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Abstract. Temporal isolation in real-time systems al-
lows the execution of software processes isolated from
one another in the temporal domain. Intuitively, the ex-
ecution of a process is temporally isolated if the real-
time behavior of the process is independent of the exe-
cution of the other concurrently scheduled processes in
the system. The article provides a comprehensive discus-
sion of temporal isolation through variable-bandwidth
servers (VBSs). VBS consists of an EDF-based unipro-
cessor scheduling algorithm and a utilization-based sched-
ulability test. The scheduling algorithm runs in constant
time modulo the time complexity of queue management.
The schedulability test runs in time linear in the number
of processes and enables admission of an individual pro-
cess in constant time. The test is a sufficient condition for
VBS to provide temporal isolation through lower and up-
per response-time bounds on processes. We present the
VBS design, implementation, proofs, and experiments,
followed by condensed versions of results on scheduler
overhead accounting with VBS and on reducing power
consumption in VBS systems.

1 Introduction

Temporal isolation can be seen as a quantified version
of scheduler fairness that is particularly relevant to real-
time systems. Temporal isolation enables real-time pro-
gramming models that are compositional with respect
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to real-time behavior. It is thus an important prerequi-
site of robust and scalable engineering methodologies for
real-time systems.

In this article, we extend and complete the discus-
sion of temporal isolation through variable-bandwidth
servers (VBSs) from [1]. The process model of VBS is
based on the concept of actions as pieces of sequential
process code. A VBS process is modeled as a potentially
infinite sequence of actions, which allows us to define re-
sponse times, and thus temporal isolation of processes,
at the level of individual actions. The response time of
an action is defined as the duration from the time instant
when process execution reaches the beginning of the ac-
tion (arrival) until the time instant when process exe-
cution reaches the beginning of the next action (termi-
nation). The VBS scheduler is based on the well-known
EDF mechanism [2] and executes processes in temporal
isolation. More precisely, with VBS the response time
as well as the variance of the response time (jitter) of a
given action is bounded independently of any other ac-
tions that run concurrently and is thus solely determined
by the given action itself.

VBS can be seen as a more general form of constant-
bandwidth servers (CBSs) [3]. CBS maintains a fixed
rate of process execution, i.e., a CBS process is allowed
to execute a constant amount of time (limit) in a time
period of constant length (period) whereas a VBS pro-
cess can change both the limit and the period at runtime.
The only restriction on a VBS process is that its utiliza-
tion, i.e., the ratio of its limit over its period, has to be
less than or equal to a given utilization cap. This restric-
tion enables a fast, sufficient schedulability test for VBS,
which guarantees temporal isolation as long as the sum
of the utilization caps of all processes is less than or equal
to 100 %. Dynamically modifying the limit and period
(rate) at which VBS processes execute enables different
portions of process code to have different throughput
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(limit) and latency (period) requirements, which may
be helpful in applications such as control loops [4].

In this article, we provide a detailed theoretical and
practical view on VBS. After reiterating the basic con-
cepts of VBS presented in [1], we extend the discussion
twofold with material that has appeared in a technical
report version [5] of [1]. In particular, we give detailed
proofs of the schedulability test and include experiments
analyzing the actual quality of temporal isolation which
were not present in [1]. Next, we include implementation
details that enable an efficient implementation of VBS
in a real system. We present details of four alternative
queue management plugins based on lists, arrays, ma-
trices, and trees that trade off time and space complex-
ity of the VBS scheduler. Finally, we present condensed
versions of our previous results on scheduler overhead
accounting with VBS [6] and on reducing power con-
sumption while maintaining temporal isolation [7].

The structure of the rest of the article is as follows.
We start by describing VBS conceptually in Sect. 2 and
present the scheduling algorithm in Sect. 3, as intro-
duced in [1], extended by the proofs of the results. In
Sect. 4, we present implementation details of the schedul-
ing algorithm including time and space complexity when
using the four different queue management plugins. An
extended version of the experimental results presented
in [1] is discussed in Sect. 5. In Sects. 6 and 7 we round
up the description by including the results on scheduler
overhead accounting and power-aware scheduling with
VBS. We present a detailed account of related work in
Sect. 8. Secttion 9 gathers the conclusions and presents
future work.

2 Variable-Bandwidth Servers

The timeline is represented by the set of natural numbers
N, i.e., we consider a discrete timeline. The main ingre-
dients of the scheduling model are VBSs defined through
virtual periodic resources and VBS-processes composed
of sequential actions.

2.1 VBS and Processes

A virtual periodic resource [8,9] (capacity) is a pair R =
(λ, π) where λ ∈ N+ stands for limit and π ∈ N+ for
period. If no confusion arises, we will say resource for
virtual periodic resource. The limit λ specifies the max-
imum amount of time the resource R can be used (by a
server and thus process) within the period π. We assume
that in a resource R = (λ, π), λ ≤ π. The ratio

u =
λ

π

is the utilization of the resource R = (λ, π). We allow
for an arbitrary set of resources denoted by R.

A constant-bandwidth server (CBS) [3] is uniquely
determined by a virtual periodic resource R = (λ, π).
A CBS serves CBS-processes at the virtual periodic re-
source R, that is, it lets a process execute for λ amount
of time, within each period of length π. Hence, the pro-
cess as a whole receives the constant bandwidth of the
server, prescribed by the defining resource.

A variable-bandwidth server (VBS) is uniquely deter-
mined by the utilization ratio u of some virtual periodic
resource. The utilization ratio prescribes an upper bound
bandwidth cap. The server may execute processes that
change the resources in time, as long as the resources
have utilization less than or equal to the defining uti-
lization. The notion of a process that can be served by
a given VBS is, therefore, richer in structure. Note that
a VBS can serve processes with any kind of activation.
The server itself is periodic (with variable periodicity)
but the processes need not be.

A VBS-process P (u) served by a VBS with utiliza-
tion u, is a finite or infinite sequence of (process) actions,

P (u) = α0α1α2 . . .

for αi ∈ Act, where Act = N × R. An action α ∈ Act
is a pair α = (l, R) where l standing for load is a nat-
ural number, which denotes the exact amount of time
the process will perform the action on the resource R,
and R = (λ, π) has utilization less than or equal to the
utilization of the VBS, that is λ

π ≤ u. If no confusion
arises, we call VBS-processes simply processes, and we
may also just write P instead of P (u). By P we denote
a finite set of processes under consideration.

Note that any action of a VBS-process is itself a finite
CBS-process, hence a VBS-process can be seen as a se-
quential composition of CBS-processes. Moreover, note
that the notion of load simplifies the model definition, al-
though in the implementation it is in general not known
a-priori.

Conceptually, the idea of decomposing a process into
subtasks that run sequentially (the counterpart to ac-
tions in the VBS model) has appeared before, in the con-
text of fixed-priority scheduling [10], and was extended
in [4] for solving control-related issues.

As an illustration, let us now consider a simple theo-
retical example of processes and actions where the limit
and period are expressed in seconds (which is the gran-
ularity of the time line).

Given a set R = {(1, 2), (1, 4), (1, 3)} of resources, we
consider a finite process P (0.5) that first does some com-
putation for 3 seconds with a virtual periodic resource
(1, 2), then it works on allocating/deallocating memory
objects of size 200 KB, which takes 2 seconds with the
resource (1, 4), then it produces output of size 100 KB
on an I/O device in 1 second with (1, 3), then again it
computes, now for 2 seconds, with (1, 2) again. We can
represent P as a finite sequence

P (0.5) = α0α1α2α3

= (3, (1, 2))(2, (1, 4))(1, (1, 3))(2, (1, 2))
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on the 1s-timeline. This process corresponds to (can be
served by) a VBS with utilization u = 0.5 (or more).

2.2 Scheduling

A schedule for a finite set of processes P is a partial
function σ : N ↪→ P from the time domain to the set
of processes that assigns to each moment in time a pro-
cess that is running in the time interval [t, t + 1). Here,
σ(t) is undefined if no process runs in [t, t + 1). Due to
the sequential nature of the processes, any scheduler σ
uniquely determines a function σR : N ↪→ P ×R which
specifies the resource a process uses while being sched-
uled.

A schedule respects the resource capacity if for any
process P ∈ P and any resource R ∈ R, with R = (λ, π)
we have that for any natural number k ∈ N

|{t ∈ [kπ, (k + 1)π) | σR(t) = (P,R)}| ≤ λ.

Hence, if the schedule respects the resource capacity,
then the process P uses the resource R at most λ units
of time per period of time π, as specified by its capacity.

Given a schedule σ for a set of processes P, for each
process P ∈ P and each action αi = (li, Ri) that appears
in P we distinguish four absolute moments in time:

– Arrival time ai of the action αi is the time instant at
which the action arrives. We assume that ai equals
the time instant at which the previous action of the
same process has finished. The first action of a pro-
cess has arrival time zero.

