
Combo Drive: Optimizing Cost and Performance
in a Heterogeneous Storage Device

Hannes Payer ∗

University of Salzburg
hannes.payer@cs.uni-salzburg.at

Marco A.A. Sanvido
Hitachi Global Storage Technologies Research

marco.sanvido@hitachigst.com

Zvonimir Z. Bandic
Hitachi Global Storage Technologies Research

zvonimir.bandic@hitachigst.com

Christoph M. Kirsch∗

University of Salzburg
christoph.kirsch@cs.uni-salzburg.at

Abstract
We propose a new type of heterogeneous storage device
called Combo Drive, which comprises of a smaller-capacity
low-latency solid-state disk drive (SSD) concatenated with a
larger-capacity high-throughput hard disk drive (HDD). The
overall cost of a Combo Drive, similar to a Hybrid Drive, is
still dominated by the more capacious HDD. With Combo
Drive, the performance advantages of both the SSD and
the HDD are readily utilized by assigning the lower portion
of the address space, which is already considered by many
file systems as faster than the higher portion, to the SSD.
Performance can be optimized further on file system level
on the host side. In contrast, existing Hybrid Drives utilize
non-volatile memory hierarchically as a cache transparent
to the environment requiring complex cache coherence al-
gorithms. We built a Combo Drive prototype and propose
multiple heuristic optimization algorithms implemented in
file-system-level optimizers. Performance measurements on
the host side show that the prototype achieves system start
up time and application launch time similar to an SSD alone
while offering large capacity and low cost of an HDD.

Categories and Subject Descriptors D.4.2 [Operating
Systems]: Storage Management, Heterogeneous Storage Me-
dia; D.4.3 [Operating Systems]: File System Management

General Terms Storage

Keywords SDD, HDD, file system management, heteroge-
neous storage media

∗ Supported by the EU ArtistDesign Network of Excellence on Embedded
Systems Design and the Austrian Science Fund No. P18913-N15.

1. Introduction
In recent months we have witnessed a flurry of activities re-
lated to storage devices based on solid-state memory, in par-
ticular, solid-state drives (SSD) [5]. For over 50 years, hard
disk drives (HDD) have been the non-volatile memory of
choice for a range of applications from personal computer
(PC) clients to enterprise storage, due to their appealing ra-
tio of cost versus performance [10]. However, due to rapidly
falling prices of silicon Flash [7], SSDs are emerging as a
boot drive choice for high-end mobile computers as well
as non-volatile memory cache for enterprise storage subsys-
tems.

Storage devices are characterized primarily by their ca-
pacity (measured in GB or TB of storage space), sequen-
tial read/write (R/W) data rate or throughput (measured
in MB/s), and random access times or latency (typically
measured in ms or µs). The key components of HDDs are
magnetic media where information bits are stored and me-
chanically actuated R/W recording heads, as well as printed
circuit boards containing the hard disk controller. Unlike
HDDs, SSDs do not contain any movable parts, and typi-
cally have superior latency, potentially two or more orders
of magnitude lower. This dramatic improvement in latency
could lead to a revolutionary change, similar to replacement
of magnetic tapes with disk drives, especially in environ-
ments that are intensive in demanding a large number of
input/output operations of small blocks of data such as sys-
tem start up, application launching, databases, and caching
in enterprise storage applications.

The sustained read and write data rate performance of
SSDs vary greatly, depending on the type of underlying
Flash memory (single-level cell (SLC) or multiple-level cell
(MLC)) and the level of the parallelization in the controller.
The first generation of SATA-based SSDs in the market of-
fered excellent latency (smaller than 0.1 ms) as expected, but
suffered in throughput, especially write throughput (smaller

1



than 20 MB/s), as a consequence of the attempt to come up
with a low cost product. The second generation corrected
throughput-related issues improving it to a range between
40 MB/s up to 250 MB/s (depending on cost and target mar-
ket). We refer to the first generation as low-performance SSD
and to the second generation as high-performance SSD. In
general, a low-performance SSD is expected to have lower
cost compared to a high performance SSD, as many com-
promises may be made in the Flash controller and type of
Flash memory used. HDDs typically have throughput be-
tween 60 MB/s and 180 MB/s, but have relatively slower
latency in the range between 3 and 20 ms. However, HDDs
offer significantly better cost per capacity ratio ($/GB), and
are typically 3-5 times lower in cost. This cost ratio makes
an HDD a primary storage device in the majority of the PC
client space, likely to remain undisplaced in that position as
long as magnetic recording technology continues improving
storage areal density.

