
Java Takes Flight:
Time-portable Real-time Programming with Exotasks

Joshua Auerbach
IBM Research

josh@us.ibm.com

David F. Bacon
IBM Research

dfb@watson.ibm.com

Daniel T. Iercan
University of Timisoara

diercan@gmail.com

Christoph M. Kirsch
University of Salzburg
ck@cs.uni-salzburg.at

V.T. Rajan
IBM Research

vtrajan@us.ibm.com

Harald Röck
University of Salzburg

hroeck@cs.uni-salzburg.at

Rainer Trummer
University of Salzburg

rtrummer@cs.uni-salzburg.at

Abstract
Existing programming methodologies for real-time systems suffer
from a low level of abstraction and non-determinism in both the
timing and the functional domains. As a result, real-time systems
are difficult to test and must be re-certified every time changes are
made to either the software or hardware environment. Exotasks are
a novel Java programming construct that achieve deterministic tim-
ing, even in the presence of other Java threads, and across changes
of hardware and software platform. They are deterministic func-
tional data-flow tasks written in Java, combined with an orthogonal
scheduling policy based on the logical execution time (LET) model.
We have built a quad-rotor model helicopter, the JAviator, which we
use as a testbed for this work. We evaluate our implementation of
exotasks in IBM’s J9 real-time virtual machine using actual flights
of the helicopter. Our experiments show that we are able to main-
tain deterministic behavior in the face of variations in both software
load and hardware platform.

Categories and Subject Descriptors C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems;
D.3.2 [Programming Languages]: Java; D.3.4 [Programming
Languages]: Processors—Memory management (garbage collec-
tion)

General Terms Algorithms, Languages, Measurement, Perfor-
mance

Keywords Real-time scheduling, UAVs, time-portability, virtual
machine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’07, June 13–16, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-632-5/07/0006. . . $5.00

1. Introduction
Real-time applications need low and predictable scheduling laten-
cies. This has caused them to be written with specialized method-
ologies in low-level languages. However, this practice is chang-
ing. Recent innovations in real-time garbage collection for Java [3]
have made Java suitable for writing real-time applications whose
latency requirements are in the millisecond range. Restricted sub-
sets of Java, used in portions of a larger application, are used to
achieve still lower latencies in the microsecond range. These in-
clude the NoHeapRealtimeThread (NHRT) construct of RTSJ [5],
eventrons [20], and reflexes [21]. However, each of these restricted
programming models entails problems for the application writer.

Once real-time applications are written in a language such as
Java that provides functional portability across platforms, the re-
quirement emerges to make the scheduling behavior portable as
well. That is, observable real-time behavior should be the same on
all platforms. Of course, this requires adequate resources on each
platform. However, if sufficient resources exist, it should not re-
quire rewriting or re-tuning the application.

Exotasks are an attempt to solve the timing portability prob-
lem and, at the same time, provide a less restrictive capability for
programming at low latencies, compared with what is currently of-
fered by NHRTs, eventrons, or reflexes. In practice, restrictiveness
is a complex matter, so we do not claim that the exotask model
is strictly a superset of the others. Nonetheless, exotasks come the
closest to providing standard Java memory management semantics,
in which objects are freely allocated and garbage collected only
when unreachable. As a result, exotasks are also compatible with
a larger (although still reduced) set of Java libraries than other ap-
proaches.

Exotasks comprise a programming model defined entirely
within the Java language, a supporting tool suite built on the
Eclipse framework [7], and runtime support in a cooperating Java
virtual machine. Like NHRTs, eventrons, and reflexes, exotasks
run on special threads that are exempted from preemption by sys-
tem threads such as those used to accomplish garbage collection.
In addition, exotasks employ some unique features to make that
possible.

Figure 1. A simple exotask program

Exotasks achieve highly repeatable behavior by enforcing a
computational model in which tasks (called exotasks) communicate
via explicitly declared channels and are otherwise isolated (logi-
cally in time and physically in space) from each other and from the
rest of the Java application. The system achieves portable timing
characteristics by scheduling exotasks using logical execution time
(LET) [11]. In the LET model, events involving I/O are executed at
precise points in real time while other events are executed based on
data dependencies between tasks. The exotask system is inspired
by Giotto [11] and its successor HTL [8], but represents a complete
rethinking of the syntax of programs and the development cycle so
as to fit naturally into the Java programming model.

Exotasks may be written as Java classes that follow certain de-
sign patterns, or created with an Eclipse-based graphical editor that
generates classes in the required style. All interconnections, and op-
tionally some exotasks, have system-provided behavior. Most exo-
tasks are populated with user-written Java code.

The Eclipse-based programming environment for exotasks is
partly graphical in that the exotasks and their interconnections are
first declared by dragging and dropping elements from a palette.
Navigation between the graphical view and the standard Eclipse
Java editors for user-written code is accomplished via the graphical
user interface using familiar paradigms such as double-clicking.
Exotasks also define a stored format and a programmatic API that
permits the graphical phase to be bypassed or a different graphical
tool to be substituted.

The exotask system requires a modified Java virtual machine
(JVM) that is capable of enforcing exotask memory isolation. Each
exotask has a private heap that supports the standard Java memory
model. Thus, unlike eventrons [20], exotasks can create objects and
modify reachable objects at will. They are restricted only from
observing or changing mutable state in (or reachable from) static
fields (which would break memory isolation) and from creating
new threads (which would prevent accurate scheduling). Unlike
reflexes [21], they do not need to pre-declare a distinction between
stable and transient objects: standard garbage collection techniques
handle all object lifetimes. To support the full development cycle,
the characteristics of the exotask JVM can be simulated by the
development framework using any JVM; this allows errors to be
found early in the development cycle.

The exotask system also supports pluggable system behavior. It
is possible to provide new timing grammars that define the rules for
specifying timing constraints, new schedulers that interpret those
timing constraints (along with WCET information) to produce cor-
rect runtime behavior, and new distributers that allow an exotask
program to span multiple machines.

Exotasks are validated before instantiation to make sure that all
of the programming model semantics and restrictions are obeyed. A
validated exotask does not require any additional run-time checks,
which both improves efficiency and simplifies the run-time system.

The combination of an expressive programming model which
allows the use of almost all of Java’s features, an annotation-free
input language, and a validator which eliminates the need for run-
time checks makes exotasks a compelling real-time programming
model.

public class Compute implements Runnable
{
// Code generated from the specification:
private ExotaskInputPort<double[]> in0;
private ExotaskOutputPort<Double> out0;

public Compute(ExotaskInputPort<double[]> in0,
ExotaskOutputPort<Double> out0) {

this.in0 = in0;
this.out0 = out0;

}

// Code written by the user:
public void run() {

double[] sensorData = in0.getValue();
double actuation = control(sensorData);
out0.setValue(actuation);

}

private double control(double[] sensors)
{

// control algorithm goes here
}

}

Figure 2. Exotask code for the Compute node in Figure 1

2. Exotask Basics
In this section, we introduce the basic features of the exotask
programming model using a simple example of a controller for
a simulated inverted pendulum with one degree of freedom [16].
Additional features are presented in Section 3 using the actual
system for controlling the JAviator helicopter.

An exotask program consists of a specification graph, user
code for some graph nodes (in the form of Java classes), and
timing annotations applied to the nodes and directed edges of the
graph. The nodes of the graph specify exotasks and the edges
specify connections between the ports of those exotasks. The user
code implements the functional behavior of exotasks. The timing
annotations specify the timing behavior of the system.