– Completion time ci of the action αi is the time at
which the action completes its execution. It is calcu-
lated as

ci = min {c ∈ N | li = |{t ∈ [ai, c) | σ(t) = P}|} .

– Finishing or termination time fi of the action αi is
the time at which the action terminates or finishes its
execution. We always have fi ≥ ci. The difference be-
tween completion and termination is specified by the
termination strategy of the scheduler. The process
P can only invoke its next action if the previous one
has been terminated. In the scheduling algorithm, we
adopt the following termination strategy: an action
is terminated at the end of the period within which
it has completed. Adopting this termination strat-
egy is needed for the correctness of the scheduling
algorithm and the validity of the admission (schedu-
lability) test.

– Release time ri is the earliest time when the action
αi can be scheduled, ri ≥ ai. If not specified other-
wise, by the release strategy of the scheduler, we take
ri = ai. In the scheduling algorithm, we will consider
two release strategies, which we call early and late
strategy.
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Fig. 1. Scheduling an action α = (5, (2, 4)) [1]

We now present the two release strategies and elab-
orate the scheduling method via an example before con-
tinuing with the schedulability analysis.

In the late strategy, the release time of an action is
delayed until the next period instance (of its resource)
after the arrival time of the action. In the early strategy,
the release time is equal to the arrival time, however, the
limit of the action for the current period is adjusted so
that it does not exceed its utilization in the remaining
part of the current period. Our late strategy corresponds
to the polling server [11] from classical scheduling theory,
and the early strategy is similar in goal to the deferrable
server [12]: it improves the average response times by
servicing actions that arrive between period instances.

Figure 1 presents the scheduling of an action α =
(5, (2, 4)) with load of 5 miliseconds, arriving at time 10,
in both strategies. The resource used by the action has a
period of 4 and a limit of 2 miliseconds. In the late strat-
egy, the action is only released at time 12, which is the
next period instance after the actual arrival time. Then
it takes three more periods for the action to finish. In
the early strategy, the action is released at once, but in
the remaining time of the current period (2 miliseconds)
the limit is adjusted to 1, so that the utilization remains
0.5. In this situation the scheduled response time in the
early release strategy is one period shorter than in the
late release strategy. In both cases the action splits into
a sequence of three tasks that are released in the con-
secutive periods. In the early strategy these tasks are
released at time 10, 12, and 16; have deadlines 12, 16,
and 20; and durations 1, 2, and 2, respectively. In the
late strategy the tasks are released at times 12, 16, and
20; have deadlines 16, 20, and 24; and durations of 2, 2,
and 1, respectively.

Using these notions, we define response time under
the scheduler σ of the action α denoted by si, as the dif-
ference between the finishing time and the arrival time,
i.e., si = fi − ai. Note that this definition of response
time is logical in the sense that all possible side effects of
the action should take effect at termination but not be-
fore. In the traditional (non-logical) definition, response
time is the time from arrival to completion, decreasing
response time (increasing performance) at the expense
of increased jitter (decreased predictability).

Assume that the upper and lower response bounds
bu
i and bl

i are given for each action αi of each process P
in a set of processes P. The set P is schedulable with
respect to the given bounds if and only if there exists a
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part of the current period. Our late strategy corresponds
to the polling server [11] from classical scheduling the-
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20; have deadlines 16, 20, and 24; and durations of 2, 2,
and 1, respectively.

Using these notions, we define response time under
the scheduler σ of the action α denoted by si, as the dif-
ference between the finishing time and the arrival time,
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respect to the given bounds if and only if there exists a
schedule σ : N ↪→ P that respects the resource capacity
and for which the actual response times do not exceed
the upper response bounds, i.e., si ≤ bui , and are greater
than the lower response bounds, i.e., si ≥ bli, for all
involved actions αi.

2.3 Schedulability Result

Given a finite set P = {Pi(ui) | 1 ≤ i ≤ n} of processes
with corresponding actions αi,j = (li,j , Ri,j) for j ≥ 0,
such that Pi(ui) = αi,0αi,1 . . . corresponds to a VBS
with utilization ui, we define the upper response time
bound as

bui,j = πi,j − 1 +

⌈
li,j
λi,j

⌉
πi,j . (1)

where Ri,j = (λi,j , πi,j) with li,j , Ri,j , λi,j , and πi,j being
as before the load, the resource, the limit, and the pe-
riod for the action αi,j , respectively. Since an action αi,j
executes at most λi,j of its load li,j per period of time

πi,j ,
⌈
li,j
λi,j

⌉
is the number of periods the action needs in

order to complete its load. In addition, in the response
bound, we account for the time in the period in which
the action arrives, which in the worst case is πi,j − 1 if
it arrives right after a period instance.

The lower response-time bound varies depending on
the strategy used, namely

bli,j =





⌈
li,j
λi,j

⌉
πi,j , for late release

⌊
li,j
λi,j

⌋
πi,j , for early release.

(2)

Note that the lower bound in the early release strat-
egy is achieved only if λi,j divides li,j , in which case⌊
li,j
λi,j

⌋
=
⌈
li,j
λi,j

⌉
. From these bounds, we can derive that

the response-time jitter, i.e., the difference between the
upper and lower bound on the response time, is at most
πi,j−1 for the late release strategy and at most 2πi,j−1
for the early release strategy.

The next schedulability/admission result justifies the
definition of the response bounds and shows the correct-
ness of our scheduling algorithm.

Proposition 1. Given a set of processes P = {Pi(ui) |
1 ≤ i ≤ n}, as above, if

n∑

i=1

ui ≤ 1, (3)

then the set of processes P is schedulable with respect
to the resource capacity and the response bounds (1)
and (2).

The proposition shows that it is enough to test
whether the sum of the utilization (bandwidth) caps
of all processes is less than one. The test is finite even

though the processes may be infinite. In addition, the
test is computable even if the actual loads of the actions
are unknown, as it is often the case in practice. Hence,
the standard utilization-based test for CBS-processes,
holds also for VBS-processes. The test runs in constant
time, meaning that whenever a new VBS-process enters
the system, it is decidable in constant time whether it
can be admitted and scheduled.

In order to prove Proposition 1, we first isolate a
more essential schedulability property in the following
section. The proof of Proposition 1 follows in Sects. 2.5
and 2.6.

2.4 Typed EDF

We describe a schedulability test for a particular dy-
namic EDF [2] scheduling algorithm, and prove its suf-
ficiency.

Let τ = (r, e, d) be an aperiodic task with release
time r, execution duration e, and deadline d, all natu-
ral numbers. We say that τ has type, or specification,
(λ, π) where λ and π are natural numbers, λ ≤ π, if the
following conditions hold:

– d = (n + 1)π for the (uniquely determined) natural
number n such that r ∈ [nπ, (n+ 1)π), and

– e ≤ (d− r)λπ .

Hence, a task specification is basically a periodic task
which we use to impose a bound on aperiodic tasks. Note
that if r = nπ, then the duration e is limited to λ. A task
of type (λ, π) need not be released at an instance of the
period π, but its utilization factor in the interval of time
[r, d] remains at most λ

π .

Let S be a finite set of task types. Let I be a finite
index set, and consider a set of tasks

{τi,j = (ri,j , ei,j , di,j) | i ∈ I, j ≥ 0}

with the properties:

– Each τi,j has a type in S. We will write (λi,j , πi,j) for
the type of τi,j .

– The tasks with the same first index are released in a
sequence, i.e., ri,j+1 ≥ di,j and ri,0 = 0.

The following result provides us with a sufficient
schedulability test for such specific set of tasks.

Lemma 1. Let {τi,j | i ∈ I, j ≥ 0} be a set of tasks as
defined above. If

U =
∑

i∈I
max
j≥0

λi,j
πi,j
≤ 1, (4)

then this set of tasks is schedulable using the EDF strat-
egy at any point of time, so that each task meets its dead-
line.
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Proof. The proof builds upon the standard proof of suf-
ficiency of the utilization test for periodic EDF, see,
e.g., [13]. Assume the opposite, i.e., a deadline gets
missed at time d by a task τ = (r, e, d) ∈ {τi,j | i ∈
I, j ≥ 0}. Let t be the earliest moment in time such that
in the interval [t, d] there is full utilization and all ex-
ecuted tasks have deadlines that are not larger than d.
Note that t < d and t is a release time of some task.

Let C(x, y) denote the computation demand of our
set of tasks in an interval of time [x, y]. We have that
C(x, y) is the sum of the durations of all tasks with re-
lease time greater than or equal to x and deadline less
than or equal to y.

Since a deadline is missed at d, we have

C(t, d) > d− t

i.e., the demand is larger than the available time in the
interval [t, d]. We are going to show that C(t, d) ≤ (d−
t)U , which shows that U > 1 and completes the proof.

First we note that

C(t, d) =
∑

i∈I
Ci(t, d)

where Ci(t, d) is the computational demand imposed by
tasks in {τi,j | j ≥ 0} for a fixed i ∈ I.

