
A Runtime System for Logical-Space Programming

Eloi Pereira
∗

Systems Engineering
UC Berkeley, CA, USA
eloi@berkeley.edu

Clemens Krainer
Dept. of Computer Sciences

Univ. of Salzburg, Austria
clemens.krainer@cs.uni-

salzburg.at

Pedro Marques da Silva
Research Center

Air Force Academy, Portugal
posilva@academiafa.edu.pt

Christoph M. Kirsch
Dept. of Computer Sciences

Univ. of Salzburg, Austria
ck@cs.uni-salzburg.at

Raja Sengupta
Systems Engineering

UC Berkeley, CA, USA
sengupta@ce.berkeley.edu

ABSTRACT
In this paper we introduce logical-space programming, a spa-
tial computing paradigm where programs have access to a
logical space model, i.e., names and explicit relations over
such names, while the runtime system is in charge of ma-
nipulating the physical space. Mobile devices such as au-
tonomous vehicles are equipped with sensors and actuators
that provide means for computation to react upon spatial
information and produce effects over the environment. The
spatial behavior of these systems is commonly specified at
the physical level, e.g., GPS coordinates. This puts the re-
sponsibility for the correct specification of spatial behav-
iors in the hands of the programmer. We propose a new
paradigm named logical-space programming, where the pro-
grammer specifies the spatial behavior at a logical level while
the runtime system is in charge of managing the physical be-
haviors. We provide a brief explanation of the logical-space
computing semantics and describe a logical-space runtime
system using bigraphs as logical models and bigActors as
computing entities. The physical entities are modeled as
polygons in a geometrical space. We demonstrate the use of
logical-space programming for specifying and controlling the
spatial behaviors of vehicles and sensors performing an envi-
ronmental monitoring mission. The field test consisted of an
Unmanned Aerial Vehicle and GPS drifters used to survey
an area supposedly affected by illegal bilge dumping.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; F.1.1 [Computation by Abstract
Devices]: Models of Computation—Relations between mod-
els, Self-modifying machines

∗The author is also with the Research Center of the Por-
tuguese Air Force Academy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWEC ’15, April 13, 2015, Seattle, Washington
Copyright 2013 ACM 978-1-4503-1996-6/13/04 $15.00.

Keywords
Spatial Computing, Mobile, Robotics

1. INTRODUCTION
Computation is becoming ubiquitously and spatially em-

bedded in our environment. Mobile cyber-physical systems
such as smartphones and robots are equipped with sensors
and actuators that observe and manipulate their spatial en-
vironment. This kind of computation that exhibits a behav-
ior in space is commonly known as spatial computing [6].

Spatial computing often involves defining the behavior of
machines in a geometrical location model such as GPS coor-
dinates or indoor local coordinates [7]. We call this physical-
space programming.

Example 1. Consider the example of an Unmanned Aerial
Vehicle (UAV) collecting imagery of an oil-spill due to a sus-
picious illegal bilge dumping activity by an oil tanker. The
exact location of the oil-spill is unknown a priori, although,
due to Automatic Identification System (AIS) information
collected from the tanker, it is known to be within a given
rectangular area parametrized by its North-East and South-
West GPS locations, (37.04,−8.59) and (36.94,−8.79). The
UAV operator performs the following steps: select an UAV
to perform the mission; specify a searching pattern com-
prised by the sequence of GPS locations to be visited in-
side the suspected area; as soon as the operator gets the
information of the oil-spill location by some source, specify
a new location to be visited. The mission is specified as a
sequence of waypoints using a given format such as the Way-
point File Format (WFF) of the Mavlink Waypoint Protocol
(MWP) [2]. The bottom row of images in Figure 1 depicts
the physical-space execution of this example.

Physical-space programming provides full control of the phys-
ical capabilities of the involved computing devices. This puts
the responsibility for the correct specification of spatial be-
haviors in the hands of the programmer. For example, a
mistake in the specification of the GPS coordinates of the
waypoints can lead to an unexpected behavior. Moreover,
physical-space models do not entail explicitly relational in-
formation of spaces. For example, it would be important for
the UAV operator to know if the UAV is at the search area
without the need to perform any further calculations.