The exotask specification graph for the inverted pendulum con-
troller is shown in Figure 1, which depicts a screenshot from our
Eclipse-based exotask programming environment (timing annota-
tions and user code for the tasks are not shown but can be revealed
and edited in the Eclipse environment).

The exotask programming model distinguishes the specifica-
tion graph (and the Java classes that support it) from the instan-
tiated graph, which consists of Runnable objects corresponding to
the nodes and edges of the specification graph. The instantiated
graph is what is actually executed. Only the exotask run-time sys-
tem can create the instantiated graph, and only after verifying the
exotask restrictions on data flow, isolation, and timing. The restric-
tions include type compatibility of connected ports, memory isola-
tion of user code across exotasks, and causality of timing annota-
tions. Once the specification graph has been verified, the run-time
system creates the instantiated graph from it by creating the private
heaps, instantiating the exotasks in those heaps, and constructing
additional objects to represent the ports and connections.

Non-determinism due to just-in-time (JIT) compilation can be
avoided either by using an ahead-of-time compiler, or by having
JIT compilation forced for all of the methods in the exotask call
graph (since the complete call graph is known at instantiation time).

Exotasks are used to implement sensors, actuators, and compute
tasks, as well as some advanced features explained in Sections 3
and 4.

Most exotasks have user-written code bodies. Memory isola-
tion is enforced by the verifier by preventing the code body of the
task from reading or writing any global variables other than final
immutable data, and by disallowing thread creation and reflection.
This requires the verifier to construct a summary of the call graphs
of all the exotasks (i.e., to find all the reachable methods), which it
does conservatively using Rapid Type Analysis [4] on the exotask
code bodies and any global immutable data they access (see Sec-
tion 4.1 for details). Classes are considered live by the analysis if
they are members of the instantiated graph, named in new instruc-
tions executed by reachable methods, or admitted to the graph by
native code or intermachine data transfer (admission is described in
Sections 2.2 and 3.2).

An exotask has zero or more input ports and zero or more output
ports (but at least one port of some kind). Each port has a data
type, specified as a Java class. In Figure 1, Sensor’s output port and
Compute’s input port are of type double[], while Compute’s output
port and Actuator’s input port are of type Double. Arbitrary Java
classes (with instance fields that include other classes by reference)
may be used freely, as long as the verifier does not find that their
methods are being used in a way that violates isolation.

Exotasks are garbage collected individually, and garbage col-
lection may be either scheduled or on-demand. Scheduled collec-
tions occur between task executions at times when the CPU would
otherwise be idle. They are the most conservative way of ensur-
ing that garbage collections do not cause non-determinism. As it is
generally not necessary to collect each task on every period, over-
provisioning is avoided by performing scheduled collections of dif-
ferent tasks in different periods. On-demand collections occur dur-
ing task execution when the memory region of the task is filled,
something that only occurs when scheduled collections are omitted
or are done too infrequently. The possible benefits of allowing on-
demand collections are discussed in Section 5.2. Non-determinism
in memory consumption due to fragmentation is avoided by using
the sliding compacting collector of Bacon et al [2].

2.1 Connections and Ports
All communication in the graph is via directed edges (connections),
which connect an output port of a source exotask to an input port
of a target exotask. Connections are constrained to connect ports
of identical type. Sharing between tasks is precluded because the
operation of moving an object across a connection is semantically
a deep copy of the referenced data structure.

Connections are themselves stateless but each port (output or
input) can store a value. Thus, the connection and the ports at
each end act as a one-stage buffer, allowing the value written
by the sending task to its output port to differ from the value
available to the receiving task via its input port. The deep copy
is made at some time after the execution of the sending task in
a given period and before the execution of the receiving task.
Consequently, the scheduler is responsible for preventing these
executions overlapping.

Exotasks do not share objects with the global Java heap, and
may therefore run at a higher priority than the global heap’s garbage
collector.

2.2 Sensors and Actuators
Sensors are exotasks that only have output ports. Actuators are
exotasks that only have input ports. Sensors and actuators generally
invoke native (JNI) code to interface with device drivers.

Because exotask verification is based on knowing the set of
classes that can be instantiated, sensor specifications must explic-
itly specify the set of classes they may admit to the graph in native
code. Due to subclassing and incorporation by reference, this set
may include not only the declared data type of the sensor’s output

port(s), but also any other classes that the native code may link to
the output value via reference fields in the object.

In the inverted pendulum example, the Sensor exotask provides
its output port with a vector of doubles, representing the position
and velocity of the pendulum’s cart and the pendulum’s angular
position and velocity. In a fully realized version of this simulation,
this information would be computed from hardware sensors acces-
sible via native JNI code. Because double[] has no subclasses and
incorporates only primitive values, it is also the only admitted class.

The Actuator exotask reads a single java.lang.Double motor
control value, rescales it to the appropriate integer range, and writes
that to the PWM controller for the motor. Note that for generality,
ports take Java objects rather than primitive types, so that scalars
like double must be passed in their boxed form.

2.3 Compute Tasks
Exotasks used for computation will have both input and output
ports and user-written code bodies. In Figure 1, the task labelled
Compute is a task implementing the pendulum control algorithm.
Its code is shown in Figure 2.

If the exotask is developed using the Eclipse environment, an
enhanced Eclipse class creation wizard generates port instance
variables and a constructor based on the graph, and an empty run
method. The rest of the code is written by the user.

2.4 Timing Annotations
Timing annotations specify externally visible timing behavior that
must be preserved when the program is moved to a different plat-
form. These annotations attach to exotasks, connections, or the
graph as a whole. To achieve time portability, annotations should
conform to the spirit of the logical execution time (LET) model in-
troduced in Giotto [11]. LET specifies time for external events, but
does not specify any timings for internal tasks.

In the inverted pendulum example, the graph as a whole has
a period (30 ms), and the sensor and actuator have timing offsets
within that period (0 ms and 10 ms, respectively). The internal
events are not assigned execution times, in keeping with the LET
model.

There are a number of different possible ways of specifying
timing constraints. For example, one can specify offsets within a
period as was the case in this example. Alternatively, one can use
multiple harmonizing periods (as in HTL) or some other notation
not yet conceived. Since there are many different approaches to task
scheduling, we made this aspect of the system pluggable.

Timing annotations conform to timing grammars, which can
be added to the exotask system, along with pluggable schedulers
that expect annotations conforming to those grammars. Intuitively,
a timing grammar is a set of syntactic well-formedness rules for
attaching timing annotations to elements of the specification graph.

The grammar manifests itself as additional attributes and ele-
ments in the specification graph, which may be created program-
matically or generated by the Eclipse environment and included in
the stored XML representation of the graph. At runtime, the gram-
mar’s identity is used to select an appropriate scheduler that under-
stands that grammar. A single grammar may be supported by more
than one scheduler. Thus, the exotask programming model is pa-
rameterized by timing grammars, and consequently not limited to a
particular timing semantics (although we have focused on LET so
far).

In this paper, we will discuss two different timing grammars and
their supporting schedulers: the time-triggered (TT) grammar and
the hierarchical timing language (HTL) grammar. The TT grammar
supports annotations that specify timing offsets of exotasks and
connections within periods, as well as modes (discussed further
in Section 3.3). The HTL grammar supports full HTL [8] and is

Figure 3. The JAviator: a custom-built quad-rotor helicopter used for experiments in this paper (javiator.cs.uni-salzburg.at)

therefore more complex (see Section 5.1.2). For simplicity, we use
the TT grammar in both examples, the inverted pendulum and the
JAviator, although we also implemented the JAviator system using
the HTL grammar.