In this study, we aim to combine SSD and HDD into a sin-
gle heterogeneous storage device called Combo Drive. The
capacity of the Combo Drive is equal to the sum of the ca-
pacity of the smaller and more expensive SSD, and the larger
and cheaper HDD. This is in contrast to a Hybrid Drive,
which utilizes a caching architecture, i.e., uses non-volatile
memory to cache read and write requests to HDD, and where
the total capacity is equal to the capacity of the magnetic
media. On the Combo Drive, the sectors of the SSD are oc-
cupying the lower sector range, concatenated by the sectors
of the HDD. The overall device cost is still dominated by
the HDD cost. Data access on the Combo Drive can be op-
timized when file usage characteristics in combination with
properties of HDD and SSD are considered.

The overall optimization problem is distilled into two
distinct optimization problems depending on the type of
SSD used in the Combo Drive: low performance (low la-
tency, low throughput) or high performance (low latency,
high throughput). In the case of low-performance SSD, we
propose two different kinds of heuristic optimization algo-
rithms: one which moves executable files and program li-
braries to the SSD, and moves remaining files to the HDD;
and one which moves randomly accessed files to the SSD,
contiguously accessed files to HDD, and mixed accessed
files to the HDD (reflecting the fact that low-performance
SSD has lower throughput than HDD). In the case of high-
performance SSD, we move the most frequently used files to
the SSD and move all other files to the HDD, as there is no
concern about throughput differences.

We have benchmarked our heuristic algorithms with a
dedicated file system optimizer: we run HDTunePro, and
measured Windows XP start up time and Microsoft Word
2003 applications launch time. The outcome of the exper-
iments confirm that with both low-performance and high-
performance SSD the performance of the Combo Drive was
similar to the best of breed, i.e., boot time and application

launch time of the SSD, and capacity of the HDD. Since the
overall capacity is dominated by the capacity of the HDD,
the Combo Drive cost is substantially similar to the cost of
the HDD.

2. Combo Drive
A Combo Drive is a storage media device that combines
Flash memory as well as magnetic memory in a single stor-
age device and is addressable through the standard storage
interface protocols, e.g. ATA [20]. It concatenates both de-
vices and provides a single contiguous storage space where
the Flash memory is mapped to the beginning and the mag-
netic media is mapped to the end of that space.

More formally: A Combo Drive consists of Flash mem-
ory of size k clusters and magnetic media of size l clusters
and appears to its environment (the operating system) as a
single contiguous storage media with the following proper-
ties: (1) the total size of the Combo Drive is n = k+ l clusters
(size of Flash memory plus size of magnetic media), (2) the
Flash media is at the lower logical block addresses [0,k−1]
of the Combo Drive, and (3) the magnetic media is at the
higher logical block addresses [k,n−1] of the Combo Drive.

In contrast to Combo Drive, caching architectures like
Hybrid Drives [15, 17, 13] use a large buffer of non-volatile
Flash memory to cache data. A cache is transparent to the
environment. Therefore, the size of the Hybrid Drive is the
size of the magnetic media. A cache architecture has the
advantage that the host side does not need to know that the
Hybrid Drive is caching. Moreover, the HDD may be able
to spin down while still servicing read and write request.
A cache architecture is typically a complicated architecture,
and its performance is heavily dependent upon the cache
block replacement strategy. Moreover, since most of the
writes as well as the cached reads are going to hit the cache,
the write pressure on the Flash is accelerating wear-out.

