
How FIFO is Your Concurrent FIFO Queue? ∗

Andreas Haas, Christoph M. Kirsch, Michael Lippautz, Hannes Payer
University of Salzburg

firstname.lastname@cs.uni-salzburg.at

Abstract
Designing and implementing high-performance concurrent
data structures whose access performance scales on mul-
ticore hardware is difficult. Concurrent implementations of
FIFO queues, for example, seem to require algorithms that
efficiently increase the potential for parallel access by imple-
menting semantically relaxed rather than strict FIFO queues
where elements may be returned in some out-of-order fash-
ion. However, we show experimentally that the on average
shorter execution time of enqueue and dequeue operations
of fast but relaxed implementations may offset the effect
of semantical relaxations making them appear as behaving
more FIFO than strict but slow implementations. Our key
assumption is that ideal concurrent data structure operations
should execute in zero time. We define two metrics, element-
fairness and operation-fairness, to measure the degree of ele-
ment and operation reordering, respectively, assuming oper-
ations take zero time. Element-fairness quantifies the devia-
tion from FIFO queue semantics had all operations executed
in zero time. With this metric even strict implementations
of FIFO queues are not FIFO. Operation-fairness helps ex-
plaining element-fairness by quantifying operation reorder-
ing when considering the actual time operations took effect
relative to their invocation time. In our experiments, the ef-
fect of poor operation-fairness of strict but slow implemen-
tations on element-fairness may outweigh the effect of se-
mantical relaxation of fast but relaxed implementations.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel Programming

General Terms Measurement

Keywords Zero-Time Linearization, Element-Fairness, Op-
eration-Fairness
∗ This work has been supported by the National Research Network RiSE on
Rigorous Systems Engineering (Austrian Science Fund S11404-N23).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
RACES’12, October 21, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1632-3/12/10. . . $15.00

enq(a)

enq(b) enq(c)

deq(b)

deq(c)

deq(a)

Figure 1. A concurrent history of queue operations which
is linearizable with respect to FIFO queue semantics [4].

1. Introduction
Increasing performance and multicore scalability of concur-
rent data structures is difficult. A recent trend seems to sug-
gest that fast and scalable concurrent algorithms require re-
ducing the need for synchronization and the overhead that
comes with it by weakening data structure semantics [10].
For example, relaxed implementations of FIFO queues may
enqueue and dequeue elements in some out-of-order fashion
which allows efficient, parallel queue access [3, 5]. How-
ever, using FIFO queues as example, we show in a number
of experiments on two different machines that relaxed im-
plementations may not only perform and scale better than
strict implementations of FIFO queues but can also be seen
as actually providing semantics closer to FIFO than strict
implementations.

Consider the concurrent history of executing FIFO queue
operations illustrated in Figure 1. The horizontal lines repre-
sent the execution times of operations, the ↓ and ↑ mark the
invocation and response times of operations, respectively,
and the× indicates the time when an operation actually takes
effect. The operations enq(a) and deq(a), for example, en-
queue and dequeue an element a, respectively. The operation
enq(a) is invoked earlier than the operation enq(b) and sig-
nificantly earlier than the operation enq(c) but takes effect
later then both enq(b) and enq(c). The concurrent history
is anyway still linearizable [4] with respect to FIFO queue
semantics because the execution of the enqueue operations
overlap in time and may therefore be reordered arbitrarily,
and the dequeue operations return elements in FIFO order.

From the perspective of the caller of enq(a) the reorder-
ing of enq(a) with enq(b) and enq(c) can nevertheless be
seen as undesirable. In fact, we argue here that concurrent
operations should ideally execute in zero time. A conve-
nient consequence of zero-time operations is that there are
no overlapping operations anymore giving rise to what we
call the zero-time linearization of a concurrent history where

all operations are assumed to take effect immediately upon
invocation. Note that zero-time linearizations of concurrent
histories obtained with relaxed but also strict FIFO queue
implementations may deviate from FIFO queue semantics.