The combination of deterministic computation enforced by the
isolation of exotasks, and the deterministic timing provided by
logical execution time, means that a real-time system stimulated
with the same external inputs (sensor values) will produce the same
actuator values regardless of other running tasks or variations in the
hardware platform (assuming only adequate resources to support
all the necessary computations).

3. Advanced Exotasks: JAviator
In this section, we will introduce some of the more advanced
features of exotasks using our custom-built JAviator quad-rotor
helicopter and the associated exotask-based control. The JAvia-
tor, shown in Figure 3, is a battery-powered helicopter built from
custom-machined carbon fiber, aircraft aluminum, and titanium.

Sensor data comes from a gyroscope providing pitch, roll, and
yaw data, and a sonar range-finder for altitude measurements.
These are read by a microcontroller, which forwards the data val-
ues to the processor on which the exotask-enhanced Java virtual
machine is running. All computation is performed there and, upon
completion, the values are sent to the microcontroller, which uses
them to produce the PWM signals for the motors. The exotask-
based control also communicates via a socket to a ground station
running a Java program that relays high-level joystick controls to
the JAviator and displays an instrument cluster of data from the
JAviator.

Figure 4(a) shows the exotask editor opened to the exotask spec-
ification graph for the JAviator example. As in the first example,
nodes with gear icons represent sensors, actuators, or compute tasks
(depending on their ports). As can be seen from the connections,
all four such nodes are compute tasks. The meanings of the clock,
double arrow, and question mark icons are explained below.

Figure 4(b) shows the properties of the hoverTask compute
task: the input and output port names and types, the Java class
that implements the exotask, the admitted classes, and the timing
annotations appropriate for the selected timing grammar. Properties
are changed in a property sheet dialog which contains the same
information as the flyover texts.

3.1 Global Timing
The unconnected box at the left with the clock icon is the only
node that does not represent an exotask. It represents the selection
of a timing grammar (in this case, the TT grammar) and any global
properties associated with the chosen grammar. The timing gram-
mar properties in Figure 4(c) show that there are four modes, each
with a period of 20 milliseconds.

The selection of a timing grammar also augments the property
dialogs and flyover texts for other elements of the graph. As can be
seen in Figure 4(b), the hoverTask exotask has a “Modes and Time
Offsets” property, in which the task is assigned to the Hover mode
with no timing offset (meaning it will be scheduled only according
to its data dependencies).

Although the exotask model could, in theory, support non-
periodic executions, all of the timing grammars and schedulers
explored so far have used the concept of a period.

3.2 Communicators
The boxes with double-arrow icons represent communicators,
which are system-supplied exotasks with one input port and one
output port of the identical type, providing several capabilities:

1. Communicators can simply provide an extra buffering stage.
For example, the JAviator example uses the controlState com-
municator to hold controller history across periods of execution.

2. Communicators are attachment points for distributers, which
extend exotask graphs across machine boundaries. These are
discussed further in Section 5.3. For instance, the JAviator ex-
ample uses the fromJAviator and toJAviator communicators to
exchange data with the JAviator’s microcontroller, and the from-
GroundStation, toGroundStation, and shutdownMessage com-
municators to exchange data with the ground station. In the ex-
ample, communicators used for inter-machine distribution are
“directional” (either the input or output port is used but not
both). This is not an essential requirement, it is simply a choice
based on programming convenience and the properties of the
distributer.

3. Timing grammars may attach special characteristics to com-
municators to guarantee scheduling properties. The specialized
role of communicators when using the HTL grammar is dis-
cussed in Section 5.1.2.

(a) JAviator Example in the Exotask Editor

Implementation=javiator.JControl.exotasks.DoHover Modes:
Input ports: ControllerState stateIn, NavigationData terminalIn, SensorData javiatorIn OnGround=20,
Output ports: ControllerState stateOut, ReportToGround terminalOut, ActuatorData javiatorOut Hover=20,
No admitted classes AltitudeChange=20,
Modes and time offsets: Hover=”” Shutdown=20

(b) Properties of hoverTask (c) Properties of TT Multi-Mode

Figure 4. The Exotask System for the JAviator Helicopter

Because communicators can exchange data with other ma-
chines, they can admit new classes to the graph. Thus, commu-
nicators whose output ports connect into the graph will have an
admitted-classes declaration in their specification, like sensors (see
Section 2.2).

3.3 Modes, Conditions, and Mode Switching
Modes allow a program to be partitioned into portions that execute
under different circumstances. In the JAviator example, there are
four modes, corresponding to hovering, altitude change, resting on
the ground, and emergency shutdown. Each of the four compute
tasks is assigned to a mode, while the six communicators and the
four conditions are active in all of the modes.

In the exotask model, mode switching is supported by condi-
tions, which give the programmer the ability to control the con-
ditions under which a switch occurs. Conditions are user-written
exotasks with only input ports. They compute a boolean value and
make it available to the scheduler via a special interface. Condi-

tions may be used whenever the scheduler defines a feedback from
the exotask programmer to the scheduler. In Figure 4(a), conditions
are represented by the boxes with question mark icons.

The execution-time semantics of a mode is the province of
the chosen timing grammar. In the TT grammar selected for this
example, conditions are annotated by naming the mode they switch
to when true, and the other exotasks and connections in the graph
may be assigned to execute at specific times in any subset of the
modes. In the HTL grammar (see Section 5.1.2), modes are used in
a more stylized fashion. In both timing grammars, each mode has
a period of execution and the conditions are only examined at the
ends of periods to simplify the scheduling semantics.

The graph in the figure shows the exotask program after all of
the modes have been composed. In practice, modes (or any coher-
ent subset of the graph) may be programmed separately, with cer-
tain exotasks appearing as common elements. The exotask system
recognizes common exotasks (by name) and composes the sepa-
rately developed graphs prior to instantiation.

3.4 Timing Annotations
Timing annotations on the four compute tasks of the graph assign
them to modes, while other exotask belong to all modes. Connec-
tions belong to the appropriate modes, depending on what they in-
terconnect. All modes have a period of 20ms. The toJAviator and
toGroundStation exotasks are assigned specific timing offsets early
in the period so as to create a timely response to the latest sen-
sor data. By convention, the TT scheduler executes nodes with no
timing offsets before executing any nodes that are data-dependent
upon them.

The controlState communicator is also given a timing offset
because it is part of a cyclic data dependency. The TT scheduler
only executes untimed nodes to satisfy the data dependencies of
timed nodes, so, without this annotation, parts of the graph would
not execute. Other schedulers use other conventions for scheduling
cyclic graphs.

Everything else in the graph (other than the conditions) will exe-
cute before those communicators that are given timing offsets. This
includes the fromJAviator and fromGroundStation communicators,
which execute at the start of every period due to the rest of the
graph being data-dependent upon them.

4. Additional Exotask Features
We have explained much of the exotask programming model
through the two examples. What remains are some semantic clari-
fications and explanation of a few features that were not used in the
examples.

4.1 Exotask Memory Isolation
While we do not offer a proof that exotasks are isolated in memory,
we can informally establish the property by reasoning inductively
that they start out in isolation and thereafter nothing happens that
can break isolation:

• The ports of an exotask, which are system-generated, are passed
to its constructor with the expectation that they will be stored
in instance variables. The exotask gets no other constructor
arguments, thus it begins with no references at all, except to
its ports and to any objects it creates in its constructor.

• The exotask has a private heap: all objects that it creates go
there. It itself resides there, as do its ports.

• When an exotask reads a value from an input port, it gets a
deep copy of the value that was placed there by code outside the
exotask. When an exotask writes a value to an output port, any
code outside the exotask that reads this value will get a deep
copy thereof. The values that are visible to the exotask reside
only in its private heap.

