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ABSTRACT
We present a type system for E code, which is an assembly
language that manages the release, interaction, and termi-
nation of real-time tasks. E code specifies a deadline for
each task, and the type system ensures that the deadlines
are path-insensitive. We show that typed E programs al-
low, for given worst-case execution times of tasks, a simple
schedulability analysis. Moreover, the real-time program-
ming language Giotto can be compiled into typed E code.
This shows that typed E code identifies an easily schedu-
lable yet expressive class of real-time programs. We have
extended the Giotto compiler to generate typed E code, and
enabled the run-time system for E code to perform a type
and schedulability check before executing the code.

Categories and Subject Descriptors: D.3.2 [Program-
ming Languages]: Language Constructs and Features

General Terms: Languages

1. INTRODUCTION
In hard real-time programming one faces the challenge

that the execution of a set of software tasks must satisfy
given, application-specific timing constraints. Traditionally
one uses a mix of worst-case execution time (WCET) analy-
sis, scheduling theory, and testing to ensure that the timing
requirements are met on the target platform. Our work has
been aimed at reducing the role of testing —and the as-
sociated manual code tweaking— in this process. For this
purpose, we have advocated the use of high-level program-
ming languages that explicitly specify timing requirements,
and the development of compilers that ensure that the gen-
erated code is “time-safe” (i.e., meets the specified timing
requirements) on the target platform [2].

Such a time-assurance compiler can be partitioned into
two phases: a platform-independent code generation phase,
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followed by a platform-dependent code analysis phase [3].
The code generation phase produces native task code, which
is typically C code, as well as glue code that manages the
release, interaction, and termination of software tasks. The
glue code is the interface between code generation and code
analysis, and as such must explicitly specify task release
times and deadlines that guarantee the real-time seman-
tics of the source code. For glue code, we have proposed
a portable assembly language, called E code [3], which is in-
terpreted by a virtual machine —the E(mbedded) machine—
and therefore can be executed on any platform that offers an
implementation of the E machine. However, before execut-
ing E code, the host must ensure that all deadlines that are
specified in the code are met. This is done in the second com-
pilation phase, which is platform-dependent, because the
satisfaction of timing requirements depends on the WCETs
of tasks on the target platform, and on the scheduler of the
target platform. More ambitiously, the second compilation
phase may bypass the system scheduler and generate explicit
scheduling code [5].

The main difficulty with this scheme is that in theory as
in practice, the schedulability analysis that must be per-
formed by the second compilation phase is often hard [4].
However, we have succeeded in identifying a high-level lan-
guage for control applications, called Giotto [2], which is
based on periodic task invocations and time-triggered mode
switches, for which the schedulability analysis is surprisingly
simple [4]. This is because the E code generated from Giotto
programs has a very special form. In this paper, we general-
ize this result by providing a type system for E code with the
following three properties. First, for every E program, type
derivation and type checking are simple (linear in the size of
the code). Second, for every typed E program, schedulability
analysis is simple. Third, from Giotto programs we can al-
ways generate typed E code, but there are also many typed
E programs that do not correspond to any Giotto programs.
In other words, typed E code extracts the features of Giotto
that make scheduling easy, but removes other restrictions of
Giotto, such as task periodicity.

The use of typed E code permits us to separate the two
compilation phases in space as well as time (see Figure 1).
The code-generating host produces native task code and
typed E code. For practical purposes, it attaches to the
E code not fully specified types, but much smaller “tips”1,
which contain a limited amount of information from which
types are easily reconstructed. This code is provided to
the code-executing host, which also has information about

1The term “tip” is courtesy of Ranjit Jhala.
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E code + tips + task code + WCETs

Code Generation

- type check

- execute E code
Code Execution - schedulability test

- schedule tasks EDF

- generate E code
- generate tips
- generate task code
- generate WCETs

Figure 1: Code generation and execution

the WCETs of tasks. Note that different code-executing
hosts may have different WCETs. If the code executor
does not trust the code generator, it first type checks the
E code. Then it performs the schedulability test, which
amounts to computing several utilization equations. If both
the type check (WCET independent) and the schedulability
test (WCET dependent) pass, then the execution of the code
with an EDF (earliest-deadline-first) scheduler [6] is guaran-
teed to be time-safe. Scheduling strategies other than EDF
may also be used with E code but may require different
schedulability tests not described here.

Typed E code
E code has, in addition to control-flow instructions (if,
jump, and return), three instructions. The schedule(t) in-
struction releases a task t. The call(dt) instruction reads
the outputs of task t, where dt is a so-called driver that
accesses the outputs of t; it thus provides a deadline for t
and we say that the call instruction “terminates” the task t.
The future(n, a) instruction creates a new thread of E code;
it specifies that the current thread continues at address a af-
ter waiting for n time units, and that a new thread is started
immediately at the address that follows the future instruc-
tion. Thus, future(n, a) is a real-time jump: the time offset
n is the trigger of the jump, and a is the destination. The
left column of Figure 2 shows E code that releases the task
t every 10 time units, and terminates t just before each re-
lease. This is single-threaded code, as the thread created by
the future instruction immediately finishes.

At any program point, the consumed time C(t) of a task
t is the number of time units since the last schedule(t) in-
struction (since release), and the remaining time R(t) is the
number of time units till the next call(dt) instruction (till
termination). An E program can be typed if it satisfies two
conditions. First, consumed and released times must always
be independent of the program path. More specifically, if
there are several possible paths to a program point, then
for every task t, there is an integer C(t) such that the con-
sumed time of t along all paths is either C(t) or ⊥, where ⊥
indicates that the task has not been released on that path.
Similarly, if there are several possible paths from a program
point, then for every task t which has been released, there is
an integer R(t) such that the remaining time of t along all
paths is R(t). Note that the E program in the left column of
Figure 2 can be trivially typed, as there is only a single path.
However, in the code of the right column, 5 time units after
the release of task t, the if instruction is executed. Then
either t is terminated immediately (true branch), or t is only
terminated after another 5 time units (false branch). So at
the time of the release, the remaining time of t is either
5 or 10, depending on which path is taken. This program
cannot be typed.

a : call(dt) : {t : 10}
schedule(t) : {t : 10}
future(10, a) : {}
return()

a1 : call(dt)
schedule(t)
future(5, a2)
return()

a2 : if(c, a1)
future(5, a1)
return()

Figure 2: E code and tips

The second condition for an E program to be typed is
a non-interference condition for threads. It insists that no
two concurrent threads can access the same task (by either
schedule or call instructions). This ensures that consumed
and remaining times of tasks are not only path-independent
but also context-independent, i.e., independent of threads
that are executed concurrently. It should therefore not be
surprising that for typed E programs, schedulability analysis
can be path-insensitive.

In summary, the type of a control location2 is a triple
(S,C,R), where S is the set of tasks that are available for
release in the current thread, C is a function that maps every
released task to its consumed time, and R is a function that
maps every released task to its remaining time. In Section 2,
we review the definition of E code, and in Section 3 we
provide the type system, as well as a linear algorithm for
type derivation. Type derivation proceeds in two phases.
The first phase infers a tip for every E code instruction:
the tip for a schedule(t) instruction is the remaining time
for t, that is, the time to termination; the tip for a call(dt)
instruction is the consumed time for t, that is, the time
since release; and the tip for a future instruction is the set
of tasks that are assigned to the newly created thread. In
the left column of Figure 2, each instruction is annotated
(after the colon) by the corresponding tip. From these tips,
in a second phase, it is easy to construct full types.