→ → →

→ → →

Figure 1: Symbolic-space execution (top row) and physical-space execution (bottom row) for Example 1.

The literature presents several programming models that
approaches spatial computing from a physical level, such as
Amorphous Computing [3], Spatial Programming [8], and
the framework Gaia [13].

Another common approach on spatial computing is to
model space symbolically, where locations are defined as
symbols and explicit relations over those symbols [7]. An
everyday example of a location model is the set of streets
names, cities, and countries organized by their containment
relation. We call it symbolic-space programming when com-
putation is defined over symbolic-space models. One of the
pioneer symbolic-space programming models is the Ambient
Calculus by Luca Cardelli [9], where mobile processes can
compute over bounded locations and are allowed to commu-
nicate if they share the same location. In Ambient Calculus
locations have a tree-like structure. Inspired by Cardelli’s
model and by its own π−calculus, Robin Milner introduced
the Bigraphical model [10] that combines a nested location
model with a model of connectivity. A bigraph changes to
another bigraph upon the application of Bigraph Reaction
Rules (BRR). The top row of images in Figure 1 shows the
bigraphical execution for Example 1.

Symbolic-space programming provides an abstract spatial
model with explicit relations between locations. These mod-
els are in general convenient for specifying and formally ver-
ifying high-level spatial behaviors. However, they abstract
away the physical behaviors of machines and their environ-
ment, which are necessary to operate the machines. For ex-
ample, the application of a BRR that moves an UAV from
its current position to another location is executed in the
symbolic model as soon as it is requested. At the physical
level, a control action does not execute instantaneously. It
might not even execute at all due to some adversarial action
of the environment. A programmer must be able to write
programs that can cope with this asynchrony and react upon
inadvertent behaviors.

In this paper we introduce logical-space computing. In log-
ical space computing, the programmer manipulates a sym-
bolic abstraction of the world, named the logical-space model,
while the runtime system is in charge of manipulating a
physical abstraction of the world, named the physical-space
model. Both abstractions are loosely coupled by the logical-
space semantics, which provides an asynchronous semantics
for the execution of control actions and for the observation
of the structure.

In this paper we present informally the semantics of logical-
space computing. A complete formal treatment is intro-

duced in [12]. We show how the BigActor model [11] can be
used for logical-space programming and describe a runtime
system for programming mobile robots using bigActors. We
conclude this paper with experimental results, where this
paradigm is used to control an UAV and sensors performing
an oil-spill monitoring mission.

2. LOGICAL-SPACE COMPUTING
In logical-space computing the programmer handles a sym-

bolic spatial abstraction with a well-defined semantics of
mobility, while the runtime-system handles the physical ex-
ecution. Logical-space computing provides a semantics to
bridge these two spatial models.

2.1 Semantics
The logical-space computing semantics is modeled as a

transition system over spatial-computing configurations. A
spatial-computing configuration is denoted as 〈α | S | η〉,
where α is a set of spatial agents, S is a spatial structure,
and η is a set of pending requests.

A spatial agent is a computing entity with local state that
can perform three commands: observe(q), react(x), and
control(r). Command observe(q) requests an observation
of the logical model specified by a query q. Command re-

act(x) assigns to a local variable x the value of a requested
observation. Command control(r) requests the execution
of a control action over the logical model specified by the
reaction rule r.

We define a logical model as L = (dom(L), σL) where
dom(L) denotes the set of locations of L, i.e., the set of
symbols, and σL is a set of relations over dom(L). Likewise,
a physical model P has a set of physical locations dom(P)
and a set of relations σP over dom(P).

A spatial structure binds these two abstractions together.
A spatial structure S is a tuple (L,P, β, γ) where L is a log-
ical model, P is a physical model, β : dom(L)→ dom(P) is
the physical interpretation function that maps logical loca-
tions from L into physical locations in P , and γ : σL → σP

provides an interpretation of the relations in L into relations
in P .