• No application code outside the exotask retains any reference to
the exotask or to any object in the exotask heap. This property
is ensured by the exotask system when the specification graph
is turned into an instantiated graph. Every item that makes up
the instantiated graph is created by the exotask system and no
references are leaked to any non-exotask code.

• An exotask may not break isolation through accessing static
fields, except for final fields of primitive type, and other objects
that the analyzer determines to be immutable. This is enforced
by the verifier as was briefly discussed in Section 2; details on
immutability analysis are provided below. Once an exotask is
verified, it is allowed to execute without dynamic checks.

4.2 Use of Immutable Global Data
One of the trickiest aspects of designing exotasks, or indeed any of
the modified Java programming models for real-time (Eventrons,
Reflexes, NHRTs) is how to balance the desire for expressiveness

and the ability to reuse a maximal amount of pre-existing library
code, against the desire to make the model simple, efficient, and
exception-free.

In our initial implementation, exotasks were only allowed to
read static final fields of primitive types. This made it possible to
use a reasonable amount of library code, but there were a number
of gaps. Without modification to our JDK, we could use ArrayList
and Iterator, but not Integer and HashSet.

We have greatly expanded the amount of usable library code
with a two-pronged solution: first, a much more powerful analysis
which is able to detect that many objects are either immutable
or not accessible to mutating code. The “Ref-immutable” analysis
performed by Reflexes [21] is similar but we have increased its
power by inferring fields to be “effectively final” and making the
analysis data-sensitive (see next section). Second, in the case of
objects that are in fact never mutated but for which the analysis is
still not sufficiently powerful, the exotask system (but not the user!)
can specify some classes as “known to be immutable”.

Once an object in the global heap is allowed to be accessed by
an exotask, the runtime system must do two additional things: first,
the object must be pinned so that the global garbage collector (if it
performs compaction) does not move the object, since this would
create a race condition between field access by the exotask and
object relocation by the collector.

Secondly, isolation must be preserved in the face of synchro-
nization operations on the object, as if the exotask had a private
copy. The runtime system simply ignores locking operations by the
exotask. This is safe because the exotask is isolated and single-
threaded, and exotask code which invokes wait or notify is rejected
by the validator.

4.2.1 Immutability Analysis
When the exotask validator runs, it builds a call graph for each
exotask in the graph. This call graph may include functions that
access static fields. The analysis proceeds recursively as follows:
any field that is either final or effectively final because it is private
and never mutated outside of the call tree of its constructor, may be
accessed by the exotask.

Access of objects reachable from static final fields takes advan-
tage of the fact that by the time the validator is running, all of
the class objects referred to by methods in the exotask call graph
will have already been instantiated in the global heap (or forced to
be so by a call by the validator to Class.forName with the initial-
ize parameter set to true). Therefore, we can use a data-sensitive
analysis [20] that takes advantage of the dynamic types and field
values of the objects, rather than just using information about the
static types (which would include subclasses, some of which might
not yet be loaded). Data-sensitive analysis is much more accurate,
which means that more code may be safely accepted by the valida-
tor.

In particular, the analysis examines the code of the exotask call
graph in conjunction with its static final referents in the global heap.
If the call graph contains an access to a field of such an object,
then that field is added to the set of potentially accessed fields, and
validation proceeds recursively with that field.

As immutable objects are added to the set of accessed global
data, they may cause additional edges to be added to the exotask
call graph. Thus the data-sensitive rapid type analysis proceeds in
an iterative fashion until a fixpoint is reached.

This analysis is powerful enough for most classes in java.util.
For example, it successfully validates the HashSet class, whose
only static object is a dummy value of type Object called PRESENT.
This object is used because the HashSet is actually implemented
with HashMap, with all objects in the set mapping to the value
PRESENT.

4.2.2 Immutability Declaration
There are some cases where the data-sensitive analysis is still
not powerful enough to determine that a static object is in fact
immutable. This occurs with the class Integer, which caches boxed
versions of integers smaller than 256 in an array. The analysis
is unable to prove that the data structure is immutable. However,
simple manual inspection shows that in fact it is immutable and
therefore safe to use from an exotask.

To handle this case, the exotask runtime system includes an in-
ternal method called CodeValidator.leakproof, which takes a class
name and a field name. That field is then considered by the valida-
tor to be readable by exotask code. Note that a field may not be
declared “leakproof” unless it really is immutable: this is an aug-
mentation for analysis, but not for cases where a runtime mutation
is “unlikely”.

So far, we have only 13 such declarations, primarily for the
classes Integer and FloatingDecimal.

4.3 Impact of Exotask Restrictions
Other than the restrictions above, an exotask can use the entire
Java language. The restrictions on using static fields still inhibits
the use of library code, but that effect is greatly reduced by the
data-sensitive analysis, and in practice we find we are able to use a
sufficiently large set of library classes such that the restrictions are
not burdensome.

Furthermore, for control programming the code will generally
comprise new Java classes, which will naturally avoid the use of
static since they are developed as exotask code to begin with.
This is what was done for the JAviator control, in which the data
types flowing between exotasks were designed for the project using
primitive types, incorporation by reference, and whatever methods
were needed for convenience.

Most of the classes in java.util that do not pass the validator
could be rewritten quite easily in such a way that they did. Gener-
ally, the price paid for this is a more restricted use of caching tech-
niques, which results in some additional space overhead. However,
the benefits of locality and isolation are useful not only for exotasks
but for other aspects of the JVM implementation, and such rewrit-
ing is in fact being contemplated for the IBM J9 class libraries.

Exotask programming will still be subject to some limitations,
which will probably be most onerous in the case of third-party li-
braries. However, we believe we have reached a level of permissive-
ness where the limitations are minor, and well offset by the increase
in functionality and real-time behavior.

4.4 Permitted Graph Topologies
There are few universal constraints on the topology of graphs,
although there may be constraints imposed by timing grammars
in order to ensure that graphs can be scheduled. An output port
may be the source of any number of connections to different input
ports. An input port may, in general, be the target of any number
of connections from different output ports, but schedulers must
ensure that there are no data races. Consequently, timing grammars
will typically constrain multiple incoming connections to cases
that make sense (e.g., the rule that each incoming connection must
belong to a different mode, which is the rule in both grammars that
we implemented).

As was seen in Section 3, cycles are permitted, but each timing
grammar will impose rules on how cycles must be annotated to
ensure schedulability.

4.5 Exotask Application Development Cycle
As indicated by the two examples, when using the Eclipse-based
tools, an exotask program is developed by developing the specifi-
cation graph visually, then developing the code for the exotasks. At

runtime, however, the exotask program will exist within a conven-
tional Java application that uses the exotask system’s runtime API
to activate, start, pause, and terminate the exotask program.

A specification graph is represented within this surrounding
application by an ExotaskGraphSpecification object, which is a
container for a set of exotask specifications and a set of connec-
tion specifications, with timing annotations attached. A program-
matic API can construct any well-formed ExotaskGraphSpecifi-
cation from scratch. Alternatively, a parser will produce an Exo-
taskGraphSpecification from the stored XML format produced by
the exotask graphical editor. Typically, the programmer will use
a tool in the development environment that creates a Java class
with a static method which, when executed, will produce the Ex-
otaskGraphSpecification. However, the parser may also be invoked
directly at runtime, in which case the XML representation of the
specification graph becomes part of the application source code.

To activate the graph, the surrounding application calls instan-
tiate on the ExotaskGraphSpecification. This runs the verifier and
also invokes the appropriate scheduler (depending on the timing
grammar) to produce an ExotaskGraph object representing the
instantiated graph. If the specification graph fails verification or
scheduling, an exception is thrown instead. The ExotaskGraph ob-
ject resides on the public heap but will be managed by the exotask
system to provide the needed start, pause, and terminate behavior.