In the finite interval [t, d] only finitely many tasks in
{τi,j | j ≥ 0} are executed, say n tasks. Moreover, by the
choice of t, none of these tasks is released at time earlier
than t. Therefore, we can divide [t, d] to subintervals

[t, d] =

n⋃

k=0

[tk, tk+1]

where t = t0 and d = tn+1, and for all k ∈ {1, . . . , n},
tk is a release time of a task τk = (rk, ek, dk) in {τi,j |
j ≥ 0}. Since the tasks in {τi,j | j ≥ 0} are released
and executed in a sequence, we have that dk ≤ tk+1. Let
(λk, πk) denote the type of τk. Moreover, we either have
t1 = t0, or no task at all in [t0, t1].

Denote by (λ∗i , π
∗
i ) the “most expensive” task type

in terms of utilization for {τi,j | j ≥ 0}, i.e.

λ∗i
π∗i

= max
j≥0

λi,j
πi,j

.

We have Ci(t0, t1) = 0 and for k > 0,

Ci(tk, tk+1) ≤ (dk − rk)λkπk
≤ (tk+1 − tk)λkπk
≤ (tk+1 − tk) · λ

∗
i

π∗i
.

Hence for all k ∈ {0, . . . , n}, it holds that

Ci(tk, tk+1) ≤ (tk+1 − tk) · λ
∗
i

π∗i
.

Therefore,

C(t, d) =
∑
i∈I Ci(t0, tn)

=
∑
i∈I
∑n
k=0 Ci(tk, tk+1)

≤∑i∈I
∑n
k=0(tk+1 − tk)

λ∗i
π∗i

=
∑
i∈I(tn+1 − t0)

λ∗i
π∗i

= (d− t)U.

which completes the proof.

The schedulability test (4) computes the maximal
utilization from the tasks in {τi,j | j ≥ 0}, given by
the “most expensive” type. Since there are finitely many
types, even though the set {τi,j | j ≥ 0} may be infinite,
the test is computable. Clearly, the test is conservative.
For finite or “periodic” sets {τi,j | j ≥ 0} one could
come up with a more complex sufficient and necessary
utilization test based on the overlap of the tasks. We
leave such an investigation for future work.

We now present the proof of Proposition 1 first for
the upper and then for the lower response-time bounds. 1

2.5 Upper response-time bound

Each process Pi for i ∈ I provides a sequence of tasks
τi,k by refining each action to a corresponding sequence
of tasks. Consider the action αi,j = (li,j , Ri,j) with ca-
pacity of Ri,j given by (λi,j , πi,j). Let nj be a natural
number such that

ai,j ∈ ((nj − 1)πi,j , njπi,j ]

if j > 0, and let n0 = 0. We distinguish two cases, one
for each release strategy.

Case 1: Late release strategy Let

kj =

⌈
li,j
λi,j

⌉
.

The action αi,j produces tasks τi,k for k0 + · · ·+ kj−1 ≤
k ≤ k0 + · · ·+ kj−1 + kj − 1 given by:

τi,k = ((nj +m)πi,j , ei,k, (nj +m+ 1)πi,j)

where m = k − (k0 + · · · + kj−1) and ei,k = λi,j if k <
k0 + · · ·+kj−1 or if k = k0 + · · ·+kj−1 and λi,j divides

li,j , otherwise ei,k = li,j −
⌊
li,j
λi,j

⌋
· λi,j .

Hence, the workload of the action αi,j is split into
several tasks that all have type (λi,j , πi,j). Moreover,
the tasks in {τi,k | k ≥ 0} are released in a sequence,
such that (because of the termination strategy and the
resource capacity) the release time of the next task is
always equal or grater than the deadline of a given task.
Therefore, Lemma 1 is applicable, and from the utiliza-
tion test we get that the set of tasks {τi,k | i ∈ I, k ≥ 0}

1 The proof for the lower response-time bound has also appeared
in [6].
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is schedulable so that all tasks meet their deadlines. Let
σ be a schedule for this set of tasks. It corresponds to
a schedule σ̂ for the set of processes P by: σ̂(t) = Pi if
and only if σ(t) = τi,k for some k ≥ 0.

By construction, σ̂ respects the resource capacity:
Consider Pi ∈ P and R ∈ R with capacity (λ, π). In any
interval of time [nπ, (n+ 1)π) there is at most one task
τi,k of type (λ, π) produced by an action with resource
R which is available and running, and its duration is
limited by λ.

For the bounds, for each action αi,j , according to the
termination strategy and the late release, we have

fi,j = ri,j +

⌈
li,j
λi,j

⌉
πi,j

where the release times are given by ri,j = njπi,j . The
arrival times are ai,j = fi,j−1 ∈ ((nj − 1)πi,j , njπi,j ].
Therefore

si,j = fi,j − ai,j

=

⌈
li,j
λi,j

⌉
πi,j + ri,j − ai,j

≤
⌈
li,j
λi,j

⌉
πi,j + πi,j − 1

= bui,j

which completes the proof in the case of the late strategy.
Hence, if the release time of each action is delayed to the
next period instance, then we safely meet the response
bounds. However, such a delay is not necessary. We may
keep the release time equal to the arrival time and still
meet the bounds. On average, we may achieve better
response times than indicated by the bounds and also
higher utilization.

Case 2: Early release strategy If the action αi,j arrives
on a period instance αi,j = njπi,j then there is nothing
we can do better than in the late strategy. If not, then
let

ei,j = min

{
li,j ,

⌊
(njπi,j − ai,j)

λi,j
πi,j

⌋}

and

kj =

⌈
li,j − ei,j
λi,j

⌉
+ 1.

Then αi,j produces kj tasks τi,k for k0+ · · ·+kj−1 ≤ k ≤
k0 + · · ·+ kj−1 + kj − 1 given by: for k = k0 + · · ·+ kj−1

τi,k = (ai,j , ei,j , njπi,j) ,

and if kj > 1, then for k0 + · · ·+ kj−1 < k < k0 + · · ·+
kj−1 + kj − 1

τi,k = ((nj +m)πi,j , λi,j , (nj +m+ 1)πi,j) ,

where m = k− (k0 + · · ·+ kj−1 + 1). Now if λi,j divides
li,j − ei,j , then also for k = k0 + · · · + kj−1 + kj − 1 we
have

τi,k = ((nj +m)πi,j , λi,j , (nj +m+ 1)πi,j) ,

with m = k− (k0 + · · ·+kj−1 +1). If, on the other hand,
λi,j does not divide li,j − ei,j , then for k = k0 + · · · +
kj−1 + kj − 1 we have

τi,k = ((nj +m)πi,j , li,j − ei,j

−
⌊
li,j − ei,j
λi,j

⌋
· λi,j , (nj +m+ 1)πi,j),

where again m = k − (k0 + · · ·+ kj−1 + 1).

Hence, we let a task of αi,j start as soon as αi,j has
arrived, taking care not to exceed the limit in the current
period as well as to keep the utilization below the spec-
ified bound (via the duration of the task ei,j). The rest
of the action is divided in tasks as before. Note that all
tasks produced by αi,j are still of type (λi,j , πi,j). Also in
this case the termination strategy makes sure that each
release time is larger than or equal to the deadline of the
previous task. Hence, the set of tasks is schedulable via
Lemma 1, and the induced process schedule respects the
resource capacity. For the bounds, we now have

fi,j ≤ ri,j +

⌈
li,j
λi,j

⌉
πi,j + πi,j − 1

and ai,j = ri,j . Hence,

si,j = fi,j − ai,j

≤
⌈
li,j
λi,j

⌉
πi,j + πi,j − 1

= bui,j

which completes the proof.

2.6 Lower response-time bound

For each action αi,j , according to the termination strat-
egy and the late release strategy, we have

fi,j = ri,j +

⌈
li,j
λi,j

⌉
πi,j (5)

where the release times are given by ri,j = njπi,j for
some natural number nj such that the arrival times are
ai,j = fi,j−1 ∈ ((nj − 1)πi,j , njπi,j ]. Therefore, for the
late strategy we have

si,j = fi,j − ai,j
(5)
=

⌈
li,j
λi,j

⌉
πi,j + ri,j − ai,j

≥
⌈
li,j
λi,j

⌉
πi,j = bli,j , for late release.

