Selfie: Towards Minimal Symbolic Execution

Alireza S. Abyaneh
Simon Bauer
Christoph M. Kirsch
Philipp Mayer
Christian Mosl
Clément Poncelet
Sara Seidl
Ana Sokolova

Manuel Widmoser
Department of Computer Sciences
University of Salzburg
Austria
firstname.lastname@cs.uni-salzburg.at

ABSTRACT

Selfie! is a fully self-contained 64-bit implementation of (1) a self-
compiling compiler written in a tiny subset of C called C* targeting
a tiny subset of 64-bit RISC-V called RISC-U, (2) a self-executing
RISC-U emulator, and (3) a self-hosting hypervisor that virtualizes
the emulated RISC-U machine. Selfie is implemented in a single
10k-line file and can compile, execute, and virtualize itself any
number of times in a single invocation of the system given ade-
quate resources. There is also a simple in-memory linker, a RISC-U
disassembler and debugger with replay, and a profiler. Selfie has
originally been developed just for educational purposes but has
recently become a research platform as well. C* supports only two
data types, uint64_t and uint64_t*, and RISC-U features just 14
instructions, in particular for unsigned arithmetic only, which sig-
nificantly simplifies reasoning about correctness. In this paper, we
report on an ongoing effort in designing and implementing a sym-
bolic execution engine for RISC-U within selfie that is supposed to
explore non-trivial parts of the system including itself. The idea is
to identify a minimal set of ingredients that are necessary to do this
such as the data structures for representing traces, path conditions,
and symbolic states as well as algorithms for SAT and SMT solving.
The key difference to related projects is that we are interested in
reasoning just about selfie, for now, and are able to change selfie if
necessary, as reasoning target but also as integrated platform for
compilation, (symbolic) execution, and virtualization. Since selfie
generates unoptimized code we are also exploring ways to leverage
our symbolic execution engine in RISC-U code optimization.

CCS CONCEPTS

« Applied computing — Education; - Software and its engi-
neering — Compilers; Interpreters; Virtual machines;

!http://selfie.cs.uni-salzburg.at

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license.

MoreVMs’18, April 2018, Nice, France

© 2018

KEYWORDS
Symbolic Execution, RISC-V, Self-Referentiality

ACM Reference Format:

Alireza S. Abyaneh, Simon Bauer, Christoph M. Kirsch, Philipp Mayer,
Christian Mésl, Clément Poncelet, Sara Seidl, Ana Sokolova, and Manuel
Widmoser. 2018. Selfie: Towards Minimal Symbolic Execution. In Workshop
on Modern Language Runtimes, Ecosystems, and VMs (MoreVMs’18).

1 PROBLEM

We are interested in identifying a minimal set of ingredients neces-
sary for performing fast symbolic execution of systems code. Our
target is selfie, a minimal but still realistic implementation of a
compiler [7], emulator, and hypervisor [6]. The key observation
is that systems code may not require many reasoning capabilities
usually supported by state-of-the-art symbolic execution engines.
There are at least two sides to our project, creating an adequate
platform for symbolic execution (next section) and developing the
actual execution engine (last section).

2 INFRASTRUCTURE

The original version of selfie was 32-bit, used signed integers and
pointers to signed integers, and targeted a MIPS subset with up to
64MB of memory per machine instance [4]. C* even in that version
has already been shown to support efficient implementations of
non-trivial C programs such as the C* port of a state-of-the-art SAT
solver written in C [1]. Yet to facilitate symbolic execution, we de-
cided to port selfie to 64-bit, replace signed integers with unsigned
integers, support RISC-V rather than MIPS, and increase memory
per machine instance to 4GB. All that happened in three steps. First
we went from int and int* touint64_t and uint64_tx*, and from
MIPS32 to MIPS64. The advantage is twofold. Unsigned integers
are significantly easier to reason about, and actually lead to simpler
and cleaner code, and 64-bit helps with scaling up memory. We
took advantage of that in the second step going up from 64MB to
4GB. This can also be done with 32-bit of course but, if necessary,
we are now easily able to go up even further. The third step was to
move from MIPS to RISC-V. While RISC-V instruction encoding and


http://selfie.cs.uni-salzburg.at

Alireza S. Abyaneh, Simon Bauer, Christoph M. Kirsch, Philipp Mayer, Christian Mosl, Clément Poncelet, Sara Seidl, Ana Sokolova,

MoreVMs’18, April 2018, Nice, France

decoding is more difficult, everything else is simpler. In particular,
the machine state is smaller (no hi and lo registers) and there are
fewer instructions, just 14, down from 17 instructions. Moreover,
all RISC-U instructions but system calls may only have a side effect
(other than on the program counter) on at most one 64-bit machine
word in either a register or in memory. The five system calls neces-
sary for bootstrapping selfie (malloc, exit, open, read, and write)
only required minor modifications.

The current version of selfie? generates proper 64-bit RISC-V
ELF binaries that are compatible with the official RISC-V toolchain.
However, only an earlier 32-bit RISC-V prototype of selfie actually
executes on the official RISC-V spike emulator and pk kernel®. We
are working on getting this done for the current 64-bit version
which mostly requires interfacing memory allocation properly.

Other ongoing work on infrastructural level is multicore support.
We are exploring simple ways to have selfie fork itself to run in
parallel on multicore hardware. This would allow us to execute
RISC-U code symbolically in parallel.