During development, the ExotaskGraphSpecification resides in
the memory of the Eclipse development platform. A tool allows the
developer to invoke instantiate on this object at whatever point he
believes it to be valid. Therefore, by the time instantiate is called at
runtime it is unlikely to fail.

This approach requires the verifier to operate in two modes. At
development time, it reads Java class files. At runtime, it processes
the actual bytecodes of the loaded classes in the VM. The verifica-
tion library is built on top of a portability layer that abstracts away
details of how the class information is obtained.

5. The Exotask System Design
In the exotask system, computation is a cooperative endeavor in-
volving the exotask program and system, as well as a scheduler,
and an optional distributer.

While the exotask programmer views the scheduler and dis-
tributer as just part of the system, these are actually pluggable
components. Schedulers assume that the timing annotations of the
specification graph conform to particular timing grammars. These
grammars are also pluggable components.

In this section, we describe the scheduler and distributer plug-
points and briefly discuss the two actual schedulers for the TT and
HTL grammars, and one distributer we have developed so far.

5.1 Exotask Schedulers
An exotask scheduler is responsible for deciding when every exo-
task and every connection should execute. Executing a connection
means deep-copying a value from an output port of one exotask to
an input port of another. The scheduler also decides when every ex-
otask should be garbage collected (between executions) to prevent
on-demand collections that could perturb execution timings. The
scheduler is obligated to obey both timing annotations and data de-
pendencies, and to observe the rule that adjacent entities (e.g., a
connection and the two exotasks that it connects) may not execute
concurrently. This requirement guarantees race-freedom in the ac-
cess to ports without requiring synchronizations that could make
the timing of executions less predictable.

Exotasks and connections are presented to the scheduler as
Runnable objects, designed to be called repeatedly on threads be-
longing to the scheduler (as opposed to normal Runnables, which
are permanently inhabited by a thread). Exotasks are presented as

implementations of ExotaskController, which extends Runnable to
add a garbageCollect method. The run method of ExotaskController
wraps the call to the user-written run method with logic to switch
from the scheduler’s heap to the private heap of the exotask. Thus,
all allocations done in the exotask will allocate to the private heap
and not be directly visible, not even to the scheduler.

The scheduler creates its own metadata from the specification
graph and its timing annotations after verification and instantiation
of the graph but before the surrounding application is given access
to the instantiated graph. To guide the creation of a schedule, the
scheduler receives an additional object that encodes the WCET
information for all exotasks on the current platform. WCETs may
be provided for connections as well, if the deep-cloning for those
connections may consume non-trivial time.

The scheduler is given its own heap, distinct from the private
heap of any exotask and also distinct from the global heap, so that
scheduler threads are not subject to interference from global allo-
cation and garbage collection behavior, even while manipulating
scheduler metadata. All scheduler threads share the same heap,
however, since otherwise, coordination of scheduling across mul-
tiple threads would be difficult. To avoid non-determinism due to
scheduler heap garbage collections, existing schedulers do no al-
locations into their heaps once the graph begins execution. System
extenders writing new schedulers are required to do the same. If the
scheduler heap required garbage collection, it would be difficult to
schedule that collection in a non-disruptive fashion, especially if
there are multiple scheduler threads.

A scheduler can have as many or as few threads as it requires,
all such threads being supplied by the exotask system. The TT
scheduler used to collect results for this paper is single-threaded.
The HTL scheduler uses as many threads as is required by the
concurrency level of the program.

How the scheduler deals with tasks that violate their WCETs
is up to the scheduler. A scheduler may have an “overseer” thread
that is not used to run tasks but that observes execution and cancels
tasks that have exceeded their limit. Exploring this option is future
work, as we have made no special provision for restoring invariants
after task cancellation.

We have implemented two schedulers that both use the LET
model inspired by Giotto.

5.1.1 The TT Scheduler
The TT scheduler uses periods and modes but adopts a conceptually
simpler and more explicit approach to assigning logical times. In
the TT grammar, events are simply assigned timing offsets within
their periods. The time instants when communicators execute are
either given explicitly or derived from data dependencies.

Because of the simplicity of their specification, a TT-based
graph may have over-specified timing constraints, inhibiting porta-
bility. This can be avoided by a more powerful scheduler, such as
the HTL scheduler described below. However, simple programs are
often easier to express, and trading precision for portability may
have practical value.

5.1.2 The HTL Scheduler
The HTL scheduler implements the semantics of the hierarchical
timing language HTL [8] and requires the use of the HTL grammar.
An important difference from the TT scheduler described above is
that communicators are periodic in HTL. The time instant when a
communicator executes in HTL is derived from its period relative
to the periods of the components connected to it. Furthermore, the
HTL scheduler is multi-threaded.

The HTL grammar enables an injection from HTL programs
to exotask specification graphs: for every HTL program, there is
an equivalent exotask specification graph. The HTL scheduler’s

metadata is a Java version of the E code [10] generated by the
original HTL compiler [8].

Because of the injective property, we are able to ensure that all
of the desirable properties that have been shown for HTL programs
(compositionality, schedulability, refinement, etc.) are inherited by
exotask programs that use this grammar and scheduler.

5.2 Exotask Garbage Collection
Garbage collection of the private heaps belonging to exotasks may
either be scheduled or on-demand. Scheduled garbage collections
are considered as additional tasks by the scheduler, with their own
WCET and period. The period of the task garbage collection need
not be the same as the period of the task whose heap it collects.

Each exotask, in addition to its WCET, also has a worst-case al-
location (WCA), which specifies how much memory it consumes in
a single execution. Like WCET, WCA may be subject to platform-
specific variation, due to changes in object representation, pointer
sizes, and alignment. However, these variations will be generally
smaller than for WCETs, and for a given JVM and broad system
architecture (e.g., x86-32) may not vary at all.

Exotasks allow a time/space trade-off since a larger exotask
heap will reduce the required garbage collection frequency. When
there are multiple exotasks and sufficient memory, heaps that are
multiples of the WCA can be used and the garbage collections
of different exotasks can be scheduled in a staggered (pipelined)
fashion at the corresponding multiple of the underlying period. We
use the term slop for such extra memory available to the scheduler.

In a system without slop but where slack is available, an exo-
task can be run in a heap smaller than its WCA. It may then be col-
lected one or more times by on-demand collections during its exe-
cution, thereby increasing its WCET but reducing its memory con-
sumption. This time/space trade-off is analogous to the time/power
trade-offs employed in real-time systems that use dynamic voltage
scaling [17].

While on-demand collections may seem risky to programmers
used to older methodologies based on static memory allocation,
from a scheduling perspective they are no different from scheduled
garbage collections: the WCA of the exotask and its heap size must
be used to determine the overall WCETs for the scheduler. The
sliding compacting collector used for exotasks is highly predictable
both in its execution time and in its effects on memory consumption
(since it incurs no fragmentation), and instrumentation provided by
the exotask runtime system makes it easy to obtain practical WCET
bounds.

5.3 Exotask Distributers
Distributers are used to connect exotasks across machine bound-
aries. The two duties of a distributer are (1) to “replicate” the con-
tents of communicators and (2) optionally, to provide a distributed
clock. Replication is the most powerful model since it allows an
arbitration based on coordinated time. However, simple message
passing can be used as a degenerate form of this model as was done
in the JAviator example.