We say that a structure (L,P, β, γ) is consistent if the
interpretation of locations from L to P preserves the rela-
tions in L, e.g., in Figure 2 the parenting of the nodes in
the bigraph is consistent with the containment relation over
polygons. A structure (L,P, β, γ) is locally consistent with
respect to L′ if L′ is contained by L and (L′, P, β, γ). Lo-
cally consistency is an important property for correctness

of logical-space executions. This topic is discussed in depth
in [12].

The logical-space computing semantics is modeled abs-
tractly in order to fit different logical and physical models.
Figure 2 shows an example of a bigActor as a spatial agent
that operates over a bigraphical model of the world. The
physical world is modeled as polygons defined using GPS
coordinates. The bigActor specified in Figure 2 uses a query

Figure 2: Logical-space program.

language to observe the logical space for oil-spills and BRRs
to move the UAV from its current location to a new one. β
maps each bigraph node to a polygon. γ maps the bigraph
parenting relation to a containment relation over polygons.

The semantics is written in an operational style, largely in-
fluenced by [4, 5, 11]. It is formalized as a transition system
over the space of spatial-computing configurations, specified
by seven inference rules.

2.1.1 Computation
The rule denoted as 〈fun : a〉 models an internal compu-

tation performed by agent a, i.e., the change of the local
state of a specified by the semantics of a host programming
language.

2.1.2 Observation
There are three rules for modeling observations. Rule
〈req obs : a, observe(q)〉 models an agent a requesting an
observation defined by query q of the logic-space model. The
request is defined as OBS(a, q) and it is stored in the set of
pending requests η. Rule 〈sense : OBS(a, q)〉 models the
runtime system taking an observation request OBS(a, q) from
the set of pending requests, interpreting the query over the
physical structure, and generating a new logical abstraction
Lq. The result is stored in the set of pending requests as
READY(a, Lq). This rule is responsible for the keeping the
logical model and the physical model locally consistent with
respect to the observed space, i.e., if two observed physi-
cal locations are related, then their logical counterparts are
also related. Rule 〈rcv obs : a, react(x)〉 delivers an obser-
vation READY(a, Lq) to a by assigning Lq to the local variable
x. Note that observation is asynchronous, i.e., an agent first
requests an observation, the runtime system gets the nec-
essary data from sensors, and delivers the result as soon as
possible.

2.1.3 Control
There are two rules for modeling control actions from

spatial agents and one from environmental sources. Rule
〈req ctr : a, control(R⇒ R′)〉 models an agent a request-
ing a control action over the the logical structure specified by
the reaction rule R ⇒ R′, where R specifies the part of the
logic model to be changed and R′ specifies how it is intended
to be changed. The rule generates a request CTR(a,R⇒ R′)
in the set of pending requests. Rule 〈actuate : CTR(a,R ⇒
R′)〉models the runtime system taking a request CTR(a,R⇒
R′), checking if it can be applied over the logical and phys-
ical space models, and executing the rule over both models.
The rule requests the spatial structure to be locally consis-
tent with respect to R and keeps the structure locally consis-
tent with respect to R′. Note that if a single agent observes
first the space that is willing to control, locally consistency
is ensured and control action can be successfully executed.
Nonetheless, in the presence of concurrency, one must en-
sure that the space being controlled is by agents is free of
race-conditions. In [11] we provide sufficient conditions to
cope with these concurrency issues.

The effects of the environment are modeled by rule 〈env :
P ′〉, which changes the physical model to P ′.

The semantics of the logical-space program of Figure 2,
which logical-space execution is depicted in Figure 1, is the
following sequence of configurations:

c0
〈req ctr:a,r=MOVE HOST TO searchArea0〉−−−−−−−−−−−−−−−−−−−−−−−→ c1

〈actuate:CTR(a,r)〉−−−−−−−−−−−→ c2

〈req obs:a,observe(q=CHILDREN(PARENT(HOST)))〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ c3
〈sense:OBS(a,q)〉−−−−−−−−−−→ c4

〈rcv obs:a,react(Lq)〉
−−−−−−−−−−−−−→ c5

〈fun:a〉−−−−→ c6
〈req ctr:a,r′=MOVE HOST TO oilSpill0〉−−−−−−−−−−−−−−−−−−−−−−→ c7

〈actuate:CTR(a,r)〉−−−−−−−−−−−→ c8

where ci = 〈αi | Si | ηi〉. The analysis of the execution
trace shows the asynchronous nature of both observation
and control.