For the early release strategy, we distinguish two
cases depending on whether the following inequality
holds ⌊

m
λi,j
πi,j

⌋
≥ li,j −

⌊
li,j
λi,j

⌋
λi,j (6)
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Fig. 2. Process states [1]

3 Scheduling Algorithm

In this section we describe the scheduling algorithm
which follows the proof of Proposition 1. At any rele-
vant time t, our system state is determined by the state
of each process. A process may be blocked, ready, or run-
ning as depicted in Figure 2. By Blocked, Ready, and
Running we denote the current sets of blocked, ready,
and running processes, respectively. These sets are or-
dered: Blocked is ordered by the release times, Ready is
ordered by deadlines, and Running is either empty (for
an idle system) or contains the currently running process
of the system. Thus,

P = Blocked ∪ Ready ∪ Running

and the sets are pairwise disjoint. Additionally each pro-
cess is represented by a tuple in which we keep track of
the process evolution. For the process Pi we have a tuple

(i, j, di, ri, l
c
i , λ

c
i )

where i is the process identifier, j stores the identifier of
its current action αi,j , di is the current deadline (which
is not the deadline for the entire action, but rather an
instance of the action period πi,j), ri is the next release
time, lci is the current load, and λc

i is the current limit.
The scheduler also uses a global time value ts which
stores the previous time instant at which the scheduler
was invoked.

Given n processes P1, . . . , Pn, as defined in the pre-
vious section, initially we have

Blocked = {P1, . . . , Pn}, Ready = Running = ∅.

At specific moments in time, including the initial time
instant, we perform the following steps:

1. Update process state for the process in Running.
2. Move processes from Blocked to Ready.
3. Update the set Running.

We discuss each step in more detail below.

1. If Running = ∅, i.e., the system was idle, we skip
this step. Otherwise, let Pi be the process in Running
at time t. We differentiate three reasons for which Pi is
preempted at time t: completion, limit, and release.

Completion. Pi completes the entire work related to
its current action αi,j = (li,j , Ri,j). If we have reached
process termination, i.e., there is no next action, we
have a zombie process and remove it from the sys-
tem. Otherwise, j ← j + 1 and the current action be-
comes αi,j+1 = (li,j+1, Ri,j+1) with the resource capac-
ity (λi,j+1, πi,j+1). The current load lci becomes li,j+1.

If Ri,j+1 = Ri,j , Pi is moved to Ready, its deadline
di, and release time ri remain unchanged, and we sub-
tract the work done from λc

i , λ
c
i ← λc

i − (t− ts).
If Ri,j+1 �= Ri,j , we have currently implemented two

release strategies as described above. First we take care
of the termination strategy. Let m ∈ N be a natural
number such that

t ∈ ((m− 1)πi,j , mπi,j ].

According to our termination strategy, the action αi,j is
terminated at time mπi,j which is the end of the period
in which the action has completed. Now let k ∈ N be a
natural number such that

mπi,j ∈ ((k − 1)πi,j+1, kπi,j+1].

The first strategy, the late release strategy, calculates ri,
the next release time of Pi, as the start of the next period
of Ri,j+1 and its deadline as the start of the second next
period,

ri ← kπi,j+1, di ← (k + 1)πi,j+1.

The new current limit becomes λi,j+1 and Pi is moved
to Blocked.

The second strategy, the early release strategy, sets
the release time to the termination time and the deadline
to the end of the release-time period

ri ← mπi,j , di ← kπi,j+1

and calculates the new current limit for Pi, as

λc
i ←

�
(di − ri)

λi,j+1

πi,j+1

�
.

The process Pi is moved to Blocked.

Limit. Pi uses all of the current limit λc
i for the resource

Ri,j . In this case we update the current load, lci ← lci −
(t− ts), and

λc
i ← λi,j , ri ← kπi,j , di ← (k + 1)πi,j ,

with k ∈ N such that t ∈ ((k − 1)πi,j , kπi,j ]. With these
new values Pi is moved to Blocked.

Release. If a process is released at time t, i.e., Pm is a
process, Pm �= Pi, with the release time rm = t, then the
priorities have to be established anew. We update the
current load and limit,

lci ← lci − (t− ts), λ
c
i ← λc

i − (t− ts).

Fig. 2. Process states [1]

where m = njπi,j − ri,j and ri,j = ai,j = fi,j−1 ∈
((nj − 1)πi,j , njπi,j ]. The finishing time for the action
αi,j is

fi,j =





ai,j +
⌊
li,j
λi,j

⌋
πi,j +m , if (6) holds

ai,j +
⌈
li,j
λi,j

⌉
πi,j +m , otherwise

(7)

In both cases fi,j ≥
⌊
li,j
λi,j

⌋
πi,j + ai,j , so

si,j = fi,j − ai,j

≥
⌊
li,j
λi,j

⌋
πi,j = bli,j , for early release.

3 Scheduling Algorithm

In this section, we describe the scheduling algorithm
which follows the proof of Proposition 1. At any rele-
vant time t, our system state is determined by the state
of each process. A process may be blocked, ready, or
running as depicted in Fig. 2. By Blocked, Ready, and
Running we denote the current sets of blocked, ready,
and running processes, respectively. These sets are or-
dered: Blocked is ordered by the release times, Ready is
ordered by deadlines, and Running is either empty (for
an idle system) or contains the currently running process
of the system. Thus,

P = Blocked ∪ Ready ∪ Running

and the sets are pairwise disjoint. Additionally, each pro-
cess is represented by a tuple in which we keep track of
the process evolution. For the process Pi we have a tuple

(i, j, di, ri, l
c
i , λ

c
i )

where i is the process identifier, j stores the identifier of
its current action αi,j , di is the current deadline (which
is not the deadline for the entire action, but rather an
instance of the action period πi,j), ri is the next release
time, lci is the current load, and λci is the current limit.
The scheduler also uses a global time value ts which
stores the previous time instant at which the scheduler
was invoked.

Given n processes P1, . . . , Pn, as defined in the pre-
vious section, initially we have

Blocked = {P1, . . . , Pn}, Ready = Running = ∅.
At specific moments in time, including the initial time
instant, we perform the following steps:

1. Update process state for the process in Running.
2. Move processes from Blocked to Ready.
3. Update the set Running.

We discuss each step in more detail below.

1. If Running = ∅, i.e., the system was idle, we skip
this step. Otherwise, let Pi be the process in Running
at time t. We differentiate three reasons for which Pi is
preempted at time t: completion, limit, and release.

Completion. Pi completes the entire work related to
its current action αi,j = (li,j , Ri,j). If we have reached
process termination, i.e., there is no next action, we
have a zombie process and remove it from the sys-
tem. Otherwise, j ← j + 1 and the current action be-
comes αi,j+1 = (li,j+1, Ri,j+1) with the resource capac-
ity (λi,j+1, πi,j+1). The current load lci becomes li,j+1.

If Ri,j+1 = Ri,j , i.e., the resource of the next action
remains the same, then there is no need to reschedule:
Pi is moved to Ready, its deadline di, and release time ri
remain unchanged, and we subtract the work done from
λci , λ

c
i ← λci − (t− ts).

If Ri,j+1 6= Ri,j , we have currently implemented two
release strategies as described above. First we take care
of the termination strategy. Let m ∈ N be a natural
number such that t ∈ ((m− 1)πi,j ,mπi,j ]. According to
our termination strategy, the action αi,j is terminated
at time mπi,j which is the end of the period in which
the action has completed. Now let k ∈ N be a natural
number such that

mπi,j ∈ ((k − 1)πi,j+1, kπi,j+1].

The first strategy, the late release strategy, calculates ri,
the next release time of Pi, as the start of the next period
of Ri,j+1 and its deadline as the start of the second next
period,

ri ← kπi,j+1, di ← (k + 1)πi,j+1.

The new current limit becomes λi,j+1 and Pi is moved
to Blocked.

The second strategy, the early release strategy, sets
the release time to the termination time and the deadline
to the end of the release-time period

ri ← mπi,j , di ← kπi,j+1

and calculates the new current limit for Pi, as

λci ←
⌊

(di − ri)
λi,j+1

πi,j+1

⌋
.

The process Pi is moved to Blocked.
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Limit. Pi uses all of the current limit λci for the resource
Ri,j . In this case, we update the current load, lci ← lci −
(t− ts), and

λci ← λi,j , ri ← kπi,j , di ← (k + 1)πi,j ,

with k ∈ N such that t ∈ ((k − 1)πi,j , kπi,j ]. With these
new values Pi is moved to Blocked.

Release. If a process is released at time t, i.e., Pm is a
process, Pm 6= Pi, with the release time rm = t, then the
priorities have to be established anew. We update the
current load and limit,

lci ← lci − (t− ts), λci ← λci − (t− ts).
The deadline for Pi is set to the end of the current period,
di ← kπi,j , with k ∈ N such that t ∈ ((k − 1)πi,j , kπi,j ].
Pi is then moved to Ready.

2. In the second step, the scheduler chooses the processes
from Blocked which are to be released at the current
time t, i.e., {Pi | ri = t}, and moves them to the set
Ready.

3. In the third step if the Ready set is empty, the
scheduler leaves the Running set empty, thus the system
becomes idle. Otherwise, the scheduler chooses a process
Pi with the earliest deadline from Ready and moves it
to Running.

We calculate:

– tc : the time at which the new running process Pi
would complete its entire work needed for its current
action without preemption, i.e., tc = t+ lci .

– tl : the time at which Pi consumes its current limit for
the current period of the resource Ri, i.e., tl = t+λci .