As we expect most programmers to treat distributers as part of
the system rather than part of the program, we expect most dis-
tributers to be generic, supporting a particular communication fab-
ric or protocol rather than a particular application. The one we
have written embodies specific knowledge of the JAviator appli-
cation, for which we have hand-coded protocols to communicate
with the ground station and a specialized RS-232 fabric to com-
municate with the microcontroller. No exotask code actually runs
on the microcontroller, which has just a small amount of C code to
communicate with the exotask program and to read or write low-
level hardware registers. While we do not expect such application-
specific distributers to be typical, neither are they illegitimate. We

Pentium M AMD64
Verification 112 118
Instantiation 1641 660
Scheduling 19 14

(a) One-time Exotask Initialization Costs (milliseconds)

Pentium M AMD64
Min Max Avg Min Max Avg

Exotask Run 12 711 25 11 98 16
Exotask Heap GC 0 1043 11 0 647 6
Deep Clone 71 802 95 51 193 67

(b) Per-period Exotask Execution Costs (microseconds)

Figure 5. Execution times in the JAviator program

believe the exotask model to be useful even when actual exotasks
are not used everywhere.

In future work we hope to provide support for automated dis-
tribution of an exotask graph, with a runtime tool deriving the sub-
graphs for each machine. The communicators that are to be repli-
cated are discovered in the process of doing the partitioning. We
currently do this partitioning manually. The graph in Figure 4 rep-
resents the result of such manual partitioning for a single machine.

6. JVM Implementation
Our implementation is based on an experimental variant of IBM’s
J9 Java virtual machine similar to the WebSphere Real Time prod-
uct [13], which includes both RTSJ [5], the Metronome real-time
garbage collector [3], and an ahead-of-time compiler which can be
used to eliminate non-determinism due to JIT compilation.

This variant of J9 includes a thread library enhancement to
support nanosecond timing on real-time kernels, along with some
native methods that allow a Java program to examine bytecodes
and constant pool entries of already-loaded classes (used to create
a very lean initialization time verifier).

The internal JVM data structure for a thread includes a set of
flag bits, one of which is used to indicate that it is an exotask thread.
This flag is used to exempt the thread from being preempted by
the global garbage collector (in fact, this is done for threads that
have either their EXOTASK or NHRT bit set). In addition, when the
EXOTASK bit is set the locking subsystem ignores lock and unlock
operations due to synchronized methods and blocks, as described
in Section 4.2.

High-precision scheduling is enabled via a high-performance
native method we added to the JVM (one that does not use JNI) that
invokes the Linux nanosleep function as required by the exotask
schedulers.

6.1 Exotask Garbage Collection
In the J9 variant we used, heaps are constructed from multiple
memory spaces, which are collections of physical areas along with
lower-level logic for managing them. The VM also has support for
identifying the active memory space of a thread and for switching
memory spaces. It supports multiple garbage collectors that can
vary across memory spaces. Among the collectors available for this
role was one based on the sliding compacting collector described
in [2]. This was modified to become the exotask private heap
collector.

The collector’s root scan was modified to use the exotask’s
ExotaskController as the sole root in a scheduled collection (be-
cause no thread is running in the exotask space). In an on-demand
collection, the thread that caused the collection is also scanned
to find roots. Only the stack frame representing the exotask run

Pentium M AMD64
Min Max Avg Min Max Avg

GC Quantum .043 2.21 .548 .041 1.34 .509
GC Duration 384 403 390 172 197 185
GC Interval 8530 8580 8570 8560 8620 8610

Figure 6. Global Garbage Collection Times (milliseconds)

method and any newer stack frames are scanned, because only
those frames can have pointers into the private heap.

To implement the deep cloning required when objects are sent
across ports, the implementation uses “object shape” information
that the VM stores on a per-class basis to aid the garbage collec-
tor in marking. This information identifies every reference field of
every object type. The implementation was aided by the memory
space switching support. By establishing the target heap temporar-
ily as the active memory space for the thread, it is possible to reuse
standard VM allocation and cloning methods to accomplish the
deep-clone, since all copies automatically go into the right target
space.

7. Flying the Helicopter
In this section, we present measurements collected during two
actual JAviator flights. In Section 7.4, we augment these real-world
results with a stress test in which the exotask program was run at
four times normal frequency, using a software simulation of the
JAviator hardware. All runs were done using the exotask program
described in Section 3. Data was collected and analyzed using our
TuningFork [12] data collection and visualization system, which is
designed to provide very high time resolution without perturbing
execution.

The on-board processor for the JAviator is a 400MHz XScale
uniprocessor with 64MB of memory running Linux with real time
extensions. This processor runs the exotask VM, but there are
problems with the real time extensions that make it impossible to
collect accurate data from this machine. For the measurements of
this section, we approximated the behavior of XScale using a Dell
laptop with a 1.4GHz Intel Pentium M CPU and 512MB of memory
running a similar Linux real time kernel. Results in Sections 7.1
and 7.4 show that the JAviator application is far from being CPU
bound, so running on the XScale should eventually be feasible.

In both real flights, the machine running the exotask control was
connected to the JAviator by a thin flexible RS-232 wire. The JAvi-
ator was confined in a tower that restricted its motion (for safety)
but allowed it to hover freely. The helicopter was airborne for ap-
proximately 10 minutes, during which it was monitored visually for
anomalies in behavior and was judged to be operating smoothly.

For comparison, data were also collected with the exotask pro-
gram running on a Dell Poweredge desktop with two 2GHz dual
core AMD64 CPUs and 4GB of memory. We judged these ma-
chines to be sufficiently different to shed some light on time porta-
bility.

7.1 Exotask Run-time Costs
Figure 5(a) shows the times taken by one-time activities that oc-
curred during initialization of the JAviator exotask program. These
are (1) the time taken to verify the specification graph and the pro-
gram’s Java code, (2) the time taken to create the instantiated graph
from the specification graph, and (3) the time taken by the sched-
uler to compute its metadata and create its threads. As can be seen
from the figure, these times are small relative to the typical dura-
tion of program execution. Of course, verification time will vary
depending on code complexity. Instantiation time is dominated by

11999 13638 15276 16914 18553 20191 21830 23468 25106 26745 28383
Intersect[shouldGround_run, GC Phase complemented] Interarrival <50000.0 Values (in us; 20 us per bar) accumulated up to time 652.483 sec

1

2

5

10

20

50

100

200

500

1000

2E3

5E3

C
ou

nt
 (

lo
g)

Figure 7. Interval between shouldGround executions, no garbage
collection in progress (1.4 GHz Pentium M platform)

the time taken to construct private heaps. Scheduling time will vary
according to the scheduling algorithm chosen.

Figure 5(b) shows the times for various activities that take
place in each 20ms period. These are (1) the total time in which
some exotask is running, (2) the total time in which some exotask
private heap is being garbage collected, and (3) the total time in
which some value is being deep-cloned across a connection. The
remaining time in each period is wait time, during which the VM
is free to run non-exotask activity. These times are dependent on
the specifics of the program but are shown in order to illustrate that
exotask execution times and overheads are not excessive. Indeed,
the sum of the worst case times on the weaker processor is less
than 3ms, suggesting that there will be little problem porting to
an even slower CPU. While we are not able to collect precise
measurements from the XScale processor, we can tell from system
summary measures that its CPU is no more than 25% occupied
running the JAviator control program.

Note that on-demand garbage collection was not used in this
experiment, so all the GCs were scheduled to occur during other-
wise idle time. Thus, the variance in GC time is not a concern for
accurate scheduling.