3. RUNTIME SYSTEM
Next we present a runtime system for programming in

logical-space, where spatial agents are specified as bigActors,
logical spaces are modeled as bigraphs, and physical spaces
are modeled as polygons defined by GPS coordinates.

Figure 3 shows the overall runtime system. The left-
hand side of Figure 3 depicts bigActor instances running
over the BigActor Runtime System (BARS). BARS pro-
vides means for symbolic-space programming with bigAc-
tors. Our former implementation used BARS over a model
checker responsible to simulate the bigraphical execution.
The right-hand side of Figure 3 depicts the Logical-Space
Execution Engine (LSEE) that extends BARS with a logical-
space computing semantics. In this paper we present an
implementation of the LSEE for programming UAVs and
sensors used in an oil-spill monitoring scenario. Nonethe-
less, the implementation can easily extended with plugins
to address other kind of sensors and actuators.

3.1 BigActor Runtime System
BigActors [11] are mobile agents that are embedded in

bigraphical [10] models of space. The concurrency is mod-
eled as per Hewitt and Agha’s actor model [4], i.e., they
have local state and communicate by asynchronous message-
passing. Location and mobility of bigActors are modeled

Figure 3: BigActor Runtime System for Logical-
Space Programming.

using the bigraphical formalism. A bigActor is able to asyn-
chronously observe locally the bigraph and control by re-
questing the execution of BRRs.

The BigActor Language is implemented as a Scala embed-
ded Domain Specific Language (DSL) [1]. It is an extension
of the Scala Actor library with BigActor commands plus
implicit conversions for achieving a domain-specific syntax.
We use Scala for two reasons: (1) The concurrency model of
Scala is the Actor Model. (2) The type system together with
high-order functions and implicit conversions makes Scala a
powerful language to implement DSLs. Scala Actor library
became recently deprecated in favor of the Akka Actor li-
brary. In order to cope with these changes in the Scala
ecosystem, we are currently migrating the implementation
to Akka Actors.

BigActor instances are Scala actors. The instances send
requests to the BigActor Scheduler, which schedules them
according to a First-Come First-Served policy, and manages
their execution. Instances can send communication, obser-
vation, control, and migration requests.

The interactions between the BigActor Scheduler and the
bigraphical model of space is mediated by the Bigraph Man-
ager. The Bigraph Manager is responsible for delivering
fresh bigraphical observations and for executing control ac-
tions specified as BRRs.

3.2 Logical-Space Execution Engine
The LSEE has three roles: serve as a middleware for sen-

sors and actuators, generate bigraphs out of physical prop-
erties, and interpret BRRs into control commands that can
be executed by a given actuator. Next we present the com-
ponents that are responsible for these tasks.

3.2.1 Middleware
The middleware component named ros vehicle contains

software drivers named plugins. Plugins are responsible to
interact with components that provide or consume spatial
information. These components can be for example a GPS
device, an autopilot, a computer vision system, or a cloud-
based location service accessed over the internet. A plugin
has a well-defined interface. It can subscribe to mobility
commands, e.g., a waypoint command for an autopilot, and
publish physical properties. A physical property may contain
static information, such as a polygon describing the border
of a city, or dynamic information, such as the location and
connectivity of an UAV. Plugins are implemented over the
Robot Operating System (ROS), which provides a publish-
subscribe communication mechanism. For the oil-spill sce-
nario we implemented five plugins. The Autopilot Plugin

handles the execution of GPS waypoints over the autopilot
and fetches the UAV state information, like GPS location,
velocity, and control authority. The AIS Plugin receives,
decodes, and filters AIS messages from an onboard AIS re-
ceiver. The Camera Plugin uses a video camera driver to
capture and process video frames.