– tr : the next release time of any process in Blocked.
If Blocked is empty, tr =∞.

The scheduler stores the value of the current time
in ts, ts ← t, and the system lets Pi run until the time
t = min(tc, tl, tr) at which point control is given back to
the scheduling algorithm.

As stated, the algorithm uses knowledge of the load
of an action. However, in the implementation there is a
way around it (by marking a change of action that forces
a scheduler invocation) which makes the algorithm appli-
cable to actions with unknown load as well, in which case
no explicit response-time guarantees are given. The com-
plexity of the scheduling algorithm amounts to the com-
plexity of the plugins that manage the ordered Blocked
and Ready sets, the rest of the algorithm has constant-
time complexity.

4 Implementation

The scheduler uses a well-defined interface to manage the
processes in the system. This interface is implemented

list array matrix/tree

time O(n) O(log(t) + n log(t)) Θ(t)

space Θ(n) Θ(t+ n) O(t2 + n)

Table 1. Time and space complexity per plugin

by three alternative plugins, each with different at-
tributes regarding time complexity and space overhead.
Currently, our implementation, available via the Tiptoe
homepage [14], supports doubly-linked lists (Sect. 4.1),
time-slot arrays of FIFO queues (Sect. 4.2), a time-slot
matrix of FIFO queues (Sect. 4.3), and a tree-based opti-
mization of the matrix. The implementation details can
also be found in a technical report version [5] of [1].

The array and matrix implementation impose a
bound on the number of time instants. For this reason,
we introduce a finite coarse-grained timeline with t time
instants and a distance between any two instants equal
to a fixed natural number d. Deadlines and release times
are then always in the coarse-grained timeline, which
restricts the number of different periods in the system.
The scheduler may be invoked at any time instant of
the original (fine-grained) timeline. However, the second
step of the algorithm (releasing processes) is only exe-
cuted during scheduler invocations at time instants of
the coarse-grained timeline.

The matrix- and tree-based implementations are
O(1)-schedulers since the period resolution is fixed. How-
ever, not surprisingly, temporal performance comes at
the expense of space complexity, which grows quadrat-
ically in period resolution for both plugins. Space con-
sumption by the tree plugin is significantly smaller than
with the matrix plugin, if the period resolution is higher
than the number of servers. The array-based implemen-
tation runs in linear time in the number of servers and
requires linear space in period resolution. The list-based
implementation also runs in linear time in the number
of servers, but only requires space independent of period
resolution (although insertion is more expensive than for
the array plugin).

Table 1 shows the system’s time and space complex-
ities distinguished by plugin in terms of the number of
processes in the system (n), and in the period resolution,
that is, the number of time instants the system can dis-
tinguish (t). For efficiency, we use a time representation
similar to the circular time representation of [15].

Table 2 summarizes the queue operations’ time com-
plexity in terms of the number of processes (n) and the
number of time instants (t). The first operation is called
ordered-insert by which processes are inserted according
to a key, and processes with the same key are kept in
FIFO order to maintain fairness. The select-first oper-
ation selects the first element in the respective queue.
The release operation finds all processes with a certain
key, reorders them according to a new key, and merges
the result into another given queue. Note that t is actu-
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list array matrix

ordered-insert O(n) Θ(log(t)) Θ(log(t))
select-first Θ(1) O(log(t)) O(log(t))

release O(n) O(log(t) + n · log(t)) Θ(t)

Table 2. Time complexity of the queue operations.

ally a constant, so the matrix implementation achieves
constant time for all three operations.

We now describe each plugin in more detail.

4.1 Process List

The list plugin uses ordered doubly-linked lists for
Ready, which is sorted by deadline, and Blocked, which is
sorted first by release time and then by deadline. There-
fore, inserting a single element has linear complexity
with respect to the number of processes in the queue,
while selecting the first element in the queue is done in
constant time. Releasing processes in Blocked which con-
tains k processes by moving them to Ready, which con-
tains m processes, takes k +m steps. The upper bound
of k and m is n, and therefore the complexity is O(n).
Advantages of this data structure are low memory usage
(only two pointers per process) and no limitation on the
resolution of the timeline.

4.2 Time-Slot Array

The array plugin uses an array of pointers to represent
the timeline. Each element in the array points to a FIFO
queue of processes. A pointer at position ti in Blocked,
for instance, points to a FIFO queue of processes that are
to be released at time ti. In Ready, a pointer at position
ti is a reference to a FIFO queue of processes with a
deadline ti. Note that whenever we speak of time instants
in the array or matrix plugins, we mean time instants
modulo the size of the array or matrix, respectively.

In a naive implementation, inserting a process would
be achieved in constant time using the key (release time
or deadline) as index into the array. Finding the first
process of this array would then be linear in the num-
ber of time instants (t). A more balanced version uses
an additional bitmap to represent whether there are any
processes at a certain time instant or not. The bitmap is
split into words with an additional header bitmap that
indicates which word of the bitmap has at least one bit
set. Furthermore, if the header bitmap has more than
s bits, where s denotes the word size,2 it recursively
maintains a header again. The bitmap implementation,
therefore, can be seen as a tree with depth logs(t) where
the nodes are words and each node has s children. In
this way the select-first operation improves from linear

2 Our implementation supports 32-bit and 64-bit word size, on
corresponding CPU architectures. The measurements and example
calculations were done for s = 32.

complexity to logs(t), but the ordered-insert operation
degrades from constant time to logs(t) complexity, due
to necessary updates in the bitmap.

During the release operation at time instant ti, all k
processes in the FIFO queue at position ti in the Blocked
array are inserted at the correct position in the Ready
array. The complexity of this operation is k · logs(t).
The bit which indicates that there are processes at time
instant ti in Blocked is cleared in logs(t) steps. Thus,
the time complexity of the release operation is at most
n · logs(t) + logs(t), since n is the upper bound of k.

The disadvantage of this plugin is the static limit on
the timeline, i.e., the number of time-slots in an array.
This imposes a limitation of how far into the future a
process can be released, and on the maximum deadline
of a process. Therefore, the possible range of resource
periods in the system is bounded with this plugin. Fur-
thermore, the array introduces a constant memory over-
head. Each array with t time-slots, contains t pointers
and (s/(s−1)) · (t−1) bits for the bitmap. For example,
with t = 1024 this results in 4KB for the pointers and
132 bytes for the bitmap.

4.3 Time-Slot Matrix

In order to achieve constant execution time in the num-
ber of processes for all operations on the queues we have
designed a matrix of FIFO queues, also referred to as
FIFO matrix. The matrix contains all processes in the
system, and the position in the matrix indicates the pro-
cesses deadline (column entry) and the processes release
time (row entry). The matrix implicitly contains both
Ready and Blocked, which can be computed by provid-
ing the current time. In a naive implementation, select-
first has complexity O(t2), whereas insert-ordered and
release are constant time. To balance this, additional
meta-data are introduced which reduces the complexity
of select-first to O(log(t)) and degrades the complexity
of the other operations (cf. Table 2).

We introduce a two-dimensional matrix of bits, hav-
ing value 1 at the positions at which there are processes
in the original matrix. In addition, we use two more
bitmaps, called release bitmap and ready bitmap. The
release bitmap indicates at which row in the matrix of
bits at least one bit is set. The ready bitmap contains
the information in which columns released processes can
be found. Note that the release bitmap merely reflects
the content of the matrix. The ready bitmap provides
additional information, it indicates where the currently
released processes are located.

A process is put into the FIFO matrix in constant
time. However, the corresponding updates of the bit ma-
trix and the release bitmap take logs(t) operations each.
Therefore, inserting a process has a time complexity of
2 · logs(t). Finding and returning the first process in Re-
leased or Blocked has also a complexity of 2 · logs(t). To
find the first process in Ready, e.g., we find the first set
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Fig. 3. Scheduler time (a),(b),(c) [x-axis: number of processes, y-axis: execution time in microseconds] and space overhead (d) [1]

bit in the ready bitmap in logs(t) operations. If the bit
is at position i, then the ith column in the bit matrix is
examined, in order to find the set bit j corresponding to
the first process in Ready, also in at most logs(t) opera-
tions. The two indexes, i and j, are then used to access
the process in the FIFO matrix. As a result, the opera-
tion of selecting the first process has a total complexity
of 2 · logs(t).

The release operation does not involve moving pro-
cesses. Releasing processes is done by updating the ready
bitmap. More precisely, the new ready bitmap for time
instant ti is the result of a logical OR between row ti in
the bit matrix and the old ready bitmap. The OR opera-
tion is word-wise and, therefore, linear in the size of the
bitmap, which is linear in the number of time instants.