7.2 Interference from Global Heap Garbage Collection
During each flight, a concurrent, unrelated thread was present to
simulate the effect of significant other activity within the VM,
specifically activity that would cause global heap garbage collec-
tions. This thread allocated at a rate of 2MB per second using 48-
byte objects and keeping the most recent 40,000 of those objects
live. The global GC duration and interval between GCs are shown
in Figure 6. The Metronome [3] collector, used by the exotask VM
as its global heap collector, divides GC periods into quanta to min-
imize interference with the application. These are also reported.

Figure 7 shows the distribution of times between executions of
the shouldGround exotask (see Section 3) when there is no garbage
collection in progress on the global heap (i.e., excluding all inter-
vals during which the global heap garbage collector was running).
The shouldGround exotask was chosen for this measurement since
it is the first to run in each period. Figure 8 shows the same data for
the intervals that fell during global heap garbage collections. Both
figures use a logarithmic scale and show the range from 12ms to
30ms. The near-symmetry of both figures is due to the fact that,

12000 13721 15441 17161 18882 20602 22322 24042 25763 27483 29203
Intersect[shouldGround_run, GC Phase] Interarrival <50000.0 Values (in us; 20 us per bar) accumulated up to time 652.483 sec

1

2

5

10

20

50

C
ou

nt
 (

lo
g)

Figure 8. Interval between shouldGround executions, garbage col-
lection in progress (1.4 GHz Pentium M platform)

when an execution happens later than it should, the interval before
it is lengthened and the interval after it is shortened by a similar
amount.

Because of the logarithmic scale and the differing number of
intervals measured (1381 during GC versus 30814 not during GC),
the differences between these distributions are amplified visually.
The standard deviation in Figure 8 is actually somewhat smaller
(.902 versus 1.17) due to fewer outliers, even though there is some-
what greater spread immediately around the mean. Also, when the
same analysis was done with the faster AMD multi-processor ma-
chine, the GC results were better across the board than the non-GC
results (perhaps because the GC locks out other application threads
that might interfere).

The results show that the exotask scheduler is indeed free from
being paused by the global heap GC (otherwise, the distribution
would be substantially worse). On the other hand, the Pentium
machine, being a uniprocessor, is more subject to context-switching
and caching effects from running concurrently with the GC. On
the AMD machine, the GC and the exotask scheduler are likely to
migrate to different processors and run more truly in parallel.

Both graphs show a spread of interarrival times of approxi-
mately ±1.5ms. These deviations are rare in absolute terms but are
visible in the logarithmic scale employed in the graphs. They ap-
pear to be caused by sporadic kernel activity. We have been unable
to account for the specific source, but we have ruled out sources
within the VM. This jitter has no appreciable effect on the JAviator
flight, as it is small at the 20ms scale at which the JAviator control
operates.

On the other hand, at the 45µs time scale explored in the work
on eventrons [20] and reflexes [21], a 1.5ms jitter would be unac-
ceptable. It should be noted that the exotask programming model
is the most liberal of the three in what it allows, and this applica-
tion is more thoroughly “real” than the audio application used to
illustrate the other two. These things might be expected to come at
some cost. Still, elimination of all sources of interference that we
can possibly control will be a priority in future work.

7.3 Time Portability
Figure 9 shows the same experiment as is shown in Figure 8, but
with the exotask program and its surrounding application running
on the faster AMD 64 four-way processor. As can be seen, chang-

11999 13638 15276 16914 18553 20191 21830 23468 25106 26745 28383
shouldGround_run Interarrival Values (in us; 20 us per bar) accumulated up to time 671.963 sec

1

2

5

10

20

50

100

200

500

1000

2E3

5E3

C
ou

nt
 (

lo
g)

Figure 9. Interval between shouldGround executions, all periods
(2 GHz AMD64 platform)

ing the platform to one with substantially more processing power
and different memory characteristics shows the desired result: the
period of 20ms is maintained with a highly similar distribution. The
fact that the distribution is actually somewhat tighter illustrates that,
even when using a technique that preserves timings across plat-
forms, there are effects of hardware on processing that are difficult
to control.

7.4 Stress Test
Figure 10 shows the exotask program of Section 3 executing at four
times normal speed for five minutes, on the AMD processor, with
the allocation thread producing garbage collections as in the other
experiments. In order to collect these results, we used a simulation
of the JAviator running in the same process as the exotask control
(this also eliminated artifacts due to communication). As can be
seen, the vast majority of intervals are still closely centered on the
target 5ms. In fact, the 1.5ms jitter that is apparent in the other
figures is gone, suggesting that the communications activity was
implicated in this jitter. The accelerated processing in this slightly
more artificial situation illustrates that quite good precision can be
achieved by the exotask scheduler assisted by the exotask VM when
other sources of interference from the kernel are eliminated. These
results also confirm that exotask programming is efficient enough
to scale down to weaker processors.

8. Related Work
Time-portable real-time programming in a modern high-level lan-
guage such as Java requires combining two already established
real-time technologies: deterministic real-time scheduling and de-
terministic real-time memory management. Scheduling in the ex-
otask system is done in two stages: first, events involving I/O are
executed at precise points in real time and, second, all remaining
events are executed based on data dependencies between tasks. De-
terministic I/O timing is the key to time portability but often not
available in concurrency models of other real-time languages such
as Ada [6] and Erlang [1]. Synchronous reactive programming [9]
is an early approach to deterministic I/O timing in which computa-
tion is assumed to take zero time, which results in deterministic in-
put (i.e., sensor update timing), but not necessarily in deterministic
output timing. A more recent, less abstract approach is the notion
of logical execution time (LET) [11]. The LET of a task is the time
from the instant when the task reads its inputs to the instant when

4000 4184 4369 4461 4645 4829 4922 5106 5290 5382 5567 5751 5843
shouldGround_run Interarrival Values (in us; 20 us per bar) accumulated up to time 347.845 sec

1

5

10

50

100

500

1000

5E3

1E4

C
ou

nt
 (

lo
g)

Figure 10. Interval between shouldGround executions, with a 5ms
period (simulated JAviator on AMD64 platform)

the task writes its outputs, but not the time when the task actually
computes. A LET task’s I/O timing is thus user-determined, not
system-determined, provided sufficient CPU time is available for
the task. Both timing grammars that we developed here are based
on the LET concept. However, other potentially non-LET gram-
mars are also possible and subjects for future work.

Real-time memory management (in the context of Java) is a cur-
rently active research area. One approach is to improve the garbage
collector. The Metronome collector [3], incorporated in the IBM
WebSphere Real-Time VM [13], is one of several recent examples.
However, this approach is limited by caching and context-switching
effects to some lower bound on achievable latencies. And, it does
nothing to achieve time portability.

Another approach is to avoid collisions with the garbage col-
lector by avoiding heap allocations entirely, which is the approach
taken by NHRTs [5], Eventrons [20], and Reflexes [21]. Eventrons
disallow allocation at the programming level (the new keyword is
illegal), whereas NHRTs and Reflexes allow allocations while di-
recting those allocations to special memory areas that do not have
heap-like semantics. Exotasks are similar to the latter two, except
that allocations are directed to a true heap (just not the public one).
This is an improvement in programming convenience, and it may
prove just as effective if the collections of these private heaps can
be made very efficient and scheduled in a way that guarantees no
interference with time-critical deadlines. Eventrons and Reflexes
achieve a degree of time portability when there are adequate re-
sources, because the Eventron or Reflex executes at regular inter-
vals. Exotasks provide a powerful generalization of this capability
by computing with arbitrary graphs of interconnected nodes and
pluggable ways of expressing timing constraints. Similar to Even-
trons, exotasks use program analysis at initialization time to check
conformance to a set of restrictions, rather than with annotations at
compile time (as with Reflexes) or continuously during runtime (as
with NHRTs).

