following configurations and labeled the graphs accordingly:
V8 can be configured through start-up flags so all V8 results are
obtained from the same build using the default compilation set-
tings. V8 represents the default configuration of V8, i.e., a gener-
ational GC with incremental marking in the old generation and a
semi-space collector in the new generation. V8N runs V8 without
incremental marking (flag: –noincremental-marking) and V8E runs
V8 in a mode that eagerly compacts the old generation after each
GC run (flag –always-compact and –noincremental-marking). Note
that V8E is rather a debugging configuration of V8 than a produc-
tion setting. We anyway include it in our evaluation to increase the
set of different GC policies. All V8 configurations are executed in
the d8 shell version 3.24.28.

SpiderMonkey requires compile time parametrization. All Spi-
derMonkey builds share the compile time settings used at “Are
We Fast Yet?” [1], a framework for automatically running Java-
Script benchmarks on popular virtual machines2. SM represents
this default configuration, i.e., an incremental mark-sweep collec-
tor. SMN runs SpiderMonkey without incremental marking (flag: –
disable-gcincremental) and SMG enables a generational GC (flags:
–enable-exact-rooting and –enable-gcgenerational). Note that the
non-default features of SpiderMonkey might also be still experi-
mental but since we are not interested in a qualitative compari-
son of JavaScript VMs, we include these settings to demonstrate
ACDC-JS’s capabilities on various GC policies. Furthermore, SM
apparently employs a policy where incremental marking is per-
formed only through the event loop effectively shifting the prob-
lem of pause times to where it cannot be triggered by ACDC-JS.
All SpiderMonkey configurations are executed in the js shell ver-
sion JavaScript-C27.0.

For the configurations of Chrome and Firefox we executed
ACDC-JS in the browser embedded in a simple HTML page in-
cluded in the ACDC-JS framework. We expect similar results for
Chrome compared to V8 and for Firefox compared to Spider-
Monkey. We include the results to also visualize possible perfor-
mance impacts of embedding the JavaScript virtual machines in
the browsers. Note that some results might differ from the bare ma-
chine results since we ran the latest stable browser versions which
are shipped with different JavaScript engine versions. Another rea-
son for possible differences in performance is that browsers may
call the garbage collector explicitly and that collection policies
might be different in the shell than when running in a browser.
Furthermore, the memory consumption of the browsers contain the
whole browser footprint and not only the JavaScript virtual ma-
chine. We present results for Chrome version 32.0.1700.17 shipped
with V8 version 3.22.24.17 and for Firefox version 27.0 shipped
with SpiderMonkey version 24.2.

JavaScript VMs may introduce non-determinism through adap-
tive techniques like concurrent code optimizations. For all VM con-
figurations we nevertheless do not disable features that might add
non-determinism to the execution of ACDC-JS since we are inter-
ested in VM behavior in production environments. However, we
address non-determinism statistically by replicating experiments
10 times and reporting the sample standard deviations. We have
observed that a higher number of replications has only negligible
impact on the sample standard deviation. We therefore believe that
for our setup 10 replications yield a meaningful estimate of the ac-
tual deviation. Furthermore, we have run all experiments with a
V8 configuration that disables the optimizing compiler (d8 flag –

2 SpiderMonkey./configure flags: –enable-optimize –disable-debug –
enable-threadsafe –with-system-nspr

Parameter Value
max. size 8 B
min. liveness increasing from 1 to 20
max. liveness min. liveness
time quantum 64 KB
benchmark duration 200
access live objects FALSE

Table 3: Non-default ACDC-JS settings for the throughput experi-
ment.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

a
v
e
ra

g
e
 a

llo
c
a
ti
o
n
 t
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

 (
lo

w
e
r

is
 b

e
tt
e
r)

max liveness

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 9: Average allocation time for an increasing object liveness.

nocrankshaft) where we observed different absolute performance
characteristics but the same relative differences in V8, V8N, and
V8E. Additionally, we have run all experiments in V8’s predictable
mode (d8 flag –predictable) and compared the results to V8, V8N,
and V8E running in default mode. Here we did not observe any
notable differences in the results in any performance dimension.