In addition to the static limitation for the number of
time instants, a disadvantage of the matrix plugin is the
high memory usage. To distinguish t time instants the
FIFO matrix uses t2 pointers. Additionally, the meta-
data consists of (s/(s−1))·t·(t−1) bits for the bit matrix
and (s/(s − 1)) · (t − 1) bits for each bitmap. In order
to fully exploit the available hardware instruction for
searching and modifying bitmaps, the transpose of the

bit matrix is also kept in memory, which adds additional
(s/(s− 1)) · t · (t− 1) bits.

As an alternative to the FIFO matrix representation,
we also implemented the FIFO matrix as a B+ tree [16].
Using a B+ tree for the FIFO matrix adds 2 · logs(t)
operations to the complexity of the ordered-insert and
select-first operations, because the depth of the tree is
2·logs(t). The memory usage of the B+ tree might in the
worst case exceed the memory usage of the FIFO matrix.
A worst-case scenario occurs when each position of the
FIFO matrix contains at least one process. However, if
the FIFO matrix is sparse, e.g., because the number of
processes in the system is much smaller than the number
of distinguishable time instants, then the memory over-
head reduces drastically. See the next section for details.

5 Experiments and Results

We present results of different experiments with the
scheduler implementation, running on a 2GHz AMD64
machine with 4GB of memory.
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Fig. 4. Execution time histograms (a),(b),(c) [x-axis: execution time in microseconds, y-axis: (log-scale) number of scheduler calls] and
process release histogram (d) [x-axis: number of released processes, y-axis: (log-scale) number of scheduler calls] [1]

5.1 Scheduler Overhead

In order to measure scheduler execution times, we sched-
ule 9 different sets of simulated processes with 10, 25,
50, 75, 100, 150, 250, 500, and 750 processes each, with
the number of distinguishable time instants t in the
scheduler fixed to 214 = 16384. Each process has a
variable number of actions with random periods and
loads. The limit of every action is 1. During these ex-
periments, the execution time of every single scheduler
invocation is measured using the software oscilloscope
tool TuningFork [17]. From a sample of one million in-
vocations, we calculate the maximum (Fig. 3(a)), the av-
erage (Fig. 3(b)), and the standard deviation (Fig. 3(c))
in execution times. The x-axis of each of the three figures
represents the number of processes in the set and the y-
axis the execution time in microseconds. The B+ tree
plugin performs the same as the matrix plugin up to
140ns, and is therefore not shown. Note that the experi-
mental results with the list plugin were obtained using an
implementation described in [1,5] which had quadratic
time complexity.

The execution time measurements conform to the
complexity bounds from Sect. 4. For a low number of
processes (less than 150), all plugins perform similarly
and the scheduler needs at most 20 microseconds. On
average (Fig. 3(b)), for a low number of processes (up
to 100) the list plugin is the fastest. Interestingly, on av-
erage the array plugin is always faster than the matrix
plugin, even for a high number of processes. The reason
is that the constant overhead of the matrix operations is
higher, which can be seen in the average but not in the
maximal execution times.

The variability (jitter) of the scheduler execution can
be expressed in terms of its standard deviation, depicted
in Fig. 3(c). The variability of the list and array plug-
ins increases similarly to their maximum execution times
when more than 150 processes are scheduled. The ma-
trix plugin, however, has a lower standard deviation for
a high number of processes and a higher standard devia-
tion for a low number of processes. This is related to the
better average execution time (Fig. 3(b)) for higher num-
ber of processes, as a result of cache effects. By instru-
menting the scheduler we discovered that bitmap func-
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tions, e.g., setting a bit, are on average up to four times
faster with 750 processes than with 10 processes, which
suggests CPU cache effects.

The memory usage of all plugins, including the tree
plugin, for 750 processes with an increasing number of
distinguishable time instants is shown in Fig. 3(d). The
memory usage of just the B+ tree is 370KB, compared to
the 1GB for the matrix plugin. In both cases up to 66MB
additional memory is used for meta-data, which domi-
nates the memory usage of the tree plugin. The graphs in
Fig. 3(d) are calculated from theoretical bounds. How-
ever, our experiments confirm the results.

Figures 4(a), 4(b), and 4(c) show the different be-
havior of the presented plugins when scheduling 750 pro-
cesses. These figures are histograms of the scheduler exe-
cution time and are used to highlight the distribution of
it. The x-axis represents the execution time in microsec-
onds and the y-axis (log-scale) represents the number
of scheduler calls. For example, in Fig. 4(a) there are
about 50 scheduler calls that executed for 100 microsec-
onds during the experiment.

The list plugin varies between 0 and 350 microsec-
onds, the array plugin between 0 and 55 microseconds,
and the matrix plugin does not need more than 20 mi-
croseconds for any scheduler execution. The execution
time histograms, especially histogram 4(a), are closely
related to the histogram of the number of processes re-
leased during the experiment (Fig. 4(d)). The x-axis rep-
resents the number of released processes and the y-axis
(log-scale) represents how many times a certain number
of processes is released. The similarity of Fig. 4(a) and
Figure 4(d) indicates that the release of processes dom-
inates the execution of the scheduler for the experiment
with 750 processes.

5.2 Release Strategies

In this section we compare the two implemented release
strategies of the scheduler in two experiments and show
that the early strategy achieves optimal average response
times (always better by one period than the late strat-
egy) for a single process with increasingly non-harmonic
periods (Fig. 5(a), top), and improves average response
times for an increasing number of processes with a ran-
dom distribution of loads, limits, and periods (Fig. 5(b),
top). In both experiments, response times are in millisec-
onds, and limits and periods are chosen such that the
theoretically possible CPU utilization (Proposition 1) is
close to one. The early strategy achieves at least as high
actual CPU utilization as the late strategy, and thus
less CPU idle time (bottom part of both figures). For
Fig. 5(a), the single process alternates between two ac-
tions that have their periods (and limits) equal to some
natural number n and n+1, respectively, shown as pairs
(n, n + 1) on the x-axis. Hence, the actions are increas-
ingly non-harmonic and the corresponding periods are
relatively prime. The process always invokes the actions

on the lowest possible load to maximize switching be-
tween actions resulting in increasingly lower CPU uti-
lization.

6 Scheduler Overhead Accounting

The response-time bounds (1) and (2) presented in
Sect. 2.3 are the result of several assumptions on the
process and system model. One important assumption
that has been implicitly made in the previous sections
and which is prevalent in literature is that the scheduler
overhead is zero. However, in a real system the effect of
the scheduler overhead on the response-time bounds of
processes (or actions) can be substantial. We (a subset
of the authors) have extended the VBS schedulability
and response-time bound analysis to include scheduler
overhead in [6]. Here, we present a condensed version of
that analysis for completeness of the VBS result.

The first step towards including the scheduler over-
head in the VBS analysis is to determine an upper bound
on the number of scheduler invocations that can occur
during a time interval. In particular, we want to de-
termine the worst-case number of scheduler invocations
that an action of a VBS process experiences during one
period.

The duration of a scheduler invocation is typically
several orders of magnitude lower than a unit execu-
tion of an action. Therefore, we make the assumption
that all periods belong to the set of discrete time in-
stants M = {c · n | n ≥ 0} ⊂ N, for a constant value
c ∈ N, c > 1. Hence, for any action αi,j with its associ-
ated virtual periodic resource Ri,j = (λi,j , πi,j) we have
that πi,j = c · π′i,j with π′i,j ∈ N. We call c the scale of
the system. Intuitively, we can say that there are two dif-
ferent timelines, the “fine-grained timeline” given by the
set of natural numbers and the “coarse-grained timeline”
given by the set M . Resource periods are defined on the
“coarse-grained timeline”, while the execution time of
the scheduler is defined on the “fine-grained timeline”.

In VBS scheduling, a process Pi is preempted at a
time instant t if and only if one of the following situations
occurs:

1. Completion. Pi has completed the entire work related
to its current action αi,j = (li,j , Ri,j).

2. Limit. Pi uses up all resource limit λi,j of the current
resource Ri,j .

3. Release. A task of an action is released at time t, i.e.,
an action of another process is activated. Note that
all preemptions due to release occur at time instants
on the “coarse-grained timeline”, the set M .

The following result holds.

Lemma 2 ([6]). Let P = {Pi(ui) | 1 ≤ i ≤ n} be a
set of VBS processes with actions αi,j and corresponding
virtual periodic resources (λi,j , πi,j). There are at most
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Fig. 5. Release strategies comparisons [5]

Ni,j = NR
i,j + 1 scheduler invocations every period πi,j

for the action αi,j, where

NR
i,j =

⌈
πi,j

gcd({πm,n | m ∈ I, n ≥ 0,m 6= i})

⌉
(8)

for I = {i | 1 ≤ i ≤ n}.

If we denote the duration of one scheduler invoca-
tion by ξ, the total scheduler overhead for one period
of an action αi,j is δi,j = Ni,j · ξ. The total overhead
is therefore made up of Ni,j pieces of non-preemptable
workload ξ. An important consequence of this demarca-
tion is that the scheduler overhead only depends on the
finitely many periods in the system and not on the load
of the action.