A Combo Drive, on the other hand, is a simpler archi-
tecture that shifts the burden of finding the best allocation
strategy to the host file optimizer. Moreover, since many
standard file systems already work with the assumption that
lower LBAs are faster than higher LBAs (see Section 5.1 for
a description of HDD performance), having the SDD/Flash
storage statically allocated at the lower address space of the
Combo Drive already improves overall system performance,
making the file system optimizer a nice-to-have but still op-
tional feature. Since many file systems are already able to
cache large portions of data, it would be in principle possi-
ble to spin down the HDD of the Combo Drive while keep-
ing the SSD/Flash part of the Combo Drive running, making
it arguably possible to reduce power consumption as much
as in a Hybrid Drive (by caching in DRAM only the HDD
LBAs while servicing the SSD LBAs).

A Combo Drive has the following immediate advantages:
the total storage device cost per capacity ratio ($/GB) can
minimize the 3-5 times higher Flash cost ($/GB) by increas-

2



Figure 1. Typical disk usage

ing the magnetic memory capacity. In other words, a Flash-
only storage device (SSD) of the same size would cost much
more, whereas a Combo Drive can be made cost-competitive
to a magnetic-media-only storage device (HDD). Since the
cost of the Combo Drive depends indirectly on the ratio SSD
to HDD storage space, the smaller this ratio is the more cost-
competitive the Combo Drive will be. From an overall sys-
tem performance point of view, we will show that by adopt-
ing user-space file system optimizations (cf. Section 3), a
Combo Drive can utilize the advantages of both SSD and
HDD.

Since overall system performance heavily depends on
system workload, we focus on the phenomenon that, in a
typical PC, not all files and data are created and used equally
by the system. For some files we see an immediate perfor-
mance advantage of storing them in the most performant but
expensive media, whereas for the vast majority of files and
data storing them in a low-performance, low-cost memory
does not impact the overall system performance and is thus a
better storage choice. For example, all rarely used files shall
reside on a cheaper storage media. Figure 1 shows a typi-
cal corporate laptop hard disc drive access distribution. In
this particular example only 1.1GB of the total 120GB HDD
drive have been modified in the past week.

2.1 Implementations
A Combo Drive can in principle be implemented in three dif-
ferent ways. Concatenating two or more devices into a sin-
gle logical storage device may entirely be done in software.
A software-based approach, however, typically increases la-
tency and host CPU utilization, may not be portable, and
requires a separate SATA port for each device. A hardware-
based Combo Drive, on the other hand, may be implemented
by integrating raw Flash memory into a standard HDD. An
integrated Combo Drive is likely to provide low latency and
would only require a single SATA port on the host system
but is difficult to build and does not allow exchanging the
actual storage devices. Another hardware-based solution is a
bridged Combo Drive which concatenates an SSD and an
HDD via a SATA-to-2xSATA bridge chip. This approach
may provide performance comparable with the integrated
Combo Drive but is more flexible and also requires only a

Combo Drive

FATNTFSFAT32FAT Windows
Kernel

File Mover

Optimizer Windows
Applications

I/O Manager

Figure 2. Combo Drive system

single SATA port on the host system. For our experiments,
we built a prototype of a bridged Combo Drive.

2.2 Our Prototype
Our prototypical Combo Drive was build using the Silicon
Image Sil5744 [19] bridge chip. While the chip is able to
concatenate two SATA devices into a device that appears
to the host transparently as a single entity, it also has many
other operational modes such as RAID0, RAID1, etc. How-
ever, we only used its concatenation mode (BIG mode in
Sil5744 terminology). The overhead introduced by the chip
is negligible.

Figure 2 shows the components of the Combo Drive sys-
tem. An SSD and an HDD are concatenated by the Sil5744
bridge chip in BIG mode. After concatenation both disks ap-
pear to Windows as a single disk with a single contiguous
storage space. Windows can format the disk into NTFS, FAT,
and FAT32. The file system optimizer runs in user space and
executes its file and cluster moving operations depending
on the optimization strategy and the state of the files on the
Combo Drive. In the next section, we elaborate on how the
file and cluster moving is implemented in user space.

3. Optimization Strategies
We discuss the experimental Combo Drive optimization
strategies that have been implemented so far. We start by
introducing the Mover library, which provides the basic set
of routines required to implement the optimization strate-
gies.