6.1 Capabilities of ACDC-JS: Throughput
In this experiment we demonstrate ACDC-JS’s capability to pro-
vide detailed allocation throughput information for generational
garbage collection. Generational garbage collection exploits appli-
cation predisposition for allocating short-living objects (young gen-
eration) at the expense of delaying the reclamation of long-living
objects (old generation). We expect higher allocation throughput
for short-living objects which is equivalent to lower allocation time
since ACDC-JS running on the JavaScript VMs represents a closed
system.

We select a workload that gradually increases the liveness of
the objects from one time quantum (64 KB) to 20 time quanta
(1280 KB). These settings reflect our results from Section 3 where
50% of all objects live shorter than 64 KB and virtually all objects
live shorter than 1280 KB. ACDC-JS’s benchmark duration is set
to 200, i.e., 200 time quanta will be allocated before ACDC-JS
terminates. This ensures that even for a liveness of 20 (where
ACDC-JS reaches a steady state after 20 time quanta) ACDC-
JS executes in a steady state for 90% of the benchmark duration
providing data unbiased by a warm-up phase. The object size is
fixed to 8 bytes to isolate the impact of object liveness. Table 3
gives an overview of the non-default ACDC-JS settings for this
experiment.

The allocation performance for increasing object liveness is pre-
sented in Figure 9 where the y axis shows the average allocation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20

m
a
x
im

u
m

 r
e
s
id

e
n
t
s
e
t
s
iz

e
 i
n
 M

B

 (
lo

w
e
r

is
 b

e
tt
e
r)

max liveness

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 10: Maximum resident set size for an increasing object
liveness.

time per time quantum in milliseconds. Note that lower allocation
time implies higher allocation throughput in our setup. The gen-
erational garbage collection implemented in V8, V8N, V8E, and
Chrome provides a significant speedup for allocating short-living
objects. This suggests that ACDC-JS is indeed capable of creating
a workload that exposes the performance impact of generational
garbage collection. The SpiderMonkey configurations (SM, SMN,
and Firefox) do not enable generational garbage collection and thus
show nearly constant allocation performance for all object liveness
settings. Although SMG enables generational garbage collection
we do not observe better allocation performance for short-living
objects. We account this to the fact that at the moment of writing,
the generation garbage collection feature of SpiderMonkey is still
experimental.

The allocation time results for this experiment illustrate another
GC feature which is orthogonal to generational garbage collection,
namely incremental marking of the old generation. V8N performs
slightly better for long-living objects than the default V8 setting,
except for one data point. Since both V8 and V8N implement the
same generational GC policy, the performance difference may be
explained by the overhead of incremental marking the old genera-
tion. We will discuss this feature in detail in Section 6.2.

Figure 10 shows on the y axis the maximum resident set size
in MB. For all VMs longer object liveness increases the size of
the heap since the time quantum is kept constant. SM, SMN, and
SMG show constant memory consumption for object liveness up
to five which suggests that for this range SpiderMonkey allocates
more memory from the operating system than it actually needs. The
differences in the heap size of different VMs also grow with the
liveness of the objects where we observe that incremental marking
of the old generation in V8 causes additional memory overhead
compared to V8N.

Figure 11 shows on the y axis the average allocation time jitter
(coefficient of variation) for this experiment. While SM, SMN,
and SMG only show a slightly increasing allocation time jitter,
for V8N and V8E the allocation time jitter nearly doubles. This
suggests that moving objects from the new generation to the old
generation adds to the latency of tracing the old generation as
well. V8, implementing incremental marking of the old generation,
maintains constant latency for long-living objects.