Schedulability test for typed E code
In Section 4, we define the timing-flow graph of an E pro-
gram, which makes explicit the passage of time. If there are
k threads, then the size of the timing-flow graph is O(2k).
While this explosion is unavoidable due to concurrency, the
number of E code threads is typically small; in particular,
Giotto can be compiled into single-threaded E code [4]. Our
main theorem shows that if an E program is typed and sat-
isfies a utilization equation for each node of the timing-flow
graph, then an EDF schedule will meet all deadlines spec-
ified by call instructions. (Note that EDF is only well-
defined if the remaining times R(t) of all tasks t are path-
independent, as is the case for typed E programs.) The uti-
lization tests are simple: they check that all released tasks t
can be executed for time w(t)/(C(t)+R(t)) during the next
time unit, where w(t) is the WCET of t, and C(t) + R(t)
is the total available time for executing t. If all utilization
tests succeed, then the program can be scheduled in a path-
insensitive way, and by a standard argument, along each
path the resulting schedule can be converted into EDF. By
contrast, if the program is not typed, then a path-sensitive
analysis must be performed for checking schedulability, and
the best known algorithms are exponential in the number of
tasks and program locations [4, 5].

In summary, schedulability analysis for E code can be sep-

2Note that we type control, not data.
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arated into a platform (WCET) independent typing prob-
lem, followed by simple platform (WCET) dependent uti-
lization tests. Note that we assume WCETs for tasks are
given. We do not attempt to solve the problem of estimat-
ing WCETs but rely on methods developed elsewhere, e.g.,
in [1]. Also, our schedulability analysis abstracts the values
of branch conditions and assumes that all syntactic paths
of a program are feasible; it thus gives a sufficient condition
for schedulability.

Implementation of typed E code
We have extended the binary format for E code to represent
tips and we have extended the Giotto compiler with a mod-
ule that derives tips for the E code generated by the com-
piler. We have also added modules for type checking and
for EDF schedulability analysis to the E machine. When
the E machine receives E code with tips, it first type checks
the code, i.e., it checks if the tips are consistent with the
program, and then it derives the full type of each control
location if the program can be typed. If successful, the
E machine runs the EDF schedulability test based on given
WCETs for the tasks. If this also succeeds, the E machine
starts executing the E code using an EDF scheduler for the
tasks. The E machine also monitors all real-time require-
ments at run-time, for the case that erroneous WCET infor-
mation was used in the analysis.

An interesting problem for future work is to combine typed
E code with driver and task code represented by a typed
assembly language (TAL) [8]. TAL originally inspired our
work on typed E code. For example, a combination of typed
E code with TAL (for the task code) may help to verify that
a driver indeed reads the outputs of a particular task and
of no other task. TAL has also been used in a programming
language for embedded systems [7]. However, unlike typed
E code, this language uses types in the standard way, e.g.,
for array-bounds checking or to ensure the correct initializa-
tion of variables.

2. E CODE
This section is a summary of the E Machine presented

in [3]. The E machine has two input interfaces and one
output interface: (1) physical processes communicate infor-
mation to the E machine through environment ports, such as
clocks and sensors; (2) application software processes, called
tasks, communicate information to the E machine through
task ports; and (3) the E machine communicates informa-
tion to the physical processes and to the tasks by calling
system processes, called drivers, which write to driver ports.
The E machine also evaluates conditions that read driver
ports in order to control the machine behavior. Thus, envi-
ronment and task ports are input ports of the E machine,
while driver ports are output ports. A change of value at
an input port is called an input event. Every input event
causes an interrupt that is observed by the E machine and
may initiate the execution of E code. The E machine uses
so-called triggers which read input ports in order to moni-
tor event interrupts. Given a set Z of ports, a Z state is a
function that maps each port in Z to a value.

E code supervises the execution of drivers and tasks, and
evaluates conditions and triggers. Tasks, drivers, conditions,
and triggers are functional code that is external to the E ma-
chine and must be implemented in some programming lan-
guage like C. A task is a piece of preemptive, user-level code,

which typically implements a computation activity. A task
has no internal synchronization points. A task t reads from
driver ports I[t] and computes on task ports O[t]. In favor of
a simpler presentation, we assume that the set I[t]∪O[t] of
ports on which t operates is fixed, and that O[t] ∩O[t′] = ∅
for all tasks t′ 6= t. Logically, t computes a function from
I[t]∪O[t] states to O[t] states. A driver is a piece of system-
level code, which typically facilitates a communication activ-
ity. A driver may provide sensor readings as arguments to a
task, or may load task results into actuators, or may provide
task results as arguments to other tasks. A driver d reads
from environment and task ports I[d] and writes to driver
ports O[d]. We write share(d, t) if the driver d shares a port
with the task t, that is, if I[d] ∩O[t] 6= ∅ or O[d] ∩ I[t] 6= ∅.
For simplicity, we assume that a driver shares ports with
at most a single task, i.e., if share(d, t), then ¬share(d, t′)
for all tasks t′ 6= t. Logically, d computes a function from
I[d]∪O[d] states to O[d] states. A driver executes in logical
zero time, i.e., before the next input event can be observed.
This is achieved by disabling event interrupts during the
execution of a driver.

Conditions are used to query the state of driver ports.
A condition c consists of a predicate that reads from driver
ports I[c] and determines the outcome of conditional branch-
ing instructions in E code. Triggers are used to monitor the
occurrence of input events. Once a trigger is activated, it
is logically evaluated with every input event, and an ac-
tive trigger becomes enabled when it evaluates to true. In
this paper, we consider only time-triggered E code, where
all triggers are time triggers. A time trigger monitors the
environment port pc which represents the system clock. We
denote a time trigger by its offset n, where n is the number
of clock ticks that need to happen before the trigger goes off.
Hence, once the trigger is activated, with every change of pc

the offset is decremented, and the trigger becomes enabled
when n = 0. Similarly to drivers, conditions and triggers
are system-level code that is evaluated in logical zero time
with event interrupts disabled.

E code has three non-control-flow instructions. A call(d)
instruction initiates the execution of a driver d. As the im-
plementation of d is system-level code, the E machine waits
until d is finished before interpreting the next instruction of
E code. A schedule(t) instruction releases a task t to run
concurrently with other released tasks by putting t into the
ready queue of an external task scheduler. Then the E ma-
chine proceeds to the next instruction. The task t does not
execute before the E machine relinquishes control of the pro-
cessor to the scheduler. The schedule instruction itself does
not order the execution of tasks. If the E machine runs on
top of an operating system, the task scheduler may be im-
plemented by the scheduler of the OS [3]. An alternative
implementation of a task scheduler is the so-called S ma-
chine [5], which is a virtual machine that dispatches tasks
to execute according to a control program called S code. A
future(n, a) instruction marks the E code at the address a
for execution at some future time instant when the time trig-
ger n becomes enabled. In order to handle multiple active
time triggers, a future instruction puts the trigger-address
pair into a queue of active triggers. Then, the E machine
creates a new thread, which starts immediate execution at
the instruction that follows the future instruction.