We distinguish static and dynamic optimization strate-
gies. A static optimization strategy moves file sectors based
on a predefined classification and independently of their ac-

3



... ...LCs

File

VCs 0 1 2 3 4 5

0 k
+1

k
-2

k
-311 2 n

-2
k
+2

n
-3

n
-4

n
-5

n
-6

Combo
Drive

k
-1 k

n
-1

k
+3
k
+4
k
+5

Figure 3. Virtual to logical cluster mapping

cess statistics to a specified disk. A dynamic optimization
strategy obtains at runtime file usage statistics to move file
sectors. In [18] file access patterns of several operating sys-
tems (including Windows NT) are examined. The authors
showed that the vast majority of writes and 66% of reads are
executed contiguously in Windows NT. Moreover, most of
the traced random access reads refer to program executions.
Just 3% of the files are both read and written. Note that sim-
ilar results have also been obtained for BSD Unix [18].

3.1 Mover Library
The Mover library implements in user space the basic func-
tionality for moving virtual clusters (VC) of files in an
NTFS, FAT, and FAT32 file system to other free logical
clusters (LC) of the disk. The mapping from virtual to log-
ical clusters is shown in Figure 3. A virtual cluster number
(VCN) represents the cluster within a file at a given file-
cluster offset. A logical cluster number (LCN) designates
the logical cluster to where the data is stored on disk. The
cluster size is defined by the file system, e.g., the typical
cluster size in NTFS [14] for disks larger then 2GB is 4KB
which corresponds to eight 512-byte disk sectors.

The Mover library is implemented in C# and consists of
two layers: a low-level I/O wrapper, which handles low-level
Windows calls using the DeviceIoControl function of ker-
nel32.dll and a higher-level interface providing easy-to-use
functionality for implementing optimization strategies. The
functionality of the low-level I/O wrapper includes getting
the overall LC usage of the disk, getting the LCN to VCN
mapping of a given file, and moving VCNs of a given file to
other LCNs of the disk.

A file can be in one of six different states on the Combo
Drive. It is in undefined state if it cannot be moved on the
disk. Directories and files smaller then 1500 bytes are always

Disk File Type
SSD .exe, .dll, .sys, .msi, .cab, .drv, .jar, . . .
HDD .jpg, .pdf, .wmv, .wma, .mp3, .java, .doc, .xls . . .

Table 1. File type classification

stored in the master file table to reduce fragmentation and
are therefore in undefined state. Furthermore, a file can be
stored in four different ways either contiguously, or else non-
contiguously, on either SSD exclusively, or else on HDD ex-
clusively. It is in mixed state if some of its LCs are stored
on SSD and some on HDD. For example, the file in Figure 3
is in mixed state. Its first two virtual clusters are stored on
the SSD at [k−3,k−2], while its last four virtual clusters are
stored on the HDD at [n−6,n−3]. The optimization strategies
presented in the following section aim at placing files con-
tiguously on either the SSD exclusively, or else on the HDD
exclusively. Whenever a file cannot be moved contiguously
in one piece to a disk due to disk fragmentation it is split up
into smaller pieces that fit contiguously into free space of the
target disk.

A user-space file system optimizer has advantages and
disadvantages. Errors in a user-space program do not nec-
essarily lead to system crashes and data inconsistency prob-
lems, which simplifies the development process. A disadvan-
tage of the user-space design is that detecting potential for
on-the-fly optimization comes with more overhead. For our
prototype implementation we focused on Windows as target
operating system with no other choice than a user-space im-
plementation. A kernel-space implementation, for example,
in Linux is future work. So far, we run the optimizer man-
ually. A stand-alone optimization daemon, however, could
perform file system optimizations automatically.

3.1.1 File Type Optimizer
The aim of the File Type Optimizer is to move files entirely
to one of the two Combo Drive disks according to their ex-
pected rather than actual access characteristics distinguished
by file type. This is a static optimization strategy since it
does not consider the actual file usage at runtime.