In order to quantify semantical deviation we measure the
degree of reordering of elements in a queue. We say that
an element e overtakes an element e′ if, in the zero-time
linearization, the enqueue operation of the element e′ pre-
cedes the enqueue operation of the element e and the de-
queue operation of the element e precedes the dequeue oper-
ation of the element e′. For example, element a is overtaken
by the elements b and c in Figure 1. We call the number of
elements which have overtaken an element e the element-
lateness of e. In Figure 1 the element-lateness of a is 2
while the element-lateness of b and c is 0. The complemen-
tary metric is the element-age of an element e, which is the
number of elements that are overtaken by e. In Figure 1 the
element-age of a is 0 while the element-age of b and c is 1.
The average element-lateness (or equivalently element-age)
of all elements in a run is called element-fairness which is
2/3 in the example. Note that smaller quantities of element-
fairness mean better element-fairness. We show experimen-
tally that some fast but relaxed implementations provide bet-
ter element-fairness than strict but slow implementations.

Next, we aim at analyzing the factors that influence
element-fairness by measuring the degree of reordering of
enqueue and dequeue operations when considering the ac-
tual time the operations take effect. In particular, we quan-
tify, relative to the zero-time linearization, the degree of op-
eration reordering in what we call the actual-time lineariza-
tion of a concurrent history where operations are ordered
according to the actual time they take effect. Note, however,
that the time an operation takes effect may in general only
be approximated. We therefore focus in our experiments on
benchmarks where actual-time linearizations may be deter-
mined exactly.

Similar to element-lateness and element-age we define
the operation-lateness and operation-age of an operation m
as the number of operations which have overtaken m and
which are overtaken by m, respectively. An operation m has
overtaken an operation n if m is invoked after but takes
effect before n. Analogous to element-fairness, operation-
fairness is then the average operation-lateness (or equiv-
alently operation-age) of all operations in a run. In Fig-
ure 1 the operation-lateness of the operation enq(a) is 2, the
operation-lateness of all other operations is 0. The operation-
age of the operations enq(b) and enq(c) is 1, the operation-
age of all other operations is 0. The operation-fairness is
therefore 1/3 in the example.

Figure 2 illustrates the reason why strict but slow im-
plementations may be less operation-fair than fast but re-
laxed implementations. Slow implementations typically re-
quire more attempts to complete an operation under con-
tention than fast implementations. If an attempt fails because

n attempts... ...

first
attempt

successful
attempt

delay

Figure 2. An operation that makes n attempts to take effect.

of interference with a concurrent operation a new attempt
is started. For example, an attempt to acquire a spin lock
consists of reading the lock state and trying to set the lock.
A thread then spins on the lock trying to acquire the lock
until an attempt finally succeeds. The operation takes effect
in the last attempt. Thus, with an increasing number of at-
tempts, the time an operation takes effect deviates more and
more from the time it was invoked, resulting in decreased
operation-fairness. Fast but relaxed implementations aim at
reducing the number of attempts at the alleged expense of
data structure semantics, e.g. by allowing elements to be
enqueued and dequeued in parallel but out of FIFO order.
The result is that the time operations take effect may deviate
less from their invocation times, which improves operation-
fairness.

We analyze the element- and operation-fairness of strict
implementations (a lock-based queue, the Michael-Scott
queue [8], and the Flat Combining queue [2]) and relaxed
implementations (k-FIFO queues [6] and Scal queues [7]). In
our experiments poor operation-fairness of strict implemen-
tations may outweigh the effect of semantical relaxations.
Conversely, some relaxed implementations may provide bet-
ter element-fairness than strict implementations.

The contributions of this paper are: (1) the notions of
zero- and actual-time linearization as well as element-
and operation-fairness, and (2) the benchmarks analyzing
element- and operation-fairness of various FIFO queue im-
plementations in different contention scenarios.

2. Model and Metrics
We first recall the notions of sequential and concurrent his-
tory, linearization of a concurrent history, sequential specifi-
cation, and linearizability [4], and then define zero-time and
actual-time linearizations as well as element- and operation-
fairness.

Let O be a concurrent object and let Σ be a sequential
alphabet of operations with data on the concurrent object
O. For a queue the sequential alphabet is the set of en-
queue and dequeue operations {enq(e)|e ∈ A}∪{deq(e)|e ∈
A∪ {null}} where A is the set of elements which can be
enqueued into the queue. The concurrent alphabet of opera-
tions on the concurrent object O is then the set Σ̂ = {mi|m ∈
Σ}∪{mr|m ∈ Σ} of invocations and responses of the opera-
tions in Σ.