The ros vehicle is also equipped with a Naming Service
and a Communication Service. The Naming Service is re-
sponsible for assigning unique names to physical properties
and can be implemented using different naming conventions.
For example, the Naming Service implemented for the oil-
spill scenario uses the autopilot serial number to identify the
location of the UAV and the AIS Maritime Mobile Service
Identity (MMSI) to identify the locations of the drifters.
The Communication Service is responsible for sharing lo-
cal observations between ros vehicles. For the oil-spill
scenario, the Communication Service is implemented using
UDP as the transport protocol over a 3G network. The ser-
vice is used to share physical properties between different
ros vehicles at different ground stations.

3.2.2 Generation of bigraphs
The Bigraph Driver subscribes physical properties from

the ros_vehicle and generates bigraphical abstractions. The
parenting of a bigraph node b is calculated by finding the
smallest polygon that totally contains β(b), i.e., its physi-
cal interpretation. In order to cope with Milner’s bigraph
definition we must enforce that the resulting parenting rela-
tion forms a tree. As such, a polygon can not be partially
contained on another polygon, otherwise, the resulting par-
enting relation may form a cycle. This limitation can be
removed by using Sevegnani’s Bigraphs with Sharing [14].

Figure 4 depicts an example of the generation of a bigraph
from physical properties produced by a network of vehicles
and sensors.

(uav0, LatLon_uav0, ais)
(drifter0, LatLon_d0, ais)
(drifter1, LatLon_d1, ais)

...
(driftern, LatLon_dn, ais)

(oilSpill, GPSPolygon0)

ais

...

ais

uav0 drifter0 drifterN

oilSpill

Bigraph Driver

Physical Properties

Bigraph

Figure 4: Bigraph Driver example.

The Bigraph Driver is stateful, i.e., it keeps track of the
physical properties that it observes in order to generate bi-
graphs with increasing spatial information over time. If the
Bigraph Driver receives a physical property that was already
observed, it disregards the old one and re-generates the bi-
graphical abstraction.

The Bigraph Driver uses the Communication Service to
exchange observed physical properties with other robots.
Thus, the Bigraph Driver hosted by each robot generates a
bigraphical estimate of the global bigraphical abstraction. In
order to solve ambiguities between observations of the same
physical space by different robots we augment each phys-
ical property with a GPS time-stamp. Example 2 shows
the Communication Service being used by UAV operators
during a handover of control authority.

Example 2. Consider that uav0 that starts a mission un-
der the control of gcs0 and, at a given point, hands control
over to gcs1 on-board of a navy vessel. Figure 5 depicts this
situation. Each operator has a local and limited observation
of the world. The operator on the vessel does not know
where the UAV is located until the handover has been suc-
cessfully completed. The use of the Communication Service
allows the operators to have access to an extended bigraphi-
cal abstraction. With this information, both operators have
access to the location of the UAV before and after hand-over.

uav0

vessel

tanker

oilSpill

gcs0gcs1

C2Link0

c2link1

C2Link0

land

gcs0

c2link1 c2link0

uav0vessel

oilSpill
land

sea

gcs0

gcs1

tanker

c2link1

vessel

oilSpill sea

gcs1

tanker

uav0

sea

Local Bigraph 1 Local Bigraph 0

Distributed Bigraph Estimate

Figure 5: Distributed bigraph example

Bigraph observations “flood” over the network of robots and
will eventually converge to a distributed bigraph estimate.

3.2.3 Generation of control commands
The BRR Driver translates BRRs to mobility commands

that can be executed by devices that are interfaced by ros_-

vehicle plugins. In order to synthesize commands, the BRR
Driver needs the physical interpretations of the nodes in the
BRR. To derive the physical interpretation, the BRR Driver
subscribes physical properties from ros_vehicle. For exam-
ple, the generation of a waypoint command to move an UAV
to a given destination needs the GPS location of the UAV
and the destination.

Figure 6 exemplifies the execution of a BRR for moving an
UAV to the oil-spill location. The BRR Driver generates a
mobility command that specifies a GPS waypoint command
to the centroid of the polygon that defines the the oil-spill.
The mobility command is subscribed by the Autopilot Plu-
gin from the ros_vehicle instance. The Autopilot Plugin
is responsible for managing the execution of the waypoint.

uav0
uav0

oilSpilloilSpill

waypointCmd(uav0,
 centroid(LatLon0,...,LatLonN)
)

uav0

(oilSpill,List(LatLon0,...,LatLonN))

BRR Driver

Logical command Physical command

uav0

Figure 6: BRR Driver example.