Table 1 presents some examples of file types which under
typical usage on Windows XP show better performance on
SDD or HDD. Since executable files and libraries introduce
more random access at load time and are rarely written,
they perform better on SSD. Files that are contiguously
read and/or contiguously written show better performance
on HDD. We define the following optimization strategy for
the File Type Optimizer:

STRATEGY 1. Move executable files and program libraries
to the SSD and move the remaining files to the HDD.

Since the vast majority of disk capacity on PCs these days
is used by user data (music, photos, videos, . . . ) and a rela-
tively small part is used by programs (exe, dll, sys, . . . ), the
low capacity of the SSD and the much higher capacity of the

4



Figure 4. File type distribution

HDD of the Combo Drive fit the outcome of this optimiza-
tion strategy. Figure 4 shows the distribution of file types
on a typical business and multimedia home PC, respectively.
Note that the number of executables and libraries is on both
PCs almost the same and small in comparison to the user
data on the multimedia home PC.

We allow the File Type Optimizer to apply its optimiza-
tions on files of a given directory, recursively starting from a
given root directory or based on the entries of the Layout.ini
file, which is administrated by Windows and can be found in
the Windows/prefetch directory. In this file, Windows keeps
track of recently and often used programs and files [11].

3.1.2 File Access Optimizer
The File Access Optimizer is a dynamic optimization strat-
egy. File and sector access statistics are obtained using the
Process Monitor Tool of Technet Microsoft [16], which logs
the number of read and write calls on sector and file basis.
We run the Process Monitor Tool periodically to find out
whether a file is accessed contiguously, randomly, or both
contiguously and randomly. The optimizer is applied after
each period. We define the following optimization strategy
for the File Access Optimizer:

STRATEGY 2. Move files that are randomly accessed to the
SSD, move files that are contiguously accessed to the HDD,
and move files that are both randomly and contiguously
accessed to the HDD.

A refined File Access Optimizer which we left for fu-
ture work could determine at runtime if parts of a file are ei-
ther contiguously or else randomly accessed, and then move
these parts to the corresponding disks.

For high-performance SSDs, which have read and write
throughput comparable to HDDs, there is no need to move
files that are contiguously accessed to the HDD. For these
SSD types, we use the following optimization strategy in the
File Statistics Optimizer:

STRATEGY 3. Move the most frequently used files to the
SSD and move all other files to the HDD.

Again, we run the Process Monitor Tool periodically and,
after each period, apply the optimizer based on the obtained
access statistics.

3.2 Future Strategies
We are currently evaluating other possible optimization
strategies. For example, a model-based optimizer may be
able to search for files and sectors with a potential for im-
proving overall system performance when moved using a
detailed model of the Combo Drive. Besides performance,
such an optimizer could also improve power consumption
since SSD use in general less power than HDD for lack of
any mechanical parts involved in the read/write process.

4. Related Work
Microsoft has introduced two solutions for Windows Vista,
which are related to Combo Drive, called ReadyBoost and
ReadyDrive [15]. ReadyBoost supports the use of non-
volatile Flash storage devices to improve overall system per-
formance. ReadyDrive enables Vista to use Hybrid Drives.

Some HDD manufacturers already announced Hybrid
Drive Products [17]. Intel’s Turbo Memory presented by
Matthews et.al. [13] supports both ReadyBoost and Ready-
Drive. Cache policies for performance improvements and
power savings, and corresponding experimental results pre-
sented in this article show better performance and reduced
power consumption. The authors observed that cache hits
are counterproductive if data that is not critical to user expe-
rience is involved.

In [12, 2, 3, 4] different techniques are proposed to use
Flash memory as non-volatile cache. The aim is to maintain
blocks which are likely to be accessed in the near future in
Flash memory. This allows to spin the disk down for longer
periods and therefore reduces power consumption.

Kim et al. [8] showed that the combination of an HDD
and an SSD results in an energy-efficient secondary storage
solution for mobile platforms. The authors introduce a file
placement technique, which optimizes power consumption.
Experiments based on simulation show that significant re-
ductions in energy consumption can be achieved using the
file placement strategy. Benchmarks on real hardware are
missing.