A sequential history for a concurrent object O is a se-
quence of operations s ∈ Σ∗ accessing the object O. Simi-

larly, a concurrent history is a sequence of invocations and
responses of operations ŝ ∈ Σ̂∗. A concurrent history ŝ is
complete if for every operation invocation mi in ŝ there also
exists the corresponding operation response mr in ŝ and it
appears after mi. In this work we only consider complete
concurrent histories.

In the following we use the concurrent history

enq(a)i enq(b)i enq(b)r enq(c)i enq(c)r enq(a)r
deq(b)i deq(b)r deq(c)i deq(c)r deq(a)i deq(a)r

shown in Figure 1 as running example.
Two operations m,n ∈ Σ are said to overlap in a concur-

rent history ŝ if mi precedes nr and ni precedes mr in ŝ. In
Figure 1 the operation enq(a) overlaps with the operations
enq(b) and enq(c).

A sequential history s ∈ Σ∗ is called a linearization of a
concurrent history ŝ ∈ Σ̂∗ if

1. For any operation invocation mi in ŝ the operation m
appears in s, and no operation m appears in s if the
operation invocation mi does not appear in ŝ.

2. For any operations m,n ∈ Σ, if the operation response
mr precedes the operation invocation ni in ŝ, then the
operation m precedes the operation n in s.

For the concurrent history in Figure 1 three linearizations
are possible:

enq(a) enq(b) enq(c) deq(b) deq(c) deq(a)

enq(b) enq(a) enq(c) deq(b) deq(c) deq(a)

enq(b) enq(c) enq(a) deq(b) deq(c) deq(a)

REMARK 1. Note that the linearizations of concurrent his-
tories only differ in the order of overlapping operations. If
operations m,n ∈ Σ do not overlap in a concurrent history
ŝ, and the operation response mr precedes the operation in-
vocation ni in the concurrent history ŝ, then the operation m
precedes the operation n in any linearization s of ŝ.

Next we introduce informally the correctness condition
linearizability [4]. A sequential specification of a concurrent
object is a prefix-closed set of all valid sequential histories
of operations accessing the concurrent object. Based on a
sequential specification linearizability defines that an imple-
mentation is correct with respect to that sequential specifica-
tion if for every concurrent history created by the implemen-
tation there exists a linearization which is contained in the
sequential specification. As all linearizations of a concurrent
history differ only in the order of overlapping operations,
linearizability forces operations which do not overlap to take
place in the order they were invoked, but allows overlapping
operations to be executed in any order, see Remark 1.

The sequential specification of a FIFO queue is defined
informally as the set of sequential histories where elements

are enqueued in the same order as they are dequeued. Ad-
ditionally a dequeue operation deq(null) only exists if the
queue is empty at the time of the deq(null), i.e., if every ele-
ment which gets enqueued before the deq(null) also gets de-
queued before the deq(null). Without loss of generality we
assume that elements are unique and get enqueued at most
once. Note that only the linearization

enq(b) enq(c) enq(a) deq(b) deq(c) deq(a)

of the three previously mentioned linearizations is contained
in the sequential specification of a FIFO queue.

2.1 Zero-Time Linearization
Intuitively, the zero-time linearization of a concurrent his-
tory ŝ ∈ Σ̂∗ is the linearization of ŝ that contains all opera-
tions invoked in ŝ ordered by their invocation times in ŝ.

DEFINITION 1. A linearization z ∈ Σ∗ of a concurrent his-
tory ŝ ∈ Σ̂∗ is the zero-time linearization of ŝ if an operation
m precedes an operation n in z if and only if the invocation
mi precedes the invocation ni in ŝ.

Thus the previously mentioned linearization

enq(a) enq(b) enq(c) deq(b) deq(c) deq(a)

is the zero-time linearization of the concurrent history in Fig-
ure 1 which is not contained in the sequential specification
of a FIFO queue. In fact, all queue implementations that
we considered in our experiments, including those which
are linearizable with respect to FIFO queue semantics, also
create concurrent histories with zero-time linearizations that
are not contained in the sequential specification of a FIFO
queue.

2.2 Element-Fairness
Given a concurrent history ŝ ∈ Σ̂∗ of a queue and the zero-
time linearization z ∈ Σ∗ of ŝ, we define element-lateness,
element-age, and element-fairness as follows.

DEFINITION 2. The element-lateness of an element e with
enq(e) and deq(e) in z is the number of elements e′ such that
enq(e) precedes enq(e′) in z and deq(e′) precedes deq(e)
in z.