We demonstrate in this experiment that ACDC-JS is capable of
exposing the performance impact of generational garbage collec-
tion. Together with the results of our heap analysis we conclude that

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

a
v
e
ra

g
e
 a

llo
c
a
ti
o
n
 t
im

e
 j
it
te

r
 (

lo
w

e
r

is
 b

e
tt
e
r)

max liveness

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 11: Average allocation time jitter (coefficient of variation)
for an increasing object liveness.

Parameter Value
time quantum 512 KB
deallocation delay increasing from 10 to 100
benchmark duration 200
access live objects TRUE

Table 4: Non-default ACDC-JS settings for the latency experiment.

real applications benefit from faster allocation of small objects with
a high probability. We also conclude that for long-living objects the
tracing policy of the old generation affects allocation performance.
We will isolate this impact in the next section.

6.2 Capabilities of ACDC-JS: Latency
An important performance characteristic mostly ignored by state-
of-the-art JavaScript benchmarking suites is memory management
latency. Incremental marking is an approach to reduce latency, e.g.,
pause times caused by the GC, at the expense of higher memory
consumption due to delayed collection. In this experiment we con-
figure ACDC-JS to expose the performance impact and trade-offs
introduced by incremental marking.

In order to isolate the impact of incremental marking we con-
figure ACDC-JS to increase the load exclusively on the marking
phase. We achieve this by emulating a reachable memory leak
(across data points). In particular, we increase the size of the ob-
ject graph that must be traced by the GC while keeping the impact
of generational collection constant (each object is promoted to the
old generation only once). ACDC-JS implements a so-called deal-
location delay to emulate such a mutator behavior. A deallocation
delay of x delays the collection of objects by x time quanta. The
non-default ACDC-JS parameters for this experiment are listed in
Table 4.

Figure 12 shows on the y axis the average allocation time per
time quantum for this experiment. The growing amount of reach-
able garbage only increases the allocation time slightly because the
amount of newly allocated objects is constant per time quantum.
Nevertheless, the absolute values of the best performing configura-
tion SMN are only half of the slowest configuration V8E. However,
the focus of our evaluation is on exposing the performance impact
of certain VM implementation details and not on a qualitative com-
parison of different VMs although such a comparison is possible
with ACDC-JS as well and might be interesting to VM developers.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

a
v
e
ra

g
e
 a

llo
c
a
ti
o
n
 t
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

 (
lo

w
e
r

is
 b

e
tt
e
r)

deallocation delay

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 12: Average allocation time for an increasing deallocation
delay.

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

a
v
e
ra

g
e
 a

llo
c
a
ti
o
n
 t
im

e
 j
it
te

r
 (

lo
w

e
r

is
 b

e
tt
e
r)

deallocation delay

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 13: Average allocation time jitter (coefficient of variation)
for an increasing deallocation delay.

The key trade-off with incremental marking is allocation latency
versus memory consumption. The average allocation time jitter (co-
efficient of variation) reflecting the variation of allocation latency is
presented on the y axis of Figure 13. Here the incremental marking
policy of V8 and Chrome show low, constant allocation time jitter.
For all other configurations the allocation time jitter increases with
an increasing deallocation delay caused by longer GC pause times
due to tracing. The incremental marking implemented in SM shows
no impact because its integration policy requires event loop actions
to trigger incremental marking.

The maximum resident set size for this experiment is shown on
the y axis of Figure 14. The growing amount of reachable garbage
causes higher memory consumption for all configurations. How-
ever, V8N consumes less memory than V8 because V8N reclaims
garbage earlier than with incremental marking in V8. This illus-
trates the trade-off of allocation latency versus memory consump-
tion with incremental marking. SM, SMN, and SMG show constant
memory consumption for a deallocation delay larger than 60. This
suggests that for smaller deallocation delays they allocate more
memory from the operating system than actually required.