E code also has three control-flow instructions. The if(c, a)
instruction evaluates the condition c and, if c is true, jumps
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Figure 3: A simplified helicopter flight controller

to the E code at the address a; otherwise, the E machine
proceeds to the next instruction. The jump(a) instruction
is an absolute jump to the E code at the address a. The
return() instruction finishes the execution of the current
thread of E code.

An E code example
We use as example a simplified version of the flight-control
program for an autonomous model helicopter built at ETH
Zürich [2]. Figure 3 shows the topology of the program:
we denote ports by bullets, tasks by rectangles, drivers by
diamonds, and triggers by circles. There are two tasks, both
implemented in native code: the control task t1, and the
navigation task t2. The navigation task processes GPS input
every 10 ms and provides the processed data to the control
task. The control task reads additional sensor data (not
modeled here), computes a control law, and writes the result
to actuators (reduced here to a single port pa). The control
task is executed every 20 ms.

The data communication requires five drivers: an output
driver d1, which copies the output of the control task t1
to a driver port p1, and an output driver d2, which copies
the output of the navigation task t2 to a driver port p2; a
sensor driver ds, which provides the GPS data to the nav-
igation task; an input driver di, which provides the result
of the navigation task to the control task; and an actua-
tor driver da, which loads the result of the control task into
the actuator. The drivers may process the data in simple
ways (such as type conversion), as long as their WCETs are
negligible. There are two environment ports, namely, the
system clock pc and the GPS sensor ps; two task ports, one
for the result of each task; and five driver ports —the desti-
nations of the five drivers, including the actuator pa. Here
is a high-level Giotto [2] description of the program timing
in the hover mode of the helicopter, called m:

mode m() period 20 ms {
actfreq 1 do pa(da);
taskfreq 1 do t1(di);
taskfreq 2 do t2(ds); }

The “actfreq 1” statement causes the actuator to be up-
dated once every 20 ms; the “taskfreq 2” statement causes
the navigation task to be invoked twice every 10 ms; etc.
The E code generated by the Giotto compiler [4] is shown
in the left column of Figure 4 starting at the address a1. It
consists of two blocks: a block of E code is a sequence of
instructions that ends with a return instruction. The block
at address a1 is executed at the beginning of a period, say,
at 0 ms: it calls the five drivers, which update the output
ports of the tasks and provide new data for the actuator and
the tasks, then releases the two tasks to the task scheduler,
and finally activates a time trigger with offset 10 ms and
address a2. When the block finishes, the trigger queue of
the E machine contains the trigger with offset 10 ms bound
to address a2, and the two tasks, t1 and t2, are ready to

execute. Now, the E machine relinquishes control, only to
wake up again 10 ms later. In the meantime, the task sched-
uler takes over and assigns CPU time to the released tasks
according to some scheduling scheme.

At 10 ms the trigger is removed from the trigger queue,
and the associated a2 block is executed. It calls the output
driver d2, which reads a port written by task t2, and the
sensor driver ds, which updates a port read by t2. There are
two possible scenarios: the earlier invocation of task t2 may
already have completed. In this case, the E code proceeds to
release t2 again and to trigger the a1 block in another 10 ms,
at 20 ms. In this way, the entire process repeats every 20 ms.
The other scenario at 10 ms has the earlier invocation of
task t2 still incomplete. In this case, the attempt by the
output driver to read a port written by t2 causes a run-
time exception, called time-safety violation. At 20 ms, when
ports read by both tasks t1 and t2 are updated, and ports
written by both t1 and t2 are read, a time-safety violation
occurs unless both tasks have completed. In other words, an
execution of the program is time-safe if the scheduler ensures
the following: (1) each invocation of task t1 at 20n ms, for
n ≥ 0, completes by 20n+20 ms; (2) each invocation of t2 at
20n ms completes by 20n+ 10 ms; and (3) each invocation
of t2 at 20n+10 ms completes by 20n+20 ms. Therefore, a
necessary requirement for time safety is δ1+2δ2 < 20, where
δ1 is the WCET of task t1, and δ2 is the WCET of t2. If
this requirement is satisfied, then an EDF scheduler, which
gives priority to t2 over t1, guarantees time safety.

Figure 5 shows an execution trace of the E code using such
an EDF scheduler, assuming δ1 is 12 ms and δ2 is 4 ms.
The second row from the bottom shows the addresses of
the E code sequences that are executed at the various time
instants. It also shows, for each task, the time since release
and the time till termination. This information constitutes
what we will call a type in Section 3.

The deadlines of the tasks are implicitly encoded in the
E code but may also be given explicitly as tips. For example,
the instruction schedule(t1) : {t1 : 20} has the tip {t1 : 20},
which assigns a deadline of 20 ms to the task t1. After release
of a task t, the first instruction call(d) with share(d, t) is
said to (logically) terminate the task t, because the task
must be completed when the call instruction is executed.
The tip of a call instruction that terminates a task specifies
the time that has elapsed since the task was released. More
precisely, the tip of the instruction call(d1) : {t1 : 20} from
the example states that d1 shares ports with t1, and that
t1 was released either 20 ms ago or not at all. The tip of
call(da) : {} asserts that the driver da does not share ports

a1 : call(d1) : {t1 : 20}
call(d2) : {t2 : 10}
call(da) : {}
call(ds) : {t2 : ⊥}
call(di) : {t1 : ⊥}
schedule(t1) : {t1 : 20}
schedule(t2) : {t2 : 10}
future(10, a2) : {}
return()

a2 : call(d2) : {t2 : 10}
call(ds) : {t2 : ⊥}
schedule(t2) : {t2 : 10}
future(10, a1) : {}
return()

a3 : future(0, a4) : {t1}
future(0, a5) : {}
return()

a4 : call(d2) : {t2 : 10}
call(ds) : {t2 : ⊥}
schedule(t2) : {t2 : 10}
future(10, a4) : {}
return()

a5 : call(d1) : {t1 : 20}
call(da) : {}
call(di) : {t1 : ⊥}
schedule(t1) : {t1 : 20}
future(20, a5) : {}
return()

Figure 4: E code for the simplified flight controller

107



a5 : {t2 : (0, 10)}
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t1
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t2 : (0, 10)}
a1 : {t1 : (0, 20), a2 : {t1 : (10, 10), a1 : {t1 : (0, 20),

a4 : {t1 : (0, 20)}
a5 : {t2 : (0, 10)}

t2 : (0, 10)}
a4 : {t1 : (0, 20)}
a5 : {t2 : (0, 10)}

t2 : (0, 10)}

Figure 5: An execution trace of the E code from
Figure 4 using an EDF scheduler

with any task. The tip of call(di) : {t1 : ⊥} means that
the driver di shares ports with t1, but t1 either has not been
released or was terminated by a previous call instruction.