Wang et al. [23, 24] presented the Conquest file sys-
tem, which supports HDDs extended with persistent RAM
in which small files, file metadata, executables, and libraries
are stored. Experiments showed that Conquest achieves bet-
ter performance than purely disk-based file systems and sim-
ilar performance as purely RAM-based file systems. Unlike
Combo Drive, Conquest requires special host hardware and
cannot be used with other file systems.

The difference between an architecture like the Hybrid
Drive, which uses the SSD as cache with a predefined low-

5



HDD SSD
Device HGST

5K500
SSD1 SSD2

Avg. Latency
(ms)

Read 18 0.1 0.1
Write 18 0.1 0.1

Avg. Through-
put (MB/s)

Read 53.0 64.2 109.5
Write 53.0 12.3 75.3

Table 2. Characteristics of the disks used in the experiments

level cache policy, and the Combo Drive, which performs
high-level file system optimizations, is somewhat symmet-
ric to the difference between hardware-managed CPU cache
management versus software-managed scratchpad mem-
ory [21, 1, 9, 22]. With scratchpad memory the problem
of implementing a cache policy is moved into the compiler
and/or runtime system, which may result in better perfor-
mance, lower power consumption, and allows to adjust the
caching scheme to the system requirements at runtime.

5. Experiments
The Combo Drive for our experiments consists of a 32GB
SSD and a Hitachi Global Storage Technology (HGST)
5400rpm 500GB HDD. Thus the SSD part of the drive is
about 6% of the total storage capacity. We used two differ-
ent SLC-based SSDs, a low-performance SSD (referred to as
SSD1) and a high-performance SSD (referred to as SSD2).
The SSD1 came at a significantly lower price than the SSD2.

An overview of the performance details of the disks as
measured by HDTunePro [6] is presented in Table 2. Both
the SSD1 and SSD2 offer lower latency and higher read
throughput in comparison to the HDD. The write through-
put of the SSD2 is higher then the write throughput of the
HDD, whereas the write throughput of the SSD1 is signifi-
cantly lower. For our optimization experiments presented in
Section 5.2 and Section 5.3, we only used the Combo Drive
with SSD1 and the File Type Optimizer.

We ran all our experiments on a Shuttle PC with an Intel
Pentium4 2.8GHz CPU and 512MB of RAM.

5.1 Combo Drive Performance
We used the HDTunePro [6] benchmark to measure the
performance of the Combo Drive. HDTunePro executes two
tests: (1) it reads/writes contiguously from/to the beginning
of the disk (ID) to its end (OD) and measures its throughput,
and (2) it reads/writes data of increasing seek distance to
measure its latency (random access time). Figure 5 and 6
show the performance of the Combo Drive with SSD1 and
SSD2, respectively. The SSD portion occupies the first 6%
of the Combo Drive’s total storage space. The left y-axes
correspond to throughput, which is stated in MB/s, while the
right y-axes correspond to latency stated in ms. The x-axes
represent, for the throughput benchmark, the position on the
disk (LBA) from ID to OD. For the latency benchmark, it

represents the seek distance of increasing length. Note that
throughput is shown by a line and latency by dots.

The throughput of the HDD decreases from ID to OD and
is, on average, 55 MB/s for reading and 50 MB/s for writing.
The maximum transfer rate is at the ID with about 69 MB/s
for reading and writing. The SSD1 has good read through-
put with 62 MB/s on average but its write throughput is low
with 14 MB/s on average. The average read throughput of
the Combo Drive with the SSD1 is 54 MB/s, cf. Figure 5(a).
The average write throughput is 48 MB/s, cf. Figure 5(b). In
comparison, the SSD2 provides an average read throughput
of 90 MB/s and an average write throughput of 70 MB/s.
Therefore, the average read throughput of the Combo Drive
with the SDD2 is 55 MB/s, cf. Figure 6(a). The average write
throughput is 50 MB/s, cf. Figure 6(b). Note that, for in-
creasing seek distances, the latency on the HDD is increas-
ing whereas the latency on the SDD is constant, independent
of the seek distance. The dots at the bottom of Figure 5 and
Figure 6 depict this constant fast latency for the SSDs.