One rather heavyweight way of implementing private heaps is
the isolates construct [14] that is now part of Java. Exotasks are
not as isolated as isolates: they share classes with the global heap,
can read their static final fields, and have explicit connections with
other exotasks. In addition, their isolation is achieved in a more
streamlined fashion, without the use of memory protection, copy-
on-write or separate processes. Isolates, on the other hand, are fully

transparent (almost any Java program can be run as an isolate)
while exotasks require observing programming restrictions.

The exotask system provides a visual concurrent and real-time
programming environment related to other model-driven devel-
opment (MDD) environments such as, for instance, MathWorks’
Simulink [19] and Ptolemy [15]. The key difference to MDD en-
vironments is that the exotask system is firstly and foremost a pro-
gramming and only secondly a modeling environment. Simulink
and Ptolemy have originally been designed as modeling environ-
ments for simulation of the models’ concurrent and real-time be-
havior. Subsequently, code generators such as the Real-Time Work-
shop [18] in Simulink have been added to support real-time exe-
cution of the models. However, automatic generation of efficient
code from models is difficult and often results in insufficient per-
formance. The exotask system does not generate code but instan-
tiates user-written exotask specifications and code bodies, which
typically involves much smaller differences in levels of abstrac-
tion. The exotask development environment does some simulation
in order to find major errors (e.g., it runs the same exotask verifier
that will be used at runtime). A fuller subset of the behavior of the
instantiated code, similar to the generated code in MDD environ-
ments, may eventually be simulated in the exotask system, but that
lies in the scope of future work.

The exotask programming model is designed to optimize code
efficiency, portability, and determinism, rather than semantic ex-
pressiveness. Code generated from Simulink and Ptolemy is usu-
ally memory-static and not time-portable. Nonetheless, the timing
behavior of exotask models is parameterized by the notion of tim-
ing grammars and supporting schedulers, which is somewhat re-
lated to the notion of abstract syntax and directors, respectively,
in Ptolemy. In the exotask system, time portability is a paramount
objective.

There are of indeed many systems in which computation is done
by a graph of nodes connected by directed edges. The terms “input
port” and “output port” are in widespread use. For example, port-
based objects (PBOs) [22] also have input and output ports similar
to exotasks. However, the exotask system guarantees memory isola-
tion properties and enables time portability while PBOs rely on us-
ing coding conventions (in C) and real-time scheduling techniques,
which are not semantics-preserving, and therefore, not portable.

9. Conclusions
We have introduced exotasks, a novel Java programming construct
that achieves deterministic timing, even in the presence of other
Java threads, and across changes of hardware and software plat-
form. Exotasks achieve time portability by enforcing a determin-
istic computational model in which exotasks communicate via ex-
plicitly declared channels and are otherwise isolated. Exotasks are
logically isolated in time by executing I/O-relevant portions at pre-
cise, deterministic points in real time. Exotasks are physically iso-
lated in space by allocating objects in private, individually garbage-
collected heaps.

We have implemented a virtual machine that supports exotasks
and an eclipse-based development environment to support it. We
have used exotasks to fly an actual quad-rotor model helicopter,
the JAviator. Our experiments show that exotasks are adequately
efficient and achieve freedom of interference from the garbage
collector. Comparisons of runs on different hardware show that
time portability has been achieved, at least for the one example
investigated. In the future, we intend to use exotasks for more
difficult control problems involving tasks with different periods
executing in parallel. We believe that the same time portability
can be achieved, because the scheduling problem has already been
explored in the context of HTL.

Acknowledgments
We gratefully acknowledge advice and suggestions from Perry
Cheng, David Grove, Michael Hind, and Jan Vitek. David and Perry
also helped by fixing TuningFork bugs on short notice.

References
[1] ARMSTRONG, J., VIRDING, R., WIKSTRÖM, C., AND WILLIAMS,

M. Concurrent Programming in Erlang, second ed. Prentice-Hall,
1996.

[2] BACON, D. F., CHENG, P., AND GROVE, D. Garbage collection
for embedded systems. In Proc. EMSOFT (Pisa, Italy, Sept. 2004),
pp. 125–136.

[3] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time garbage
collector with low overhead and consistent utilization. In Proc. POPL
(New Orleans, Louisiana, Jan. 2003). SIGPLAN Notices, 38, 1, 285–
298.

[4] BACON, D. F., AND SWEENEY, P. F. Fast static analysis of C++
virtual function calls. In Proc. OOPSLA (San Jose, California, Oct.
1996). SIGPLAN Notices, 31, 10, 324–341.

[5] BOLLELLA, G., GOSLING, J., BROSGOL, B., DIBBLE, P., FURR,
S., HARDIN, D., AND TURNBULL, M. The Real-Time Specification
for Java. The Java Series. Addison-Wesley, 2000.

[6] BURNS, A., AND WELLINGS, A. Concurrency in Ada, second ed.
Cambridge University Press, 1997.

[7] ECLIPSE FOUNDATION. The Eclipse Open Development Platform.
www.eclipse.org.

[8] GHOSAL, A., HENZINGER, T., IERCAN, D., KIRSCH, C., AND
SANGIOVANNI-VINCENTELLI, A. A hierarchical coordination lan-
guage for interacting real-time tasks. In Proc. EMSOFT (Seoul, South
Korea, 2006).

[9] HALBWACHS, N. Synchronous Programming of Reactive Systems.
Kluwer, 1993.

[10] HENZINGER, T., AND KIRSCH, C. The Embedded Machine: pre-
dictable, portable real-time code. In Proc. PLDI (Berlin, Germany,
2002), pp. 315–326.

[11] HENZINGER, T., KIRSCH, C., AND HOROWITZ, B. Giotto: A time-
triggered language for embedded programming. Proceedings of the
IEEE 91, 1 (January 2003), 84–99.

[12] IBM CORP. TuningFork Visualization Tool for Real-Time Systems.
www.alphaworks.ibm.com/tech/tuningfork.

[13] IBM CORP. WebSphere Real-Time User’s Guide, first ed., 2006.

[14] JAVA COMMUNITY PROCESS. JSR-121 application isolation API.
jcp.org/aboutJava/communityprocess/final/jsr121.

[15] LEE, E. Overview of the Ptolemy project. Tech. Rep. UCB/ERL
M03/25, EECS Department, University of California, Berkeley, 2003.

[16] OGATA, K. Modern Control Engineering. Prentice Hall, 1997.

[17] PILLAI, P., AND SHIN, K. G. Real-time dynamic voltage scaling
for low-power embedded operating systems. In Proc. SOSP (Banff,
Alberta, Canada, 2001), pp. 89–102.

[18] REAL-TIME-WORKSHOP. www.mathworks.com/products/rtw.

[19] SIMULINK. www.mathworks.com/products/simulink.

[20] SPOONHOWER, D., AUERBACH, J., BACON, D. F., CHENG, P.,
AND GROVE, D. Eventrons: a safe programming construct for high-
frequency hard real-time applications. In Proc. PLDI (Ottawa, On-
tario, Canada, 2006), pp. 283–294.

[21] SPRING, J. H., PIZLO, F., GUERRAOUI, R., AND VITEK, J. Pro-
gramming abstractions for highly responsive systems. In Proc. VEE
(San Diego, California, 2007).

[22] STEWART, D. B., VOLPE, R. A., AND KHOSLA, P. K. Design
of dynamically reconfigurable real-time software using port-based
objects. IEEE Trans. Softw. Eng. 23, 12 (1997), 759–776.