Finally, a future instruction may have a tip that con-
strains the set of tasks that can be released and terminated
by the new thread of E code which follows the instruction.
For an example, consider the E code in the right column of
Figure 4 starting at the address a3, which implements ex-
actly the same behavior as the E code in the left column but
uses two threads of E code, one for each task. The tip of
the instruction future(0, a4) : {t1} states that (1) the cur-
rent thread, which continues at the address a4, may release
and terminate all tasks except t1, and (2) the new thread,
which follows the future instruction, may release and ter-
minate only t1. Then, the tip of future(0, a5) : {} asserts
that (1) the thread that continues at a5 may release and ter-
minate t1, and (2) the newly created thread, which finishes
immediately, cannot release or terminate any tasks. Note
that both threads (at a4 and a5) access different tasks but
communicate through the output port p2 of t2. The multi-
threaded E code produces the same execution trace as the
single-threaded E code, as shown in Figure 5. The bottom
row of the figure gives the addresses of the E code blocks
which are executed in the multi-threaded case.

E code execution
A configuration (Q,S,M, I) of an E program consists of a
trigger queue Q (containing the active triggers, a task set S
(containing the released tasks), a port memory M (speci-
fying the state of all ports), and a sequence I of E code
instructions (the current block to be executed). The trigger
queue Q is a sequence of pairs (n, I), where n is the offset
of a time trigger and I is a sequence of E code instructions
which will be executed when the trigger becomes enabled.
The task set S is a function that maps a task t to either ⊥,
which indicates that t has completed but not been released
again, or to a nonnegative integer, which indicates for how
much time t has already executed since its last release.

The E machine consists of an E code interpreter and an
event handler that maintains the trigger queue. Moreover,
the E machine uses a task scheduler to determine which
task among the released tasks executes next. The execu-
tion of an E program starts with the initial configuration
(Q0, S0,M0, I0), where Q0 is the empty queue, S0(t) = ⊥
for all tasks, M0 is the initial state of all ports, and I0 is the
initial block of E code instructions. The E code interpreter
implements the E code instructions as follows. A call(d)
instruction executes the code of the driver d. Here, the in-

(refl)
` (S,⊥,⊥) ≤ (S,⊥,⊥)

S ⊆ T

(trans)
` Θ ≤ Θ

′ ` Θ
′ ≤ Θ

′′

` Θ ≤ Θ
′′ (relax)

` Θ ≤ Θ
′

Θ ` I

Θ
′ ` I

(sub)
` Θ{t : (δc, δr)} ≤ Θ

t : (⊥,⊥) ∈ Θ, δc, δr ≥ 0, δc + δr ≥ 1

Figure 6: Static semantics (subtyping)

terpreter may check for a possible time-safety violation by
verifying that all currently released tasks neither read from
driver ports written by d nor write to task ports read by d.
If there is a violating task t —i.e., share(d, t)— then the
interpreter throws a run-time exception: it does not exe-
cute the call instruction but jumps to some other block of
E code which handles the situation [3], e.g., it may terminate
t and execute some other driver. A schedule(t) instruction
releases the task t by setting S(t) to zero, which indicates
that t has been released but not yet executed. Again, the
interpreter may check for a possible time-safety violation by
verifying that t was completed before releasing it, i.e., S(t)
was ⊥. A future(n, a) instruction appends the pair (n, I)
at the end of the trigger queue, where I is the sequence of
E code instructions starting at the address a. These E code
instructions will be executed after n time units elapse.

The return instruction finishes a sequence of E code in-
structions. Then, if the trigger queue is empty, the E ma-
chine stops; otherwise, the first trigger binding (n, I) with
the lowest offset n in the queue is selected. If n = 0, the
trigger binding (0, I) is removed from the queue and the se-
quence I of E code instructions is executed. If n > 0, then
the event handler decreases all offsets in the trigger queue
by n, and the dispatcher is called to execute tasks for n clock
ticks in the order in which the task scheduler selects them
from the task set. A task t completes at the latest when
it reaches its WCET; at that time S(t) is set to ⊥. Dur-
ing task execution, the environment may change the state
of environment ports.

3. THE TYPE SYSTEM
The type system for E code is shown in Figures 6 and 7.

The purpose of the type system is to check if a given E pro-
gram releases and terminates tasks (in finite time) in a path-
independent way. Recall that a task is (logically) terminated
when a driver is called that shares ports with the task. The
type system also checks that tasks are always terminated be-
fore they are released again and that different E code threads
release and terminate disjoint sets of tasks.

Suppose that, at some time instant during the program
execution, the task set contains a task t that has previously
been released but not yet terminated. There are two in-
teresting scenarios. First, if the program branches with an
if instruction, the type system checks that t will be ter-
minated on both branches (in fact, on all future branches)
at the same time instant in the future. More precisely, the
type system checks that there is a nonnegative integer δr,
the remaining time of task t, such that on all paths, t will be
terminated δr clock ticks in the future. For schedulability
analysis this means that t has the same deadline on all fu-
ture branches of the program. Second, if the program is at a
control location that can be reached from different branches,
the type system checks that t has been released at the same
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Θ ` I

Θ ` call(d) : {t : ⊥}; I
t : (⊥,⊥) ∈ Θ

Θ{t : (⊥,⊥)} ` I

Θ ` call(d) : {t : δ}; I
t : (δ, 0) ∈ Θ

Θ{t : (0, δ)} ` I

Θ ` schedule(t) : {t : δ}; I
t : (⊥,⊥) ∈ Θ

(S
′
,⊥,⊥) ` I (S \ S

′
, C + n, R− n) ` I

′

(S, C, R) ` future(n, I
′
) : S

′
; I

S′ ⊂ S, ∀t∈S′ (C(t) = R(t) = ⊥), ∀t∈S\S′ (C(t) = R(t) = ⊥ ∨ (C(t) ≥ 0 ∧ R(t) ≥ n))

Θ ` I Θ ` I
′

Θ ` if(c, I
′
); I

Θ ` I

Θ ` jump(I) (S,⊥,⊥) ` return()

Figure 7: Static semantics (instructions)

time instant in the past on all branches. More precisely, the
type system checks that there is a nonnegative integer δc,
the consumed time, such that on every path, either t was re-
leased δc clock ticks in the past, or it was not released at all.
Note that even an E program without any if and jump in-
structions does not necessarily type check, because a future

instruction may create a violating cycle, or a task may be
released but never terminated. In addition to timing infor-
mation, the type system also restricts the set of tasks that
are available at each E code thread for being released and
terminated. A type error occurs therefore also if two differ-
ent threads access the same task. For example, the E code
in both columns of Figure 4 type checks because both tasks,
t1 and t2, are released with fixed deadlines of 20 ms and
10 ms, respectively, and in the right column of the figure,
the two tasks are accessed by two different threads.

Type checking
Every E program operates on a finite set T of tasks. Let
N⊥ = N ∪ {⊥}. The type system computes for each con-
trol location of the program a type of the form (S,C,R)
consisting of a set S ⊆ T of available tasks, a function C:
S → N⊥ that maps every available task to a consumed
time, and a function R: S → N⊥ that maps every avail-
able task to a remaining time, such that for all available
tasks t ∈ S, either C(t) = R(t) = ⊥, or C(t), R(t) ≥ 0
and C(t) + R(t) ≥ 1. If C(t) = R(t) = ⊥, this indicates
that the task t has not yet been released (either since the
beginning of program execution, or since the last time t was
terminated). We overload ⊥ to denote also the function
that maps all available tasks to ⊥. Types are abbreviated
by Θ. The expression t : (δc, δr) ∈ Θ states that Θ is a type
(S,C,R) with t ∈ S, C(t) = δc, and R(t) = δr. Then, the
expression Θ{t : (δ′c, δ

′
r)} refers to the type (S,C′, R′) with

C′(t) = δ′c, R
′(t) = δ′r, and for all t′ ∈ S, if t′ 6= t, then

C′(t′) = C(t′) and R′(t′) = R(t′). The function C+n is de-
fined by (C+n)(t) = ⊥ if C(t) = ⊥, and (C+n)(t) = C(t)+n
otherwise. The function R− n is defined similarly.