Another interesting effect can be observed for the memory ac-
cess time illustrated on the y axis of Figure 15. We have config-

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

m
a
x
im

u
m

 r
e
s
id

e
n
t
s
e
t
s
iz

e
 i
n
 M

B

 (
lo

w
e
r

is
 b

e
tt
e
r)

deallocation delay

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 14: Maximum resident set size for an increasing dealloca-
tion delay.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

a
v
e
ra

g
e
 m

e
m

o
ry

 a
c
c
e
s
s
 t
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

 (
lo

w
e
r

is
 b

e
tt
e
r)

deallocation delay

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 15: Average memory access time for an increasing deallo-
cation delay.

ured ACDC-JS to also access the live objects after each time quan-
tum. This specifically excludes the objects of the reachable memory
leak. As a consequence, the amount of live objects is constant for
all deallocation delay settings while the ratio of live objects ver-
sus all heap objects decreases with an increasing deallocation de-
lay. The change in ratio may cause the interesting characteristic of
faster memory access for larger heaps. Also note the absolute dif-
ference in memory access performance for SM, SMN, and Firefox
compared to the other configurations. These configurations allow
much faster memory access because they do not implement gener-
ational garbage collection and therefore do not require read or write
barriers to determine the generation of an object.

Figure 16 shows on the y axis the average memory access
time jitter (coefficient of variation). Here we observe increasing
allocation time jitter at comparable levels for all configurations.
This suggests that the growing access time jitter is not caused by
VM implementation details but rather by architectural properties
of our experimental setup, e.g., the cache architecture.

This experiment demonstrates ACDC-JS’s capabilities of ex-
posing the performance impact of incremental marking. The benefit
of incremental marking depends on the requirements of the appli-
cation. Non-incremental marking yields lower memory footprints

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

a
v
e
ra

g
e
 m

e
m

o
ry

 a
c
c
e
s
s
 t
im

e
 j
it
te

r
 (

lo
w

e
r

is
 b

e
tt
e
r)

deallocation delay

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 16: Average access time jitter (coefficient of variation) for
an increasing deallocation delay.

Parameter Value
min. size increasing from 8 to 256 B
max. size min. size
max. liveness 1
time quantum 64 KB * min. size
benchmark duration 50
access live objects FALSE

Table 5: Non-default ACDC-JS settings for the robustness experi-
ment.

(significant on embedded devices) while incremental marking en-
ables low pause times for soft real-time applications. In addition to
the impact of incremental marking, the access time results in this
experiment also expose the costs of generation garbage collection.
From that we conclude that it is important to explore both, through-
put and latency workloads in all relevant performance dimensions
to cover all relevant trade-offs in JavaScript VMs.

6.3 Capabilities of ACDC-JS: Robustness
This experiment is intended to expose the impact of object size on
allocation performance. Although our heap analysis suggests that
small objects occur more frequently it is important for VMs to be
robust against a large variety of object sizes. With robustness we
mean that continuous variation of a workload characteristic yields
continuous response of all performance metrics.

We configure ACDC-JS to allocate a constant number of short-
living objects of an increasing size starting at 8 bytes up to 256
bytes to reflect the results of our heap analysis. The number of
allocated objects is controlled to be constant by increasing the time
quantum linearly to the object size parameters. The non-default
ACDC-JS settings are listed in Table 5.

Figure 17 shows the average allocation time for this experiment.
All VMs show similar behavior, although at different absolute
values. The allocation time tends to increase with an increasing
object size suggesting robust behavior for all object sizes.