Thus the element-lateness of e is the number of elements
that overtake e out of FIFO order, i.e., the number of ele-
ments that are enqueued after e but dequeued before e.

DEFINITION 3. The element-age of an element e with enq(e)
and deq(e) in z is the number of elements e′ such that enq(e′)
precedes enq(e) in z and deq(e) precedes deq(e′) in z.

Similarly, the element-age of e is thus the number of
elements that e overtakes out of FIFO order, i.e., the number
of elements that are enqueued before e but dequeued after e.

DEFINITION 4. The element-fairness of ŝ is the average
element-lateness (or element-age) of all elements with enq(e)
and deq(e) in z.

Note that the average element-lateness of all elements is
equal to the average element-age of all elements because
every time an element e is overtaken by an element e′ the
element-lateness of e as well as the element-age of e′ in-
crease by one. Moreover, elements that are enqueued but not
dequeued are ignored in the three metrics. We have there-
fore designed our benchmarks such that all elements that are
enqueued are also dequeued.

2.3 Operation-Fairness
We first introduce the notion of actual-time linearization be-
fore defining operation-lateness, operation-age, and opera-
tion-fairness. Intuitively, the actual-time linearization of a
concurrent history ŝ ∈ Σ̂∗ is the linearization of ŝ that con-
tains all operations invoked in ŝ ordered by their lineariza-
tion points [4], i.e., the times the operations took effect in
the run from which ŝ was obtained. In our experiments in-
volving actual-time linearizations we focus on benchmarks
with strict FIFO queue implementations where elements are
enqueued concurrently but dequeued sequentially as in our
running example. In this case linearization points can be
determined exactly which may otherwise only be possible
through approximations.

We informally define that a linearization x ∈ Σ∗ of a
concurrent history ŝ ∈ Σ̂∗ is the actual-time linearization of ŝ
if operation m precedes an operation n in x if and only if the
linearization point of m precedes the linearization point of
n in the run from which ŝ was obtained. With × indicating
linearization points in Figure 1, the previously mentioned
linearization

enq(b) enq(c) enq(a) deq(b) deq(c) deq(a)

is the actual-time linearization of the concurrent history in
our running example.

Given a concurrent history ŝ ∈ Σ̂∗ of a queue, the zero-
time linearization z ∈ Σ∗ of ŝ, and the actual-time lineariza-
tion x ∈ Σ∗ of ŝ, we define operation-lateness, operation-age,
and operation-fairness as follows.

DEFINITION 5. The operation-lateness of an operation m
invoked in ŝ is the number of operations m′ such that m
precedes m′ in z and m′ precedes m in x.

The operation-lateness of m is therefore the number of
operations which overtake m in ŝ, i.e., the number of opera-
tions which get invoked after but take effect before m.

DEFINITION 6. The operation-age of an operation m in-
voked in ŝ is the number of operations m′ such that m′ pre-
cedes m in z and m precedes m′ in x.

Complementary to operation-lateness the operation-age
of m is the number of operations overtaken by m in ŝ, i.e.,

the number of operations which get invoked before but take
effect after m.

DEFINITION 7. The operation-fairness of ŝ is the average
operation-lateness (or operation-age) of all operations in-
voked in ŝ.

Note that although element-fairness and operation-fair-
ness are related they are not equivalent. For example, if an
enqueue operation overtakes a dequeue operation, then the
operation-age of the enqueue operation increases but the
element-age of the enqueued element does not change.

3. Experiments
We benchmark a lock-based queue (LB), the Michael-Scott
(MS) queue [8], the Flat Combining (FC) queue [2], the
unbounded-size (US) k-FIFO queue [6, 9], and the round-
robin (RR) and 2-random (2-RA) Scal queues [7, 9]. In all
implementations we use cache- and page-aligned memory
to avoid artifacts in the experiments that are unrelated to the
actual queue implementations.

The LB, MS, and FC queues are strict FIFO queue im-
plementations. LB uses a single pthread mutex to synchro-
nize enqueue and dequeue operations. MS uses Compare-
and-Swap (CAS) instructions to enqueue and dequeue ele-
ments without blocking. If CAS fails because of contention
on the queue MS retries until it succeeds. FC uses a lock-
based FIFO queue and an array of intended queue opera-
tions where each thread has its own slot. A thread accesses
the queue by first writing its intended operation into the slot
of the array assigned to the thread. Only then the thread tries
to acquire the lock of the queue. The thread which actually
acquires the lock iterates over the array and executes the in-
tended operations of all threads. The threads which do not
get the lock spin over their array slot, check if their operation
has already been executed by another thread, and otherwise
try again to acquire the lock.