5.2 Windows XP Startup
In this benchmark we measure the startup time of Windows
XP. Note that the startup time consists of the BIOS boot time
and the Windows boot time itself. The BIOS boot time was
constantly 22s for all experiments. We always emptied the
prefetch cache of Windows XP after booting the machine to
get comparable results and repeated each testrun 20 times.
The results of this experiment are shown in Figure 7 and
represent the average startup time. The y-axis has logarith-
mic scale. Unoptimized Combo Drive represents the startup
time after installing Windows on the Combo Drive without
any modifications to the file layout. It took Windows XP 20s
to boot. SSD means that all the data is on the SSD which re-
sults in a 17s Windows boot time. c-HDD and a-HDD repre-
sent the cases where all the data is either stored contiguously
on the HDD or is in an aged state on the HDD, respectively.
By aged state we mean that files are non-contiguously dis-
tributed over the HDD, which happens to files on a file sys-
tem when Windows is running for months under typical us-
age. It took Windows 19s to boot up in the contiguous case
and 224s in the aged case. Applying the File Type Optimizer
(File-Level Optimized Combo Drive) results in a 17s Win-
dows boot time. Both SSD and File-Level Optimized Combo
Drive show the same performance but applying the File Type
Optimizer results in a much smaller SSD utilization because
just 13% of the Windows directory are moved to the SDD,
whereas the other data is kept on the HDD. Moreover, the
File-Level Optimized Combo Drive reduces the Windows XP
startup time significantly by approximately 15% in compar-
ison to the Unoptimized Combo Drive.

5.3 Microsoft Word 2003
In this benchmark we measure the startup time of Microsoft
Word 2003. We ran this benchmark after a freshly booted
Windows with an empty prefetch cache to get comparable

6



SSD HDD

(a) eSATA Read

SSD HDD

(b) eSATA Write

Figure 5. HDTune eSATA benchmark for Combo Drive with SSD1

SSD HDD

(a) eSATA Read

SSD HDD

(b) eSATA Write

Figure 6. HDTune eSATA benchmark for Combo Drive with SSD2

Figure 7. Windows XP startup benchmark

measurement results. We repeated these testruns 20 times.
Note that we use the same abbreviations for the different

testruns as introduced in the previous section. For SSD it
took 2.82s to start Word. Having all data on HDD in c-HDD
or a-HDD state it took 4.15s and 29.03s, respectively. Apply-
ing the File Type Optimizer (File-Level Optimized Combo
Drive) results in 2.79s startup time. The File Type Opti-
mizer moved just 46MB of the installed Microsoft Office
2003 package to the SSD. The results are shown in Figure 8.
The y-axis has again logarithmic scale.

6. Conclusions
We built a research prototype of a novel heterogeneous
storage device called Combo Drive, which comprises of a
smaller-capacity low-latency solid-state disk drive (SSD)
concatenated with a larger-capacity high-throughput hard
disk drive (HDD). For different types of SSD (low per-
formance: low latency but low throughput; or high perfor-
mance: low latency as well as high throughput), we proposed

7



Figure 8. Microsoft Word 2003 benchmark

several heuristic algorithms implemented in a file-system-
level optimizer, which redistributes files between SSD and
HDD based on file type or file access patterns. We ran exper-
iments with the prototype using HDTunePro and measured
Windows XP startup time and Microsoft Word 2003 appli-
cation launch time. In these benchmarks, our optimization
strategies provide with our Combo Drive the low latency of
an SSD in combination with the high capacity, high through-
put, and low cost of an HDD.

References
[1] AVISSAR, O., BARUA, R., AND STEWART, D. An optimal

memory allocation scheme for scratch-pad-based embedded
systems. Transactions on Embedded Computing Systems 1, 1
(2002), 6–26.

[2] BISSON, T., AND BRANDT, S. A. Reducing energy con-
sumption with a non-volatile storage cache. In Proc. IWSSPS
(2005), IEEE.