The allocation time jitter (coefficient of variation) illustrated
in Figure 18, on the other hand, shows significant fluctuations for
some VMs. SM, SMN, and SMG show continuous behavior of al-
location time jitter where SM and SMN even show an improvement
for larger object sizes. Running this setting of ACDC-JS on V8 and
V8E causes significant outliers for some object sizes which is an

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

a
v
e
ra

g
e
 a

llo
c
a
ti
o
n
 t
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

 (
lo

w
e
r

is
 b

e
tt
e
r)

max size

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 17: Average allocation time for an increasing object size.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250

a
v
e
ra

g
e
 a

llo
c
a
ti
o
n
 t
im

e
 j
it
te

r
 (

lo
w

e
r

is
 b

e
tt
e
r)

max size

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 18: Average allocation time jitter (coefficient of variation)
for an increasing object size.

unexpected behavior. This demonstrates ACDC-JS’s capabilities of
exposing performance anomalies for certain workloads by explor-
ing a large set of workload configurations. Furthermore, ACDC-JS
can also be used to debug unexpected performance results. In the
following, we will give an example of digging deeper into the data
collected by ACDC-JS.

The maximum resident set size for this experiment is shown
in Figure 19. Again, while most settings for the min. size yield a
continuous change in response, this workload triggers outliers in
memory consumption for the same workload parameters as for the
allocation time jitter. This suggests a relation between the discon-
tinuous behavior of the allocation time jitter and the memory con-
sumption. However, since the maximum resident set size is an ag-
gregation of memory consumption over time, we have to inspect
the traces of the resident set size (created by ACDC-JS on the fly)
for object sizes that yield outliers in memory consumption.

Figure 20 shows a trace of the resident set consumed by V8E
for a min. size of 200 bytes and 232 bytes, respectively, because
these settings show large differences in the allocation time jitter of
V8E in Figure 18 as well as in the maximum resident set size in
Figure 19. The x axis gives the time stamp of the resident set size
sample taken during the execution of ACDC-JS. As a consequence,
the line for a min. size of 200 bytes is shorter because the execu-

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250

m
a
x
im

u
m

 r
e
s
id

e
n
t
s
e
t
s
iz

e
 i
n
 M

B

 (
lo

w
e
r

is
 b

e
tt
e
r)

max size

V8
V8N

V8E
SM

SMN
SMG

Firefox
Chrome

Figure 19: Maximum resident set size for an increasing object size.

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7

re
s
id

e
n
t
s
e
t
s
iz

e
 i
n
 M

B

real time in seconds

min. size = 200 min. size = 232

Figure 20: Trace of the resident set size consumed by V8E for a
min. size of 200 bytes and 232 bytes.

tion time is shorter. We still consider the graphs comparable for
debugging purposes. For a min. size of 200 bytes the VM seems to
allocate and deallocate always the same amount of memory from
the operating system (through mmapp and munmap system calls)
at a constant rate whereas for a min. size of 232 bytes the resi-
dent set grows and shrinks at much larger quantities yielding larger
workload variations to the operating system and therefore a larger
variation of the pause times causing a higher allocation time jitter.
This behavior can also be observed for other outliers in Figure 18
suggesting that resource acquisition and release policies work well
for some workload settings but do not work as expected for other
workloads. By exploring the configuration space of ACDC-JS such
workload settings can be found whereas other benchmarks might
never trigger such a performance problem.

This experiment demonstrates ACDC-JS capabilities of expos-
ing robustness issues by observing discontinuous responses for
continuous workload variations. By analyzing the data collected
by ACDC-JS before aggregation we are able to narrow down the
causes of irregularities. In the case presented in this experiment we
suspect the controller regulating the allocation and deallocation of
address space from the operating system to become unstable for
certain workloads. We have already informed the V8 development
team which also considers this behavior a performance bug.

Parameter Value
max. liveness 16
time quantum 64 KB
benchmark duration 20
access live objects FALSE

Table 6: Non-default ACDC-JS settings for emulating the size and
liveness behavior of an average application.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 32 64 96 128 160 192 224 256

re
la

ti
v
e
 a

m
o
u
n
t
o
f
o
b
je

c
ts

 l
a
rg

e
r

th
a
n
 s

iz
e
 x

size in byte

array string object

Figure 21: Size distribution of ACDC-JS emulating real application
behavior, cf. Figure 2.