The US k-FIFO queue as well as the RR and 2-RA Scal
queues are relaxed queue implementations. US k-FIFO is
based on a queue of segments of size k. Elements may be
enqueued anywhere in the tail segment. If the tail segment
gets full a new segment is appended. Elements are dequeued
from the head segment in any order. Empty head segments
are removed from the queue of segments. A Scal queue con-
sist not just of one but of p so-called partial queues. To en-
queue or dequeue an element a load balancer (here RR or
2-RA) selects one of the partial queues and executes the op-
eration on that particular queue. The implementation of par-
tial queues is based on MS. The RR load balancer uses two
global round-robin counters, one for the enqueue operations
and one for the dequeue operations. With RR, the first en-
queue operation, for example, enqueues into the first partial
queue, the second enqueue operation enqueues into the sec-
ond partial queue, and so on. The 2-RA load balancer first
selects two partial queues randomly and then has elements

enqueued in the partial queue which contains less elements
and elements dequeued from the partial queue which con-
tains more elements. Selecting two queues randomly pro-
vides exponentially better load balancing than selecting just
a single queue [1].

To measure element-fairness we use a microbenchmark
with a sequentially-alternating access pattern [7]. Each
thread executes a loop of ten thousand iterations where in
each iteration one element is enqueued and one element is
dequeued. Moreover, each thread enqueues two hundred el-
ements before the loop and dequeues two hundred elements
after the loop to avoid that the queue ever gets empty dur-
ing the benchmark. To obtain zero-time linearizations we
instrument the benchmark code such that the invocations of
queue operations are time-stamped using the globally syn-
chronized Time Stamp Counter of x86 processors. In the
rare case when two operations get the same time stamp we
consider the operation that is invoked by the thread with the
lower thread ID as invoked first.

To measure operation-fairness we need to obtain actual-
time linearizations of concurrent histories. We designed a
benchmark with a parallel-enqueue-sequential-dequeue ac-
cess pattern such that actual-time linearizations can be de-
termined for concurrent histories obtained with strict FIFO
queue implementations. With this benchmark all threads first
enqueue ten thousand elements into a queue in parallel. Af-
terwards a single thread dequeues all elements from the
queue sequentially. In this case, the order in which the de-
queued elements appear is the order in which they were orig-
inally enqueued which fully determines the actual-time lin-
earization. Note, however, that this way we only obtain non-
trivial operation-fairness of enqueue operations. Operation-
fairness of dequeue operations can be obtained separately by
first enqueueing elements sequentially and then dequeueing
them in parallel. Measuring operation-fairness for relaxed
queue implementations remains future work.

3.1 Experimental Setup
We used two machines for our experiments: an Intel-based
server with four 10-core 2GHz Intel Xeon processors (40
cores, 2 hyper-threads per core), 24MB shared L3-cache,
and 128GB of memory running Linux 2.6.39, and an AMD-
based server with four 6-core 2.1GHz AMD Opteron proces-
sors (24 cores), 6MB shared L3-cache, and 48GB of memory
running Linux 2.6.32. All queues are implemented in C++
and compiled using gcc 4.3.3 with -O3 optimizations.

The benchmarking threads compute π iteratively in be-
tween queue operations to simulate different levels of con-
tention on the benchmarked queue. A computational load of
one thousand iterations, for example, takes on average 2.3
microseconds on the 40-core machine [9]. The segment size
of k-FIFO queues and the number of partial queues of Scal
queues are set to 80 on the 40-core machine (the number of
available hyperthreads) and to 24 on the 24-core machine.

3.2 Performance and Scalability
Figures 3(a) and 3(b) show performance and scalability
on the 40-core and 24-core machine, respectively, with a
computational load of two thousand iterations. The relaxed
queue implementations outperform and outscale the strict
FIFO queue implementations in this benchmark.