We have determined two complementary methods to
account for scheduler overhead, either by decreasing the
speed at which processes run to maintain CPU utiliza-
tion, or by increasing CPU utilization to maintain the
speed at which processes run.

We call the first method response accounting and the
second utilization accounting. Scheduler overhead ac-
counting can therefore be done in two ways. One way
is to allow an action to execute for less time than its ac-
tual limit within one period and use the remaining time
to account for the scheduler overhead. The other way
is to increase the limit so that the action can execute
both its original limit and the time spent on scheduler
invocations within one period.

We write that the overhead is

δi,j = δbi,j + δui,j ,

where δbi,j is the overhead that extends the response-
time bounds of the respective action and δui,j increases

the utilization. Since ξ is not divisible, both δbi,j and δui,j
are multiples of ξ.

We differentiate three cases summarized in Table 3:

– Response accounting (RA), δi,j = δbi,j , when the en-
tire overhead is executing within the limit of the ac-
tion, keeping both the limit and period (and thus the
utilization) of the actions constant but increasing the
response-time bounds.

– Utilization accounting (UA), δi,j = δui,j , when the
entire overhead increases the limit of the action, and
thus the utilization, but the response-time bounds
remain the same.

– Combined accounting (RUA), with δi,j = δbi,j + δui,j ,

δbi,j > 0, and δui,j > 0, which offers the possibility to
trade-off utilization for response time, for each ac-
tion, in the presence of scheduler overhead.

For an action αi,j , in the presence of overhead, we
denote the new load by l∗i,j , the new limit by λ∗i,j , and
the new utilization by u∗i,j . Using these new parame-
ters and the old response-time bounds, defined in Equa-
tion (1) and (2), we determine the new upper and lower
response-time bounds which we denote with bu∗i,j and bl∗i,j ,
respectively. The upper response-time bound bu∗i,j for ac-
tion αi,j is

bu∗i,j =

⌈
l∗i,j
λ∗i,j

⌉
πi,j + πi,j − 1. (9)
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Case Overhead distribution Load Utilization Schedulability test

RA δbi,j = δi,j , δ
u
i,j = 0 l∗i,j = li,j +

⌈
li,j

λi,j−δi,j

⌉
δi,j u∗i,j =

λi,j

πi,j

∑
i∈I maxj≥0

λi,j

πi,j
≤ 1

UA δbi,j = 0, δui,j = δi,j l∗i,j = li,j +
⌈
li,j
λi,j

⌉
δi,j u∗i,j =

λi,j + δi,j

πi,j

∑
i∈I maxj≥0

λi,j + δi,j

πi,j
≤ 1

RUA δbi,j , δ
u
i,j > 0 l′i,j = li,j +

⌈
li,j

λi,j−δbi,j

⌉
δbi,j , l

∗
i,j = l′i,j +

⌈
l′i,j
λi,j

⌉
δui,j u∗i,j =

λi,j + δui,j

πi,j

∑
i∈I maxj≥0

λi,j + δui,j

πi,j
≤ 1

Table 3. Scheduler overhead accounting [6]

The lower response-time bound bl∗i,j for αi,j using the late
release strategy is

bl∗i,j =

⌈
l∗i,j
λ∗i,j

⌉
πi,j , (10)

whereas using the early release strategy is

bl∗i,j =

⌊
l∗i,j
λ∗i,j

⌋
πi,j . (11)

We now give a condensed version of the three cases.
The proofs of the results and a more detailed study can
be found in [6].

6.1 Response accounting

In the response accounting case an action will have the
same utilization but its response-time bounds increase.
We have that δi,j = δbi,j .

We compute the new load of the action αi,j as

l∗i,j = li,j +

⌈
li,j

λi,j − δi,j

⌉
δi,j .

The scheduler overhead that an action experiences
during one period has to be smaller than its limit, oth-
erwise the action will not execute any real workload. The
new limit and utilization of the action are the same as
without overhead, i.e., λ∗i,j = λi,j and u∗i,j = ui,j =

λi,j
πi,j

.

Since l∗i,j > li,j and λ∗i,j = λi,j , we get that both the up-
per and the lower response-time bounds increase in case
of response accounting.

Proposition 2 ([6]). Let P = {Pi(ui) | 1 ≤ i ≤ n}
be a set of VBS processes each with bandwidth cap ui.
If
∑n
i=1 ui ≤ 1 and δi,j < λi,j, with δi,j , λi,j as defined

above, then the set of processes are schedulable with re-
spect to the new response-time bounds bu∗i,j and bl∗i,j, in
the presence of worst-case scheduler overhead.

The jitter for any action αi,j in the response account-
ing case is at most bu∗i,j − bli,j .

For further reference, we write the new load in the
response accounting case as a function

RA(l, λ, δ) = l +

⌈
l

λ− δ

⌉
δ.

6.2 Utilization accounting

In the utilization accounting case an action is allowed
to execute for more time than its original limit within
a period and hence its utilization will increase (since
the period duration remains the same). We have that
δi,j = δui,j . The new load of action αi,j becomes

l∗i,j = li,j +

⌈
li,j
λi,j

⌉
δi,j .

The new limit is λ∗i,j = λi,j+δi,j , and the new utilization
is

u∗i,j =
λi,j + δi,j

πi,j
.

Proposition 3 ([6]). Given a set of processes P =
{Pi(ui) | 1 ≤ i ≤ n}, let

u∗i = max
j≥0

λi,j + δi,j
πi,j

.

If
∑n
i=1 u

∗
i ≤ 1, then the set of processes P is schedulable

with respect to the original response-time bounds bui,j and

bli,j defined in Section 2.3, in the presence of worst-case
scheduler overhead.

Since the response-time bounds do not change in the
utilization accounting case, the jitter for any action is
the same as in the analysis without overhead.

We write the new load again as a function

UA(l, λ, δ) = l +

⌈
l

λ

⌉
δ.

6.3 Combined Accounting

The combined accounting case allows the total scheduler
overhead to be accounted for both in the response-time
bounds and in the utilization of an action. This allows a
system designer for example to increase the utilization of
the actions up to available CPU bandwidth and account
the rest of the scheduler overhead in the response-time
bounds, thus only delaying the finishing of action by the
smallest possible amount.

We have that δi,j = δbi,j + δui,j , δ
b
i,j > 0, and δui,j > 0.

Given an action αi,j with its associated virtual periodic
resource Ri,j = (λi,j , πi,j), and load li,j , the new load
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l∗i,j is computed in two steps. First we account for the
overhead that increases the response time

l′i,j = li,j +

⌈
li,j

λi,j − δbi,j

⌉
δbi,j

and then we add the overhead that increases the utiliza-
tion

l∗i,j = l′i,j +

⌈
l′i,j
λi,j

⌉
δui,j .

The load function for the combined case is therefore

RUA(l, λ, δb, δu) = UA(RA(l, λ, δb), λ, δu).

The new limit for action αi,j is λ∗i,j = λi,j + δui,j , and the
utilization becomes

u∗i,j =
λi,j + δui,j

πi,j
.

The upper response-time bound bu∗i,j for action αi,j is now

bu∗i,j =

⌈
RUA(li,j , λi,j , δ

b
i,j , δ

u
i,j)

λi,j + δui,j

⌉
πi,j + πi,j − 1.

The lower response-time bound bl∗i,j for the same action
using the late release strategy is

bl∗i,j =

⌈
RUA(li,j , λi,j , δ

b
i,j , δ

u
i,j)

λi,j + δui,j

⌉
πi,j ,

and using the early release strategy is

bl∗i,j =

⌊
RUA(li,j , λi,j , δ

b
i,j , δ

u
i,j)

λi,j + δui,j

⌋
πi,j .

Proposition 4 ([6]). Given a set of processes P =
{Pi(ui) | 1 ≤ i ≤ n}, let

u∗i = max
j≥0

λi,j + δui,j
πi,j

.

If
∑n
i=1 u

∗
i ≤ 1, then the set of processes P is schedulable

with respect to the response-time bounds bu∗i,j and bl∗i,j, in
the presence of worst-case scheduler overhead.

6.4 Optimizations

In [6] we also discuss optimizations to the combined and
utilization accounting cases presented before. The opti-
mization possibility comes from the over-approximation
of the estimate of the number of scheduler invocations
during an action period. During one period of an action
any other process can have a release triggering a sched-
uler invocation. In the above cases, these invocations are
accounted for in the response-time bounds or utilization
of that action. However, the invocations due to the same
release are incorporated as overhead for more than one
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action, meaning that scheduler overhead is sometimes
accounted for more than necessary.

In order to separate the reasons for scheduler invoca-
tions, we observe a natural division of the VBS scheduler
overhead into overhead due to releasing and due to sus-
pending processes. Scheduler invocations that occur due
to releasing of processes can be improved by accounting
for them in a separate, virtual VBS process instead of
the given VBS processes. We call this process the sched-
uler process. The scheduler process is then accounted
for in increased overall CPU utilization. The remaining
overhead due to suspending processes may then be ac-
counted for using the methods described above.