There are two kinds of judgments. The first kind of judg-
ment ` Θ ≤ Θ′ asserts that the type Θ′ is less specific than
the type Θ. In particular, ` Θ ≤ Θ′ iff both types are the
same except for some tasks t such that t has been released
and not yet terminated in Θ, but t has not been released
in Θ′. The subtyping relation ≤ captures the fact that a
scenario in which a task has been released but not yet ter-
minated is worse in terms of CPU utilization than one in
which the task has not been released. In other words, Θ′

can be scheduled if Θ is schedulable. The subtyping rela-
tion is computed by the rules of Figure 6 in a standard way.

The second kind of judgment Θ ` I asserts that the E code
block I has the type Θ. This relation is computed by the
rules of Figure 7, which assume that the instructions in I

are already annotated with tips. The rules check that the
tips are correct and that types can be assigned to all control
locations of the E code. The rules are organized according
to E code instructions and propagate information provided
by the tips. If the tip of a call instruction is {t : ⊥}, then
the type system checks that the task t has not been released
without being terminated before the call instruction. If
the tip of a call instruction is {t : δ}, then the type system
checks that t was released δ clock ticks ago and has not been
terminated since, and it asserts that t is being terminated
now. If the tip of a schedule instruction is {t : δ}, then
the type system checks that t has not been released without
being terminated before the schedule instruction, and it as-
serts that t is being released now. If the tip of a future(n, ·)
instruction is S′, then the type system propagates the tasks
in S′ to the new thread, which starts immediately (without
delay) at the subsequent instruction, and it propagates the
remaining tasks of the current tread to its continuation after
n clock ticks, adjusting the consumed and remaining times of
those tasks (in S \ S′) accordingly. Note that S′ is required
to be a proper subset of the currently available tasks S;
that is, the future continuation of the current thread must
retain at least one task. An interesting case occurs when
two E code branches meet at some control location a, due
to an if or jump instruction. Then, the type rules for these
instructions together with the subtyping rules compute at a
the least upper bound (join) of the types of both branches.
Note that the type system computes types in time linear in
the size of the tip-annotated E code.

As an example, consider the following Giotto program and
the E code shown in Figure 8, which has been generated from
the program by the Giotto compiler [4]:

start m {
mode m() period 120 ms { mode n() period 120 ms {
exitfreq 3 do n(c); exitfreq 2 do m(c);
taskfreq 1 do t1(); taskfreq 1 do t1();
taskfreq 2 do t2(); taskfreq 2 do t2();
taskfreq 3 do t3(); } taskfreq 4 do t4(); } }

The Giotto program consists of two modes, m and n, which
represent different flight situations of the helicopter. For
simplicity, we have omitted any sensor, actuator, and task
input drivers. The program starts to execute in mode m,
in which it checks the condition c every 40 ms in order to
determine whether to switch to mode n or not. In mode n,
the condition c is checked every 60 ms to determine whether
to switch back to mode m. The control location in the
E code that requires subtyping to type check is n4, which
can be reached from the E code blocks at n3 and m4. In
terms of the Giotto program, n4 is reached either 60 ms
into mode n, or 60 ms into mode m when switching to n.
In both cases, the task t4 is terminated at 60 ms. However,
only in the first case was t4 actually released 30 ms earlier.
Note that the task t2 is also terminated at 60 ms, while t2
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m1 : call(d1) : {t1 : 120}
call(d2) : {t2 : 60}
call(d3) : {t3 : 40}
if(c, n2)

m2 : schedule(t1) : {t1 : 120}
schedule(t2) : {t2 : 60}
schedule(t3) : {t3 : 40}
future(40, m3) : {}
return()

m3 : call(d3) : {t3 : 40}
if(c, m4)
schedule(t3) : {t3 : 40}
future(20, m5) : {}
return()

m4 : future(20, n4) : {}
return()

m5 : call(d2) : {t2 : 60}
m6 : schedule(t2) : {t2 : 60}

future(20, m7) : {}
return()

m7 : call(d3) : {t3 : 40}
if(c, m8)
schedule(t3) : {t3 : 40}
future(40, m1) : {}
return()

m8 : future(10, n5) : {}
return()

n1 : call(d1) : {t1 : 120}
call(d2) : {t2 : 60}
call(d4) : {t4 : 30}
if(c, m2)

n2 : schedule(t1) : {t1 : 120}
schedule(t2) : {t2 : 60}
schedule(t4) : {t4 : 30}
future(30, n3) : {}
return()

n3 : call(d4) : {t4 : 30}
schedule(t4) : {t4 : 30}
future(30, n4) : {}
return()

n4 : call(d2) : {t2 : 60}
call(d4) : {t4 : 30}
if(c, m6)
schedule(t2) : {t2 : 60}
schedule(t4) : {t4 : 30}
future(30, n5) : {}
return()

n5 : call(d4) : {t4 : 30}
schedule(t4) : {t4 : 30}
future(30, n1) : {}
return()

Figure 8: E code for the 2-mode Giotto program

∆ : I

∆{(t,⊥)} : schedule(t) : {t : ∆(t)}; I

∆ : I
′

∆ + n : future(n, I
′
); I

∆ : I

∆{(t, 0)} : call(d); I
share(d, t)

∆ : I

∆ : if(c, I
′
); I

∆ : I

∆ : jump(I)

Figure 9: Tip derivation for schedule instructions

may have been released 60 ms earlier by the E code block at
m2 or n2. In other words, no matter in which mode t2 was
released, t2 is terminated exactly 60 ms later independently
of any mode switching. The same is also true for the task t1.

Tip derivation
Tips are a space-efficient representation of information that
is relevant to compute types. Given E code without tips as
well as the driver-task access relation share(·, ·), tips can be
derived using the rules from Figures 9, 10, and 11.3 The tips
for schedule and future instructions are computed back-
ward. For schedule instructions, we compute a function ∆:
T → N⊥ that maps each task to ⊥ if it is terminated, or
to the time till termination. This is achieved by summing
up all trigger offsets from the termination of a task back to
its release. Note that the if rule considers only the false
branch. Hence the derived tips may not be consistent with
all program paths, which means that the program may not
type check. For future instructions, we compute a set S
that contains the tasks that are available for release in each
thread. This is done by collecting all tasks from their ter-
mination back to their release. Again, the derived tips may
not be consistent with all program paths.

For call instructions, the computed function ∆: T → N⊥
maps each task to ⊥ if it has not been released, or to the
time since release. This computation proceeds forward, and
is therefore slightly more involved. In particular, the rules
of Figure 11 need to be augmented by additional rules (not
shown here) which handle joins: at a control location with

3Rules like the last rule of Fig. 11, saying that tip derivation
is not influenced by call(d) instructions if ¬share(d, t) for
all tasks t ∈ T , must be added also to Figures 9 and 10.