4. OIL-SPILL CASE STUDY
The field test uses an UAV with a camera and drifters

with AIS modems and GPS to monitor an oil-spill. The
oil-spill is emulated by a Navy vessel dropping 100 kg of
pop-corn 6 km south of the shore of Portimão, Portugal.
This is a small spill of the kind that might be created by a
large ship flushing its oil tanks, also known as bilge dumping.
Bilge dumping is a major problem for small countries like
Portugal with large maritime zones. Bilge dumping evidence
is currently collected using satellite images correlated with
AIS information from proximate vessels [15]. The field test
aimed to assess the role of unmanned vehicles and sensors
as complements to satellites for the collection of evidence.

We used two kinds of UAVs developed at the Portuguese
Air Force Academy under the PITVANT project, the Alfa
and the Alfa-Extended (Figure 7(a)). The Alfa-Extended

(a) Extended UAV (b) Onboard image

Figure 7: Alfa Extended UAV, onboard UAV pic-
ture of the oil-spill (popcorn) and Navy vessel.

is a gas-powered UAV with 3 m wingspan, equipped with a
Piccolo autopilot for stable low-level control, and a PC-104
computing board for high-level control and vision process-
ing. Each UAV is equipped with a gimballed optic camera
and an AIS receiver.

The Unmanned Aerial System included three ground con-
trol stations (GCS) denoted as gcs0, gcs1, and gcs2. gcs0

was situated in an air field and was responsible for take-off
and landing maneuvers, gcs1 was located at the shore and
took control authority of the UAVs during emergencies, and
gcs2 was located at the shore and was responsible for the
UAV mission. In one particular scenario, gcs2 was located
on a Navy vessel to extend the operational range of the UAV.

The drifters used in this demonstration were AIS bea-
cons commonly used for locating fishing nets. They were
equipped with GPS and transmitted their position up to a
range of 10 miles. Drifters were identified by unique MMSI
numbers.

The communication infrastructure included wireless com-
munication links to connect the UAVs and the GCSs: 3G
internet access to connect all GCSs, UHF communication ra-
dios for inland communication, and VHF radios for maritime
communication. The European Maritime Safety Agency
(EMSA) participated in the scenario, tasking a satellite to
take a high-resolution optical picture of the oil-spill.

Next we present the lessons learned from programming
the oil-spill mission in logical-space.

Recall the bigActor defined in Figure 2. The bigActor re-
quests to move the UAV to logical locations, e.g., oilSpill0.
Since the oil-spill moves over time, each execution of the
same instruction at the logical level maps to a different
instruction at the physical level. In other words, a new
waypoint command must be generated each time the log-

ical location moves its physical location. Prior to the use
of logical-space programming, the operator had to manually
specify these new waypoints in physical-space, which was
inconvenient and easy to make mistakes. With logical-space
programming, the command MOVE HOST TO oilSpill0 is the
only one needed. The logical-space execution engine ensures
that waypoints have always the correct physical coordinates.

Consider another bigActor defined in Figure 8. The bi-
gActor observes the bigraph with a query LINKED TO HOST

and displays the result. The bigActor also has alternatives
for matching a handover message, which results in a BRR
handing over the control authority for uav0 to ground sta-
tion gcs0. In our field test these messages were sent by
another bigActor implementing a graphical user interface.

0 BigActor hosted_at gcs2 with_behavior {
1 observe(LINKED_TO_HOST)
2 loop {
3 react {
4 case obs: Observation => display(obs)
5 observe(LINKED_TO_HOST)
6 case "handover" => control(HAND uav0 TO gcs0)
7 }
8 }
9 }

Figure 8: Code for bigActor handover.

Our operators were able to watch bigraphs evolve as the
field test progressed. The logical abstraction proved partic-
ularly useful for UAV handovers, since it provided the oper-
ators with means to be constantly aware of the UAV loca-
tion and connectivity regardless of which ground station had
control authority. This was provided by our distributed bi-
graph estimation protocol executing over the Internet, which
allowed synchronizing the bigraphs at both ground stations.
The prior practice was to watch the control screen provided
by the autopilot vendor that would only display any infor-
mation if the UAV was under the control authority of the
respective ground station. Correct termination used to be
ensured by radio communication between operators. This
communication was discontinued as the operators came to
understand and trust the displayed bigraph.