3.3 Element-Fairness
Figures 3(c) and 3(d) show element-fairness for the sequen-
tially-alternating benchmark with increasing computational
load on the 40-core and 24-core machine with 80 threads
and 24 threads, respectively. The 2-RA Scal queue shows
the worst element-fairness on both machines. On the 40-
core machine the FC queue has the best element-fairness
with high contention on the queue. With a computational
load of 16000 iterations or higher the element-fairness of
the RR Scal queue becomes better than the element-fairness
of the FC queue. On the 24-core machine the element-
fairness of the RR Scal queue is better than the element-
fairness of the FC queue except with a computational load of
64000 iterations. This means that relaxed queue implemen-
tations may outperform strict FIFO queue implementations
even in terms of element-fairness. However, the element-
fairness of the US k-FIFO queue is significantly worse than
the element-fairness of the FC queue yet still close to the
element-fairness of the LB queue and the MS queue with
high contention on the queue. Depending on the compu-
tational load the US k-FIFO queue can even have better
element-fairness than the MS queue.

3.4 Operation-Fairness
We discuss our results in terms of operation-lateness and
operation-age rather than operation-fairness for a more de-
tailed analysis. Figures 4(a) and 4(b) show the maximum
operation-lateness and operation-age of all enqueue op-
erations, respectively, for the parallel-enqueue-sequential-
dequeue benchmark on the 40-core machine. The maximum
operation-lateness of the LB and MS queues is significantly
higher than their maximum operation-age. The maximum
operation-lateness of the FC queue, however, is even lower
(< 65) then its maximum operation-age, except for the out-
lier with a computational load of 8000 iterations. Note that
the maximum operation-age of the FC queue is close to
eighty, which is the number of threads in the experiment.

Figures 4(c) and 4(d) show the percentage of enqueue
operations with an operation-lateness and operation-age
greater than zero, respectively. For the LB and MS queues
nearly all enqueue operations have an operation-age greater
than zero, i.e., nearly all enqueue operations overtake at least
one other enqueue operation. For the MS queue also the
number of enqueue operations which are overtaken by at
least one other enqueue operation is high. Only one out of
five enqueue operations is not overtaken by another enqueue
operation. For the LB queue only every third enqueue oper-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

2 10 20 30 40 50 60 70 80

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

LB
MS

FC
US k-FIFO (k=80)

RR Scal (p=80)
2-RA Scal (p=80)

(a) Performance and scalability of the sequentially-alternating benchmark
with an increasing number of threads and a computational load of two
thousand iterations on the 40-core machine.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

2 4 8 12 16 20 24

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

LB
MS

FC
US k-FIFO (k=24)

RR Scal (p=24)
2-RA Scal (p=24)

(b) Performance and scalability of the sequentially-alternating benchmark
with an increasing number of threads and a computational load of two
thousand iterations on the 24-core machine.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

0 1000 2000 4000 8000 16000 32000 64000

e
le

m
e
n
t-

fa
ir
n
e
s
s
 (

lo
g
s
c
a
le

,
le

s
s
 i
s
 b

e
tt
e
r)

computational load (logscale)

80 threads

LB
MS

FC
US k-FIFO (k=80)

RR Scal (p=80)
2-RA Scal (p=80)

(c) Element-fairness for the sequentially-alternating benchmark with in-
creasing computational load and 80 threads on the 40-core machine.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

0 1000 2000 4000 8000 16000 32000 64000

e
le

m
e
n
t-

fa
ir
n
e
s
s
 (

lo
g
s
c
a
le

,
le

s
s
 i
s
 b

e
tt
e
r)

computational load (logscale)

24 threads

LB
MS

FC
US k-FIFO (k=24)

RR Scal (p=24)
2-RA Scal (p=24)

(d) Element-fairness for the sequentially-alternating benchmark with in-
creasing computational load and 24 threads on the 24-core machine.

Figure 3. Performance, scalability, and element-fairness of the sequentially-alternating benchmark on the 40-core and 24-core
machines.

ation is overtaken. For the FC queue the number of enqueue
operations which overtake other enqueue operations is low,
only one out of five enqueue operations overtakes another
enqueue operation under high contention. However, more
than every second enqueue operation is overtaken.