S : I S
′
: I

′

S ∪ S
′
: future(n, I

′
) : S

′
; I

S : I

S ∪ {t} : call(d); I
share(d, t)

S : I

S ∪ {t} : schedule(t); I

S : I S
′
: I

′

S ∪ S
′
: if(c, I

′
); I

S : I

S : jump(I)

Figure 10: Tip derivation for future instructions

two incoming branches ∆′ and ∆′′, we compute the new
set ∆ by ∆(t) = ∆′(t) if ∆′′(t) = ⊥, and ∆(t) = ∆′′(t)
if ∆′(t) = ⊥, and otherwise ∆(t) is arbitrarily chosen to
be ∆′(t); this can be achieved by subtyping rules similar to
those in Figure 6. Finally, if ∆ : call(d) and share(d, t),
then the tip for the call(d) instruction is {t : ∆(t)}.

Tips can be derived in time linear in the size of the E code.
We say that an E program is typed if after tip derivation,
the typing rules succeed in deriving a judgment of the form
Θ ` I0, where I0 is the initial block of E code. The check
if an E program is typed (tip derivation followed by type
checking) is linear in the size of the program.

4. SCHEDULABILITY CHECKING
Given a typed E program P over a finite set T of tasks,

and WCETs for the tasks in T , we present a sufficient con-
dition for the schedulability of P . If P is generated from a
Giotto program without redundant modes, then the condi-
tion is also necessary. The schedulability condition can be
checked in time O(m · (c + 1)k−1), where m is the number
of instructions and k is the number of threads of P , and c is
the largest trigger offset that occurs in P . We also show that
if the condition is satisfied, then all deadlines are met by an
EDF schedule. This is of practical importance, because for
typed programs, it is simple to implement an EDF schedule.
The schedulability analysis of a typed E program P is based
on the notion of a timing-flow graph for P , which is induced
by the control-flow graph for P . The analysis is abstract in
that all syntactic program paths are considered feasible.

Control-flow graphs
Let T be a set of tasks and let P be an E program over T .
The control-flow graph FP = (L, a0, E, s) for P consists of
the following components:

• A set L of control locations, an initial location a0 ∈ L,
and a set E ⊆ L× L of directed edges.

• A function s that labels each edge with a (non-control-
flow) instruction: for all edges (a, a′) ∈ E, we have
either s(a, a′) = call(d) for a driver d, Or s(a, a′) =
schedule(t) for a task t ∈ T , or s(a, a′) = future(n, a′′)
for a trigger n ∈ N and a location a′′ ∈ L.

The control-flow graph FP is abstract: it contains no infor-
mation about port values. If the program P contains an if

instruction at address a, then the location a of FP has two
nondeterministic successors; if P contains a return instruc-
tion at address a, then the location a of FP has no successor;

∆ : call(d); I

∆{(t,⊥)} : I
share(d, t)

∆ : schedule(t); I

∆{(t, 0)} : I

∆ : future(n, I
′
); I

⊥ : I ∆ + n : I
′

∆ : if(c, I
′
); I

∆ : I ∆ : I
′

∆ : jump(I)

∆ : I

∆ : call(d); I

∆ : I
∀t∈T ¬share(d, t)

Figure 11: Tip derivation for call instructions
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all other locations of FP have exactly one successor. If the
program P is multi-threaded, then the control-flow graph
FP may consist of several subgraphs —one for each thread—
which are not connected with each other.

If the program P is typed, then we can associate a type
with every location of FP . Recall that a type (S,C,R) is a
triple consisting of a set S ⊆ T of available tasks, a function
C: S → N⊥ that maps every available task to a consumed
time, and a function R: S → N⊥ that maps every available
task to a remaining time, such that for all available tasks
t ∈ S, either C(t) = R(t) = ⊥, or C(t), R(t) ≥ 0 and
C(t) +R(t) ≥ 1. A typed control-flow graph 〈FP , θ〉 consists
of the control-flow graph FP for a typed program P , together
with a function θ that maps every location of FP to a type.
We write (S(a), C(a), R(a)) for the type θ(a) of a location
a ∈ L. The type system enforces that once S(a) = ∅, only
call instructions can be performed.

Timing-flow graphs
The edges of a control-flow graph represent E code instruc-
tions, which are executed in zero time. The real-time be-
havior of an E program is made explicit in the so-called
timing-flow graph, which in addition to instruction edges
also contains edges that represent the passage of time. In-
formally, the vertices Lτ of the timing-flow graph F τ

P for
the program P are trigger configurations, each consisting
of a control location and a trigger queue, and the edges are
either (1) instruction edges Eτ labeled by the E code instruc-
tions of P , or (2) zero-time edges τ0 indicating the removal
of triggers from the trigger queue, or (3) unit-time edges
τ1 indicating the advance of time. Formally, the control-
flow graph FP = (L, a0, E, s) induces a timing-flow graph
F τ

P = (Lτ , aτ
0 , E

τ , sτ , τ0, τ1) with the following components:

• A set Lτ = L × Queues(N × L) of trigger configura-
tions 〈a, q〉, each consisting of a control location a and
a trigger queue q. The trigger queue q is a queue of
trigger bindings (n, a′) ∈ N × L. The trigger binding
(n, a′) indicates that after n time units, control jumps
to the location a′.

• An initial configuration aτ
0 = 〈a0, ∅〉, where ∅ is the

empty queue.

• A set Eτ ⊆ Lτ × Lτ of instruction edges, labeled by
the function sτ , such that (〈a, q〉, 〈a′, q′〉) ∈ Eτ if one
of the following: (1) (a, a′) ∈ E and s(a, a′) = call(d)
and q′ = q. In this case, sτ (〈a, q〉, 〈a′, q′〉) = call(d).
(2) (a, a′) ∈ E and s(a, a′) = schedule(t) and q′ = q.
In this case, sτ (〈a, q〉, 〈a′, q′〉) = schedule(t). (3) (a, a′) ∈
E and s(a, a′) = future(n, a′′) and q′ = q·(n, a′′); that
is, the trigger binding (n, a′′) is entered at the end of
the queue q. In this case, sτ (〈a, q〉, 〈a′, q′〉) = future.

• A set τ0 ⊆ Lτ × Lτ of zero-time edges such that
(〈a, q〉, 〈a′, q′〉) ∈ τ0 if (1) there is no Eτ edge outgoing
from 〈a, q〉, (2) the queue q contains a trigger binding
of the form (0, ·), (3) the queue q′ results from q by re-
moving the first trigger binding of the form (0, ·), and
(4) the trigger binding that is removed from q has the
second component a′; that is, q′ = q\{(0, a′)}.

• A set τ1 ⊆ Lτ ×Lτ of unit-time edges such that (〈a, q〉,
〈a′, q′〉) ∈ τ1 if (1) there is no Eτ or τ0 edge outgoing
from 〈a, q〉, (2) a′ = a, and (3) the queue q′ results
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Figure 12: Condensed timing-flow graph for the
E code in Figure 8

from q by replacing every trigger binding (n, ·) by (n−
1, ·). The decrements are all nonnegative, because by
condition (1), the queue q contains no trigger binding
of the form (0, ·).