5. CONCLUSION
In this paper we introduce a new paradigm for spatial

computing named logical-space programming. In logical-
space programming, programmers manipulate a logical-space
model, while the runtime system is responsible to mediate
this abstraction with the physical space. We introduce the
logical-space computing semantics informally and describe
the BigActor Runtime System for logical-space program-
ming. The runtime system uses bigActors as spatial agents
that operate over a bigraphical space model. The physical
space model consists of polygons defined using geometrical
coordinates. We demonstrated the use of the logical-space
programming in a case study where vehicles and sensors per-
formed an environmental monitoring mission.

Acknowledgment
This work has been supported by the National Science Foun-
dation (CNS1136141), by the National Research Network
RiSE on Rigorous Systems Engineering (Austrian Science
Fund S11404-N23), by the Fundação para a Ciência e Tec-
nologia (SFRH/BD/43596/2008), and by the Portuguese

MoD - PITVANT. The authors want to thank the Por-
tuguese Air Force, the Portuguese Navy, the European Mar-
itime Safety Agency, and the Portimão Airfield.

6. REFERENCES
[1] Bigactor language repository.

https://bitbucket.org/eloipereira/bigactors.
Accessed: 2014-12-16.

[2] Mavlink waypoint protocol. http:
//qgroundcontrol.org/mavlink/waypoint_protocol.
Accessed: 2014-12-09.

[3] H. Abelson, D. Allen, D. Coore, C. Hanson,
G. Homsy, T. Knight, R. Nagpal, E. Rauch,
G. Sussman, and R. Weiss. Amorphous Computing.
Communications of the ACM, 43(5):74–82, 2000.

[4] G. Agha. Actors: a model of concurrent computation
in distributed systems. MIT Press, Cambridge, MA,
USA, 1986.

[5] G. Agha, I. Mason, S. Smith, and C. Talcott. A
foundation for actor computation. Journal of
Functional Programming, 7(1):1–72, 1997.

[6] J. Beal, S. Dulman, and K. Usbeck. Organizing the
aggregate: Languages for spatial computing. In Formal
and Practical Aspects of Domain-Specific Languages,
pages 1–60. Information Science Reference, 2012.

[7] B. Becker, D. Beyer, H. Giese, F. Klein, and
D. Schilling. Symbolic invariant verification for
systems with dynamic structural adaptation.
Proceeding of the 28th international conference on
Software engineering - ICSE ’06, page 72, 2006.

[8] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer,
and L. Iftode. Spatial programming using smart
messages: design and implementation. In 24th
International Conference on Distributed Computing
Systems. Proceedings., pages 690–699. Ieee, 2004.

[9] L. Cardelli and A. Gordon. Mobile ambients. In
Foundations of Software Science and Computation
Structures, pages 140–155. Springer, 1998.

[10] R. Milner. The Space and Motion of Communicating
Agents. Cambridge University Press, 2009.

[11] E. Pereira, C. Kirsch, R. Sengupta, and J. Borges de
Sousa. Bigactors - a model for structure-aware
computation. In 4th International Conference on
Cyber-Physical Systems. ACM/IEEE, April 2013.

[12] E. Pereira, P. Silva, C. Krainer, C. Kirsch, and
R. Sengupta. Logical space computing. Technical
report, December 2014. http://cpcc.berkeley.edu/
papers/logicalSpaceComputingWorkingPaper.pdf.

[13] M. Roman and R. Campbell. Gaia: enabling active
spaces. Proceedings of the 9th workshop on ACM, 2000.

[14] M. Sevegnani. Bigraphs with sharing and applications
in wireless networks. PhD thesis, Univ. Glasgow, 2012.

[15] SkyTruth. Bilge dumping? busted using satellite
images and ais data.
http://blog.skytruth.org/2012/06/

bilge-dumping-busted-using-satellite.html,
2012.