We have also experimented with the heap structure properties
root distance and number of references but changing these param-
eters did not expose interesting results. Also for space reasons, we
omit these results. However, for future parallel tracing GCs the
heap structure properties might affect the tracing performance. We
leave a detailed exploration of these properties to future work.

6.4 Capabilities of ACDC-JS: Emulation of Real Workloads
ACDC-JS does not intend to emulate one specific workload but
rather the average allocation behavior of real applications. We
believe that emulation of average allocation behavior together with
ACDC-JS’s capabilities to also explore corner cases (as presented
in the previous experiments) covers a larger range of possible
workloads than emulating one specific real application.

We verify experimentally that the allocation behavior imple-
mented in ACDC-JS corresponds to the results obtained in our
analysis of real web applications. For this purpose we apply the
ACDC-JS configuration listed in Table 6 but do not change any
parameter during the experiment. Instead, we apply the snapshot
technique described in Section 3 to generate the distributions for
object size and object lifetime. We report size and lifetime distri-
butions for arrays, strings, and objects only. Currently, ACDC-JS
does not support any other types. We omit the distributions for the
graph properties out-degree, in-degree, and root distance here since
we could not observe significant differences in VM performance
when changing these properties as mentioned above.

Figure 21 illustrates the size distribution of arrays, strings, and
objects allocated by ACDC-JS. The scales of the x and y axes
are the same as in Figure 2 to enable visual comparability. We
observe a similar distribution of object sizes in ACDC-JS as seen
on average in the 13 real web applications. Note that the “knee”
in the graph for objects is caused by ACDC-JS’s management

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 128 256 384 512 640 768 896 1024 1152 1280

re
la

ti
v
e
 a

m
o
u
n
t
o
f
o
b
je

c
ts

 l
iv

in
g
 l
o
n
g
e
r

th
a
n
 x

object lifetime in allocated KB

array string object

Figure 22: Lifetime distribution of ACDC-JS emulating real appli-
cation behavior, cf. Figure 3.

data structures. We have nevertheless not observed any impact of
ACDC-JS’s management data structures on VM performance.

Figure 22 shows the lifetime distribution of arrays, strings, and
objects allocated by ACDC-JS. Again, the scales of the axes are the
same as in Figure 3 for visual comparability. The distribution we
observe with ACDC-JS is again similar to the average distribution
obtained from the real web applications in Section 3. For strings,
however, we observe a slightly longer lifetime with ACDC-JS be-
cause, unlike objects and arrays, strings in ACDC-JS are allocated
by slicing and concatenating parts of one large static string. As part
of our future work we intend to investigate different string allo-
cation strategies like the String.fromCharCode() method. However,
since the distributions are already very similar we do not expect sig-
nificant changes in the results of the experiments described above.

7. Conclusions
We have presented ACDC-JS, an open source JavaScript bench-
marking tool that implements a configurable mutator based on the
analysis of real web applications. The tool can be configured to
approximate average mutator behavior but also cover corner cases
of JavaScript memory management workloads. We have also ex-
tended existing work on empirical JavaScript heap analysis of real
web applications with object size and heap structure distributions.

Our experimental evaluation shows that ACDC-JS is capable
of exposing significant differences in the performance of state-of-
the-art JavaScript virtual machines. The evaluation also highlights
performance trade-offs that cannot be captured with existing bench-
marking suites. As part of future work we plan to investigate alloca-
tion behavior of multi-threaded managed languages and to explore
ACDC-JS’s capabilities for fuzz testing garbage collectors. At the
point of writing, ACDC-JS is already in use by the V8 developers
for benchmarking GC latency.

Acknowledgments
This work has been supported by the National Research Network
RiSE on Rigorous Systems Engineering (Austrian Science Fund
S11404-N23) and Google, Inc. (Project ACDC4GC).

References
[1] Are We Fast Yet?, 2014. URL https://github.com/haytjes/

arewefastyet.
[2] Date.now, 2014. URL https://developer.mozilla.org/

en-US/docs/Web/JavaScript/Reference/Global_Objects/
Date/now.