Figure 12 shows a condensed version of the timing-flow graph
for the E code in Figure 8. In the figure, paths of consecutive
unit-time edges are condensed into single (weighted) edges,
and paths of consecutive instruction and zero-time edges are
condensed into vertices. Each vertex is labeled with the set
d of tasks that are terminated and the set r of tasks that
are released at the vertex.

The execution of the program P corresponds to a path
through the timing-flow graph F τ

P , where time advances by
one unit whenever a τ1 edge is traversed. A configuration
〈a, q〉 ∈ Lτ has two successors in F τ

P iff the location a ∈ L
has two successors in the control-flow graph FP . These con-
figurations correspond to if instructions in the program P .
All other configurations in Lτ have zero or one successors;
that is, all nondeterminism in the timing-flow graph F τ

P is
caused by abstracting the port values. The program exe-
cution may either finish, by reaching a configuration with-
out successors, or run forever. Thus, the relevant part of
the timing-flow graph F τ

P is its reachable subgraph, defined
as follows. A path of the program P is a finite sequence
r0r1 . . . rn of configurations ri ∈ Lτ such that r0 = aτ

0 and
for all 0 ≤ i < n, we have (ri, ri+1) ∈ Eτ ∪ τ0 ∪ τ1. A config-
uration r̂ ∈ Lτ is reachable if there is a path r0r1 . . . rn of P
such that rn = r̂. The restriction of the timing-flow graph
F τ

P to the reachable configurations is denoted F̂ τ
P .

If the program P is typed, then the reachable configura-
tions 〈a, q〉 of the timing-flow graph F τ

P have a special form:
each location can occur at most once in 〈a, q〉; i.e., the lo-
cations that occur in the trigger queue q are all pairwise
distinct and different from a. This is implied by the follow-
ing lemma and by the property of typed control-flow graphs
that every future instruction provides at least one available
task to the future continuation of the current thread.

Typing lemma. If the program P is typed, then every
reachable configuration 〈a, q〉 of the timing-flow graph F τ

P

satisfies the following three conditions. First, if (·, a′) is
a trigger binding in the queue q, then S(a) ∩ S(a′) = ∅.
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Second, if (·, a′) and (·, a′′) are two distinct trigger bindings
in q, then S(a′) ∩ S(a′′) = ∅. Third, if (n, a′) is a trigger
binding in q and C(a′)(t) 6= ⊥, then C(a′)(t) ≥ n. 2

The typing lemma follows from the way the type system
propagates the set of available tasks: with each future in-
struction the available tasks are partitioned into two disjoint
sets —one for the future continuation of the current thread,
and the other for the newly created thread.

The typing lemma implies that for typed programs P ,
the reachable subgraph F̂ τ

P of the timing-flow graph is fi-
nite. However, F̂ τ

P may be exponentially larger than the
control-flow graph FP , whose size is linear in the size of
the program P . The exponential is caused by concurrency.
To see this, recall that threads are created by future in-
structions: a typed E program P has k threads if P con-
tains k − 1 future instructions whose tips are nonempty.
In particular, P is single-threaded iff all future instructions
of P make no tasks available to the newly created thread,
which means that the newly created threads can only per-
form call instructions (typically for data “clean-up”). The
typing lemma implies that if P is typed and has k threads,
then for every reachable configuration 〈a, q〉 of the timing-
flow graph F τ

P , the queue q contains at most k − 1 trigger
bindings. Moreover, for each trigger binding (n, ·) in q, if
c is the largest offset that occurs in a future instruction
of P , then 0 ≤ n ≤ c. Consequently, if a typed program
P has m instructions and k threads, and all time triggers
are bounded by c, then the reachable subgraph F̂ τ

P of the
timing-flow graph has size O(m · (c+ 1)k−1).

The typing lemma ensures that for typed programs, we
can associate with every configuration 〈a, q〉 of F̂ τ

P a global
type, which is obtained by glueing together the type of a and
the types of the locations that occur in the trigger queue q.
A global type (C,R) is a pair consisting of a function C:
T → N⊥ that maps every task to a consumed time, and a
function R: T → N⊥ that maps every task to a remaining
time, subject to the usual constraint that for all tasks t ∈
T , either C(t) = R(t) = ⊥, or C(t), R(t) ≥ 0 and C(t) +

R(t) ≥ 1. A typed timing-flow graph 〈F̂ τ
P , θ

τ 〉 consists of

the reachable subgraph F̂ t
P of the timing-flow graph for a

typed program P , together with a function θτ that maps
every configuration r = 〈a, q〉 of F̂ τ

P to the following global
type (C,R): (1) if t ∈ S(a), then C(r)(t) = C(a)(t) and
R(r)(t) = R(a)(t); (2) if t ∈ S(a′) and (n, a′) ∈ q, then
C(r)(t) = C(a′)(t) − n and R(r)(t) = R(a′)(t) + n (the
difference C(a′)(t) − n is nonnegative because of the third
condition of the typing lemma; we assume ⊥ ± n = ⊥);
and (3) in all other cases, C(r)(t) = ⊥ and R(r)(t) = ⊥
(this applies to tasks that are available neither in a nor in
any of the locations that occur in the trigger queue q). We
write (C(r), R(r)) for the global type θτ (r) of a reachable
configuration r ∈ Lτ . A task t ∈ T is active at a reachable
configuration r if C(r)(t) 6= ⊥; that is, the task has been
released but not yet terminated. We write A(r) ⊆ T for the
set of tasks that are active at r.

Note that the reachable timing-flow graph F̂ τ
P may con-

tain zero-time cycles, i.e., cycles that contain no τ1 edges.
Each zero-time cycle either is inherited from the control-flow
graph FP , in which case it consists of Eτ edges only, or it
is caused by future instructions, in which case it contains
some τ0 edges. As all port values are abstracted, zero-time
cycles may be present even if P is time-live, i.e., if every

program execution traverses infinitely many τ1 edges. We
are not concerned here with time-liveness, as the issue is or-
thogonal to scheduling (i.e., time-safety) and not present in
E code generated from Giotto programs [3].

Schedulability test
A scheduling point of a program P is a reachable config-
uration r ∈ Lτ of the timing-flow graph such that r has
an outgoing τ1 edge in F τ

P , which advances time (if this is
the case, then r cannot have any other outgoing edges). At
each scheduling point, a scheduler can decide which tasks to
execute during the time unit that corresponds to the out-
going edge. We write X ⊆ Lτ for the set of scheduling
points. A time-based schedule for the program P is a func-
tion σ: X → (T → [0, 1]) that maps every scheduling point
r and every task t to a real number σ(r, t) ∈ [0, 1] such thatP

t∈T σ(r, t) ≤ 1. The real σ(r, t) indicates how much CPU
time is assigned by the schedule to the task t during the
time unit that follows the scheduling point r. A priority-
based schedule for P is a function π: X → Perms(T ) that
maps every scheduling point r to a permutation π(r) of the
tasks in T . If π(r) = 〈t1, . . . , tm〉, then during the time unit
that follows the scheduling point r, the first task t1 is exe-
cuted until either the task completes or the time unit expires,
whichever happens first. If t1 completes before the time unit
expires, then the second task t2 is executed next, etc. For
two tasks t, t′ ∈ T and a permutation π ∈ Perms(T ), we
write t �π t

′ if t precedes t′ in π; that is, t has a higher pri-
ority than t′. Both time-based and priority-based schedules,
as defined here, are memoryless, in that the scheduling de-
cision at a scheduling point r does not depend on the path
leading up to r, and execution-time independent, in that
the scheduling decision at r does not depend on which tasks
have already completed their execution.