4. Conclusions
We have introduced two metrics: (1) element-fairness for
quantifying the deviation of the supposedly ideal zero-time
linearization of a concurrent history of queue operations
from FIFO queue semantics, and (2) operation-fairness for
quantifying the difference in the degree of operation re-
ordering between the zero-time and actual-time lineariza-
tions of a concurrent history. Operation-fairness helps ex-
plaining the application-relevant notion of element-fairness.
We have evaluated and compared the performance, scalabil-

ity, element-fairness, and operation-fairness of several strict
and relaxed implementations of concurrent FIFO queues.
The experiments show that some relaxed implementations
may not only perform and scale better than strict implemen-
tations but can also be seen as actually providing semantics
closer to FIFO than strict implementations.

Interesting directions for future work are the problem
of measuring operation-fairness even for relaxed queue im-
plementations and studying element-fairness and operation-
fairness in the context of other concurrent data structures
such as stacks and priority queues.

Acknowledgments
We thank Ana Sokolova for her helpful feedback especially
on the theoretical parts of the paper.

 10

 100

 1000

 10000

100000

0 1000 2000 4000 8000 16000 32000 64000

m
a

x
im

u
m

 o
p
e

ra
ti
o
n

-l
a
te

n
e

s
s
 (

lo
g

s
c
a
le

,
le

s
s
 i
s
 b

e
tt
e

r)

computational load (logscale)

80 threads

LB MS FC

(a) Maximum operation-lateness of all enqueue operations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1000 2000 4000 8000 16000 32000 64000

m
a
x
im

u
m

 o
p
e
ra

ti
o
n
-a

g
e
 (

le
s
s
 i
s
 b

e
tt

e
r)

computational load (logscale)

80 threads

LB MS FC

(b) Maximum operation-age of all enqueue operations.

 0

 20

 40

 60

 80

 100

0 1000 2000 4000 8000 16000 32000 64000

%
 o

f
e
n
q
u
e
u
e
 o

p
e
ra

ti
o
n
s
 w

it
h
 o

p
e
ra

ti
o
n
-l
a
te

n
e
s
s
 >

0

 (
le

s
s
 i
s
 b

e
tt
e

r)

computational load (logscale)

80 threads

LB MS FC

(c) Percentage of enqueue operations with an operation-lateness > 0.

 0

 20

 40

 60

 80

 100

0 1000 2000 4000 8000 16000 32000 64000

%
 o

f
e
n
q
u
e
u
e
 o

p
e
ra

ti
o
n
s
 w

it
h

 o
p
e
ra

ti
o
n
-a

g
e
 >

 0

 (
le

s
s
 i
s
 b

e
tt
e

r)

computational load (logscale)

80 threads

LB MS FC

(d) Percentage of enqueue operations with an operation-age > 0.

Figure 4. Operation-lateness and operation-age for the parallel-enqueue-sequential-dequeue benchmark with increasing com-
putational load and 80 threads on the 40-core machine.

References
[1] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Bal-

anced allocations: The heavily loaded case. SIAM Journal on
Computing, 35(6):1350–1385, 2006.

[2] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining
and the synchronization-parallelism tradeoff. In Proc. Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA),
pages 355–364. ACM, 2010.

[3] T. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and
A. Sokolova. Quantitative relaxation of concurrent data struc-
tures. In Proc. Symposium on Principles of Programming Lan-
guages (POPL). ACM, 2013.

[4] M. Herlihy and J. Wing. Linearizability: a correctness con-
dition for concurrent objects. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 12(3):463–
492, 1990.

[5] C. Kirsch, H. Payer, H. Röck, and A. Sokolova. Brief an-
nouncement: Scalability versus semantics of concurrent FIFO
queues. In Proc. Symposium on Principles of Distributed

Computing (PODC), pages 331–332. ACM, 2011.

[6] C. Kirsch, M. Lippautz, and H. Payer. Fast and scalable k-fifo
queues. Technical Report 2012-04, Department of Computer
Sciences, University of Salzburg, June 2012.

[7] C. Kirsch, H. Payer, H. Röck, and A. Sokolova. Performance,
scalability, and semantics of concurrent FIFO queues. In Proc.
International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP), LNCS. Springer, 2012.

[8] M. Michael and M. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proc.
Symposium on Principles of Distributed Computing (PODC),
pages 267–275. ACM, 1996.

[9] H. Payer. Multicore Scalability of Concurrent Objects. Phd
thesis, University of Salzburg, Salzburg, Austria, 2012.

[10] N. Shavit. Data structures in the multicore age. Communica-
tions ACM, 54:76–84, March 2011.