[3] Chrome DevTools, 2014. URL https://developers.google.
com/chrome-developer-tools.

[4] Kraken, 2014. URL https://wiki.mozilla.org/Kraken.
[5] Octane 2.0, 2014. URL https://developers.google.com/

octane.
[6] PerfMeasurement.jsm, 2014. URL https://developer.mozilla.

org/en-US/docs/Mozilla/JavaScript_code_modules/
PerfMeasurement.jsm.

[7] Performance.now, 2014. URL https://developer.mozilla.
org/en-US/docs/Web/API/Performance.now().

[8] SeleniumHQ Browser Automation, 2014. URL http://docs.
seleniumhq.org.

[9] SunSpider 1.0.2 JavaScript benchmark, 2014. URL http://www.
webkit.org/perf/sunspider/sunspider.html.

[10] Web Workers, 2014. URL http://dev.w3.org/html5/workers.
[11] M. Aigner and C. M. Kirsch. ACDC: Towards a Universal Mutator

for Benchmarking Heap Management Systems. In Proceedings of the
2013 International Symposium on Memory Management, ISMM ’13,
pages 75–84. ACM, 2013.

[12] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN Con-
ference on Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’06, pages 169–190, New York, NY, USA,
2006. ACM.

[13] B. Livshits, P. Ratanaworabhan, D. Simmons, and B. G. Zorn. JS-
Meter: Characterizing Real-World Behavior of JavaScript Programs.
Technical report, Microsoft Research, 2009.

[14] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. JSMeter: Comparing
the Behavior of JavaScript Benchmarks with Real Web Applications.
In Proceedings of the 2010 USENIX Conference on Web Application
Development, WebApps’10. USENIX Association, 2010.

[15] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An Analysis of the
Dynamic Behavior of JavaScript Programs. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’10, pages 1–12. ACM, 2010.

[16] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated Construction
of JavaScript Benchmarks. In Proceedings of the 2011 ACM Inter-
national Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA ’11, pages 677–694. ACM, 2011.

[17] G. Richards, C. Hammer, B. Burg, and J. Vitek. The Eval That Men
Do: A Large-scale Study of the Use of Eval in Javascript Applications.
In Proceedings of the 25th European Conference on Object-oriented
Programming, ECOOP’11, pages 52–78. Springer-Verlag, 2011.

[18] B. Zorn and D. Grunwald. Empirical measurements of six allocation-
intensive C programs. SIGPLAN Not., 27(12):71–80, Dec. 1992.

https://github.com/haytjes/arewefastyet
https://github.com/haytjes/arewefastyet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developers.google.com/chrome-developer-tools
https://developers.google.com/chrome-developer-tools
https://wiki.mozilla.org/Kraken
https://developers.google.com/octane
https://developers.google.com/octane
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/PerfMeasurement.jsm
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/PerfMeasurement.jsm
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/PerfMeasurement.jsm
https://developer.mozilla.org/en-US/docs/Web/API/Performance.now()
https://developer.mozilla.org/en-US/docs/Web/API/Performance.now()
http://docs.seleniumhq.org
http://docs.seleniumhq.org
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.webkit.org/perf/sunspider/sunspider.html
http://dev.w3.org/html5/workers

	1 Introduction
	2 Related Work
	3 JavaScript Heap Analysis
	4 Overview of ACDC-C and ACDC-JS
	5 Implementation Details of ACDC-JS
	5.1 Metrics and Probes
	5.2 Accurate Time Measurement in JavaScript

	6 Experimental Evaluation
	6.1 Capabilities of ACDC-JS: Throughput
	6.2 Capabilities of ACDC-JS: Latency
	6.3 Capabilities of ACDC-JS: Robustness
	6.4 Capabilities of ACDC-JS: Emulation of Real Workloads

	7 Conclusions