[3] BISSON, T., BRANDT, S. A., AND LONG, D. D. A hybrid
disk-aware spin-down algorithm with I/O subsystem support.
In Proc. IPCCC (2007), IEEE, pp. 236–245.

[4] CHEN, F., JIANG, S., AND ZHANG, X. SmartSaver: turning
flash drive into a disk energy saver for mobile computers. In
Proc. ISLPED (2006), ACM, pp. 412–417.

[5] ENGADGET. Storage. http://www.engadget.com/category/
storage/.

[6] HDTUNE. HD Tune Pro Version 3.10 . http://www.
hdtune.com.

[7] INSPECTRUM. Nand flash prices. http://www.insye.com/.

[8] KIM, Y.-J., KWON, K.-T., AND KIM, J. Energy-efficient
file placement techniques for heterogeneous mobile storage
systems. In Proc. EMSOFT (2006), ACM Press, pp. 171–
177.

[9] MAI, K., PAASKE, T., JAYASENA, N., HO, R., DALLY,
W. J., AND HOROWITZ, M. Smart memories: a modular
reconfigurable architecture. In Proc. ISCA (2000), ACM,
pp. 161–171.

[10] MARCO A. A. SANVIDO, FRANK R. CHU, A. K. R. S.
Nand flash memory and its role in storage architectures. In

Proceedings of the IEEE (2008), vol. 96, IEEE, pp. 1864–
1874.

[11] MARK RUSSINOVICH, S. D. Microsoft Windows Internals,
4 ed. Microsoft Press, 2005, pp. 458–462.

[12] MARSH, B., DOUGLIS, F., AND KRISHNAN, P. Flash mem-
ory file caching for mobile computers. In Proc. HICSS
(1994), IEEE, pp. 451–460.

[13] MATTHEWS, J., TRIKA, S., HENSGEN, D., COULSON, R.,
AND GRIMSRUD, K. Intel R©turbo memory: Nonvolatile disk
caches in the storage hierarchy of mainstream computer sys-
tems. Trans. Storage 4, 2 (2008), 1–24.

[14] MICROSOFT. The default cluster size for the NTFS and FAT
file systems. http://support.microsoft.com/kb/314878.

[15] MICROSOFT. ReadyDrive and hybrid disk. http://www.
microsoft.com/whdc/system/sysperf/perfaccel.mspx.

[16] MICROSOFT. Technet microsoft process monitor.
http://technet.microsoft.com.

[17] PANABAKER, R. Hybrid Hard Disk & ReadyDriveTM
technology: Improving performance and power for Win-
dows Vista Mobile PCs. In Proc. WinHEC (2006). http:
//www.microsoft.com/whdc/winhec/pres06.mspx.

[18] ROSELLI, D., LORCH, J. R., AND ANDERSON, T. E. A
comparison of file system workloads. In Proc. ATC (2000),
USENIX, pp. 41–44.

[19] SILICON IMAGE. Sil5477 documentation. http://www.
siliconimage.com.

[20] T13/1699D. Information technology - AT Attachment 8 -
ATA/ATAPI Command Set (ATA8-ACS). ANSI INCITS, 2008.

[21] UDAYAKUMARAN, S., AND BARUA, R. Compiler-decided
dynamic memory allocation for scratch-pad based embedded
systems. In Proc. CASES (2003), ACM.

[22] UDAYAKUMARAN, S., DOMINGUEZ, A., AND BARUA, R.
Dynamic allocation for scratch-pad memory using compile-
time decisions. Transactions on Embedded Computing Sys-
tems 5, 2 (2006), 472–511.

[23] WANG, A.-I. A., KUENNING, G. H., REIHER, P. L., AND

POPEK, G. J. The conquest file system: Better performance
through a disk/persistent-RAM hybrid design. Trans. Storage
2, 3 (2006), 309–348.

[24] WANG, A.-I. A., REIHER, P. L., POPEK, G. J., AND KUEN-
NING, G. H. Conquest: Better performance through a disk/
persistent-RAM hybrid file system. In Proc. ATEC (2002),
USENIX, pp. 15–28.

8