3 ENGINE

Inspired by the success of symbolic execution engines [2, 3], we have
recently started developing a symbolic execution engine for RISC-
U within selfie. Here, the difference to regular concrete execution
of RISC-U code, as performed by the emulator in selfie, is that
data read from a file is assumed to be symbolic. For example, if
symbolically executed code reads one byte from a file the value of
that byte is kept unspecified such that it could be any value between
0 and 255. Any subsequent computation involving that symbolic
value needs to keep track of the concrete values it still represents.
Arithmetic and logical operations and in particular comparisons
change or even constrain the choice of concrete values possibly
to the point that no concrete value remains at which point the
engine backtracks. The information which values still remain on a
path through the control-flow graph is represented by a so-called
path condition. As long as a path condition is satisfiable there are
concrete values that will drive the code down that path.

Another reason for backtracking is lack of memory in which
case the engine is unable to explore the control-flow graph any
further. In other words, symbolic execution attempts to execute
code for all possible inputs up to the available memory and CPU
time. If a runtime error such as division by zero is detected the
engine may output a witness of that bug, that is, a file that will,
when used as input, drive the code into that bug.

We are currently able to execute RISC-U code symbolically up to
a fixed depth into the control-flow graph. We are also able to check
satisfiability of path conditions, that is, whether code is actually
reachable for some input, but only for a subset of all possible RISC-
U programs. The restriction is due to the simplicity of the checker
which is based on integer interval constraints [5]. However, the
engine is able to detect if it is executing code within the limitations
of the checker. Preliminary results show that at least the selfie
compiler is within the supported fragment.

In the current version of selfie, only data read from a file by a read
system call can be symbolic. We adapted the read implementation

Zhttps://github.com/cksystemsteaching/selfie
3https://riscv.org

and Manuel Widmoser

in selfie accordingly. Besides read, selfie uses and implements three
other system calls, namely open, write, and exit, which we have
not modified. Also, malloc works as before using a simple bump
pointer and there is of course no free in selfie.

The key data structure for symbolic execution in selfie is a trace
of machine state transitions. Essentially, we record for each exe-
cuted instruction the current program counter value, the concrete
or symbolic side effect of the instruction, and the state transition
containing the previous concrete or symbolic value of the affected
register or memory location. A trace therefore contains the whole
execution history.

An interesting prerequiste of symbolic execution in selfie is
replay. We noticed that recording the last, say, hundred instructions
during regular concrete execution is a special case of symbolic
execution. In the current version of selfie, the system is able to do
that and, upon exceptions such as division by zero, undo the side
effects of the last hundred instructions and then redo them but this
time printing assembly code (with approximate source code line
numbers) and its side effects on the console. Backtracking during
symbolic execution corresponds to the undo operations during
replay. In other words, there are now four implementations of each
RISC-U instruction in selfie: concrete execution, concrete undo
(inverse execution), symbolic execution, and symbolic backtracking.

We are now working on generating witnesses of bugs, that is,
files that will drive RISC-U code into these bugs. The idea is to
generate witnesses during symbolic execution of selfie and then
provide the witnesses as input to selfie during concrete executions
for validation, all in a single invocation of the system.

Another line of work focuses on simple ways for terminating
loops during symbolic execution through sufficiently strong invari-
ants provided by us. Also, we will eventually integrate symbolic
execution with selfie’s fork in order to explore independent code
paths in parallel on multicore machines.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive feedback.
This work has been supported by the National Research Network
RiSE on Rigorous Systems Engineering (Austrian Science Fund
(FWF) Grant S11404-N23 and S11411-N23), a Google PhD Fellow-
ship, and a Google Research Grant.

REFERENCES

[1] A.S. Abyaneh and C.M. Kirsch. 2017. You can program what you want but you
cannot compute what you want. In Edward A. Lee Festschrift (LNCS). Springer.

[2] C. Cadar, D. Dunbar, and D. Engler. 2008. KLEE: Unassisted and Automatic Gen-
eration of High-coverage Tests for Complex Systems Programs. In Proc. USENIX
Conference on Operating Systems Design and Implementation (OSDI). USENIX As-
sociation, 209-224.

[3] P.Godefroid, M. Y. Levin, and D. Molnar. 2008. Automated Whitebox Fuzz Testing.
In Proc. Symposium on Network and Distributed Systems Security (NDSS). 151-166.

[4] C.M. Kirsch. 2017. Selfie and the Basics. In Proc. ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward!). ACM.

[5] Eric Larson and Todd Austin. 2003. High Coverage Detection of Input-related
Security Faults. In Proc. 12th Conference on USENIX Security Symposium - Volume
12 (SSYM’03). USENIX Association, Berkeley, CA, USA, 9-9.

[6] J. Liedtke. 1996. Toward Real Microkernels. Commun. ACM 39, 9 (Sept. 1996),
70-77. https://doi.org/10.1145/234215.234473

[7] Niklaus Wirth. 1996. Compiler Construction. Addison Wesley.


https://github.com/cksystemsteaching/selfie
https://riscv.org
https://doi.org/10.1145/234215.234473

	Abstract
	1 Problem
	2 Infrastructure
	3 Engine
	Acknowledgments
	References