Consider a finite path ρ = r0r1 . . . rn of the program P . A
task t ∈ T is released (resp. terminated) at the position 0 ≤
i < n of ρ if (ri, ri+1) ∈ Eτ and s(ri, ri+1) = schedule(t)
(resp. s(ri, ri+1) = call(d) such that share(d, t)). An exe-
cution 〈ρ, λ〉 of P consists of a finite path ρ together with
a function λ: {0, . . . , n − 1} → (T → [0, 1]) that maps ev-
ery position 0 ≤ i < n of ρ and every task t ∈ T to a real
λ(i, t) ∈ [0, 1] such that the following three conditions hold:
(1)

P
t∈T λ(i, t) ≤ 1; (2) if for all 0 ≤ j ≤ i, the task t is not

released at j, then λ(i, t) = 0; and (3) if (ri, ri+1) ∈ Eτ ∪ τ0,
then λ(i, t) = 0. If (ri, ri+1) ∈ τ1, then λ(i, t) indicates how
much CPU time is spent on the task t during the corre-
sponding time unit. The execution 〈ρ, λ〉 is time-safe if for
all tasks t ∈ T and all positions 0 ≤ i < n, if t is terminated
at i, then either λ(j, t) = 0 for all i ≤ j < n, or there ex-
ists a position i < k < n such that t is released at k and
λ(j, t) = 0 for all i ≤ j < k. In other words, a time-safety
violation occurs if a task t is executed after a call(d) in-
struction, where d is a driver that shares ports with t, but
before the next schedule(t) instruction; in this case the task
is not completed at the time of the call instruction.

According to a time-based schedule σ, a task t ∈ T is
completed at the position 0 ≤ i < n of 〈ρ, λ〉 if ri is a
scheduling point and λ(i, t) < σ(ri, t); that is, t does not
use the full amount of time assigned by the scheduler, and
therefore must be completed. According to a priority-based
schedule π, a task t ∈ T is completed at the position 0 ≤
i < n of 〈ρ, λ〉 if ri is a scheduling point and there exists a
task t′ ∈ T such that t �π(ri) t

′ and λ(i, t′) > 0; that is,
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t would have priority over a task that uses the CPU, and
therefore must be completed. The execution 〈ρ, λ〉 complies
with a (time-based or priority-based) schedule ψ if for all
tasks t ∈ T and all positions 0 ≤ i < n, if t is completed at
i according to ψ, then either λ(j, t) = 0 for all i < j < n,
or there exists a position i < k < n such that t is released
at k and λ(j, t) = 0 for all i < j < k. In other words, once
a task t is completed, it cannot be executed until the next
schedule(t) instruction.

A WCET map w for a set T of tasks is a function w:
T → R≥0 that maps every task t to a nonnegative real w(t),
which represents the worst-case execution time of t on a
specific CPU. The interim execution time Λ(i, t) ∈ R≥0 of
a task t ∈ T at a position 0 ≤ i < n of an execution 〈ρ, λ〉
is defined inductively as follows: (1) Λ(0, t) = 0; and (2) if
t is released at the position i + 1 of ρ, then Λ(i + 1, t) = 0;
otherwise, Λ(i + 1, t) = Λ(i, t) + λ(i, t). Thus the interim
execution time Λ(i, t) accumulates all execution times λ(i, t)
from the last release of t to position i. The execution 〈ρ, λ〉
complies with the WCET map w if Λ(i, t) ≤ w(t) for all
tasks t ∈ T and all positions 0 ≤ i < n. A (time-based or
priority-based) schedule ψ for P is correct with respect to
the WCET map w if every execution of P which complies
with both ψ and w is time-safe. The program P is time-
based schedulable for the WCET map w if there exists a
time-based schedule for P which is correct with respect to w.
The following lemma gives a sufficient condition for the time-
based schedulability of typed programs.

Time-based schedulability lemma. Let P be a typed
E program over a set T of tasks, and let w be a WCET map
for T . The program P satisfies the utilization criterion for
w if all scheduling points r of P satisfyX

t∈A(r)

w(t)

C(r)(t) +R(r)(t)
≤ 1.

If P satisfies the utilization criterion for w, then P is time-
based schedulable for w. 2

Recall that A(r) is the set of active tasks at r, and C(r)(t)
and R(r)(t) are the consumed and remaining times of task
t at r. The proof of the time-based schedulability lemma
relies on the typing lemma. There, it is also shown that the
number of scheduling points, and thus the number of uti-
lization tests, is linear in the number of instructions and
exponential in the number of threads (which is typically
small). If P is not typed, then the time-based schedula-
bility lemma does not hold. If the utilization criterion is
satisfied, then a correct time-based schedule is σ(r, t) =
w(t)/(C(r)(t) +R(r)(t)); that is, in each time unit, the sched-
ule assigns a time slice to all tasks that have been released
but not yet terminated. The utilization criterion is not a
necessary condition for schedulability. However, if P is gen-
erated from a Giotto program without redundant (i.e., un-
reachable) modes, then the utilization criterion is both suf-
ficient and necessary for time-based schedulability [4].

EDF scheduling
Let P be a typed E program. A priority-based schedule
π for P is an EDF schedule if for every scheduling point
r of P and all tasks t, t′ ∈ T , if R(r)(t) < R(r)(t′), then
t �π(r) t

′; that is, if t has less remaining time than t′, then t
has a higher priority than t′. The typed program P is EDF
schedulable for the WCET map w if all EDF schedules for P

are correct with respect to w. The following theorem shows
that the utilization criterion implies EDF schedulability.

EDF schedulability theorem. Let P be a typed E pro-
gram over a set T of tasks, and let w be a WCET map for T .
If P satisfies the utilization criterion for w, then P is EDF
schedulable for w. 2

The proof relies on the time-based schedulability lemma and
the fact that for each execution, a correct time-based sched-
ule can be converted, step by step, into an EDF schedule [6].

5. CONCLUSION
We have presented a type system for E code that checks,

given an E program, whether the task deadlines specified in
the program are path-insensitive. In other words, the type
system checks for each task invocation in the E program
whether the task has the same deadline on all future pro-
gram paths. We have shown that typed E programs allow,
for given WCETs of tasks, a simple schedulability analysis
when using an EDF scheduler. E code may also be executed
in conjunction with scheduling strategies other than EDF.
However, for this purpose, appropriate schedulability tests
have yet to be identified.

The real-time programming language Giotto can be com-
piled into typed E code, which identifies an easily schedu-
lable yet expressive class of real-time programs. We have
extended the Giotto compiler to generate typed E code, and
enabled the run-time system for E code to perform a type
and schedulability check before executing the code. Thus,
the run-time system need not trust the compiler in order to
gain assurance, provided the WCET information is accurate,
that all deadlines specified by the E code are met.
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