A sufficient condition for improvement of the esti-
mate is that there exists a process Pm that accounts, in
the original estimate, for as many scheduler invocations
as the scheduler process, i.e., gcd({πi,j | i ∈ I, j ≥ 0})
equals gcd({πi,j | i ∈ I, j ≥ 0, i 6= m}).

We denote the scheduler process by PS with all ac-
tions equal αS,j = (ξ,RS) where RS = (λS , πS) =
(ξ, gcd({πi,j | i ∈ I, j ≥ 0}). Thus, the utilization of
the scheduler process is

uS =
ξ

gcd({πi,j | i ∈ I, j ≥ 0}) .

In the combined accounting case an optimization is
possible only in the case δui,j = NR

i,j · ξ and δbi,j = ξ.
In the utilization accounting case the limit of the action
αi,j becomes λ∗i,j = λi,j + ξ and therefore the utilization
is

u∗i,j =
λi,j + ξ

πi,j
.

An important property of the scheduler process is
that the period of its action is smaller than or equal
to any other period in the system meaning that it can
always execute at the appropriate time and therefore
does not change the schedulability result.

In order to see the result of the optimization on the
scheduler invocation estimates we conducted a simula-
tion experiment (Figure 6) in [6] showing a comparison of
the global optimized and non-optimized estimates, and
the total number of actual scheduler invocations mea-
sured for three concurrently running actions over 100000
time units. The periods of the actions are chosen so that



16 S.S. Craciunas et al.: Temporal Isolation in Real-Time Systems: The VBS approach

they result in an increasing gcd (logarithmic x-axis). The
periods are actually multiples of the gcd by 2, 3, and 5.
For small values of the gcd the accuracy of the optimized
estimate is considerably better than the accuracy of the
non-optimized estimate. For large values of the gcd, the
estimates converge.

7 Power-aware VBS

An important non-functional aspect of real-time systems
is power consumption. Many modern processors contain
mechanisms that enable dynamic voltage and frequency
scaling (DVS) [18,19]. In the area of real-time systems,
power-aware scheduling mechanisms make use of DVS in
order to allow processes to maintain their real-time prop-
erties while reducing the overall CPU power consump-
tion. Power-aware real-time scheduling, e.g. for EDF
and rate-monotonic, has been extensively studied [19–
22]. Similarly, there has also been research concerning
power-aware server mechanisms [23,24]. We have intro-
duced and discussed a power-aware version of VBS in [7].
Here, we briefly present some of our findings in order to
give a complete picture of VBS scheduling.

In a simplified CPU power model [19], the con-
sumed CPU power P is proportional to the operating
frequency f and the square of the voltage level V , i.e.,
P ∝ f ·V 2 [18]. Since a reduced voltage imposes a maxi-
mal available frequency level and reducing the operating
frequency extends the execution time of a workload [19],
the scheduling mechanism has to find the minimal pos-
sible frequency at which the processes still meet their
deadlines.

A reduction in the operating frequency is only pos-
sible when there is so-called slack in the system, i.e.,
when the scheduled processes do not use 100% of the
CPU bandwidth.

Since the VBS process model is different from the
EDF or CBS process model, in [7], we distinguish two
types of slack specific to VBS systems, namely static
and dynamic VBS slack. The static slack results from the
predefined bandwidth caps of the VBS processes whereas
the dynamic slack results from the individual actions of
each VBS process. Furthermore, we divide the dynamic
slack in action and termination slack. We next briefly
describe the implications on power consumption of each
type of slack.

Static slack. In the VBS process model, each process
Pi has a bandwidth cap ui which represents the maxi-
mum utilization that any of its actions may have. It has
been shown in [19,7] that if the total utilization of a set
of EDF processes is U ∈ [0, 1], the frequency f can be
computed as f = U · fmax, where fmax is the maximal
available frequency, such that no process will violate its
deadline. As a consequence, if the sum of all VBS band-
width caps is less than 1, we can safely scale down the

processor frequency to f without any consequence on
the response-time bounds of actions. The computed fre-
quency f is set once, before the system runs, and is not
modified during runtime.

Dynamic slack. Due to the action model of VBS, some-
times slack arises during runtime such that at certain
points in time the frequency can be scaled lower than the
aforementioned computed value. The important aspect
of these dynamic frequency scalings is that we have to
make sure that we adapt the frequency to the currently
available slack so that no action will miss deadlines and
the response-time bounds of actions remain unchanged.
We distinguish two types of dynamic slack.

– Termination slack, resulting from the VBS termina-
tion strategy.

– Action slack, generated by an action having utiliza-
tion less than the bandwidth cap of the process.

The termination strategy, explained in Section 2.2
postpones the logical termination of an action to the end
of the last period of that action. We can generate slack
at runtime by computing at every arrival of a new action
the lowest possible limit such that the action still finishes
its load within the original number of periods, i.e, such
that the original response-time bound is maintained.

For example, an action α = (55, (30, 100)) could run
for 28 time units every period and still meet its response
time bound 200. Therefore the virtual periodic resource
for this action can be changed from (30, 100) to (28, 100)
and the resulting slack of 2 time units per period can be
used to scale down the processor.

More formally, at every arrival time t of an action, a
new limit is computed as follows:

λ∗i,j =

⌈
li,j
ni,j

⌉
,

where ni,j =

⌈
li,j
λi,j

⌉
is the number of periods needed

for the action αi,j to finish its load. Note that the
new limit never exceeds the old limit (λ∗i,j ≤ λi,j), so
this change does not influence schedulability. The ac-
tion αi,j will thus be transformed into an action α∗i,j =
(li,j , (λ

∗
i,j , πi,j)).

The second type of dynamic slack is the action slack
which is a result of newly arriving actions for a VBS pro-
cess. Dynamic slack is generated when the utilization of
the new action is lower than the bandwidth cap for the
process. In [7] we show that it is possible to scale the
frequency at runtime by a new scaling factor computed
as the sum of remaining utilizations of the active actions
(the current actions of each VBS process). The computa-
tion and scaling of the frequency happens at every time
instant when an action has a release.

Proposition 5 ([7]). Let P = {Pi(ui) | 1 ≤ i ≤ n} be a
schedulable set of VBS processes, with a total utilization
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Fig. 7. Normalized power consumption for 10 sets of random pro-
cesses [7].

cap U =
∑n
i=1 ui ≤ 1 and corresponding process actions

αi,j, with virtual periodic resources (λi,j , πi,j), for j ≥ 0,
of process Pi. This set of processes is schedulable within
the response-time bounds if in between two action re-
leases the processor frequency is at least fnew = Uc ·fmax
where Uc =

∑n
i=1

λi,ji
πi,ji

is the total utilization of all re-

leased actions αi,ji in the considered interval of time be-
tween two action releases.

Since the two types of dynamic slack address separate
aspects of VBS process execution, they can be exploited
separately or together. Using only the termination slack
may reduce the actual response time jitter of the action,
while using only the action slack does not modify the
original limit of the action. If both types of dynamic slack
are exploited, the minimum possible operating frequency
is achieved and CPU utilization is maximized.

We present an experiment (Figure 7) where we show
the power savings using action slack alone, and action
slack combined with termination slack for 10 sets of
randomly-generate simulated VBS-processes. The left y-
axis shows the normalized power consumption while the
right y-axis shows the CPU idle percentage. As expected,
we see that higher CPU idle time results in lower power
consumption and that the combined method results in
the lowest power consumption as opposed to the un-
scaled system and the system scaled using the action
slack only.

The presented methods for reducing power consump-
tion based on static and dynamic slack adhere strictly to
the VBS process model described in Section 2. Diverg-
ing from the strict model and allowing the scheduler to
redistribute computation time of process actions among
the server periods during which the actions execute, re-
sults in even lower power consumption without affecting
the actions’ original response-time bounds. In order to
be able to redistribute computation time between peri-
ods the power-aware VBS scheduler must be aware of the
future, i.e., it must know the sequence of action changes
of every VBS process in advance.

Reducing power consumption using future knowledge
depends on the specific power model of the CPU (rep-
resented through a power consumption function) as well

as the frequency switching overhead. In [7] we (a subset
of the authors) present an optimal offline algorithm that
computes the best possible configuration of server band-
widths for every period of an action during the whole
lifetime of a system thus minimizing the given power-
consumption function. We show that it is also possible to
incorporate frequency switching overhead into the com-
putation. Since the offline method may not be feasible
for a real system, we also give an approximate to the
optimal offline method using a feasible online algorithm.
Given a simplified power consumption model, we show
(c.f. [7]) that it is possible to approximate the optimal
offline results by decreasing CPU utilization jitter, i.e.,
the actual CPU utilization is steered towards a com-
puted average.

8 Related Work

There is a significant body of research concerning tem-
poral isolation. We first present several mechanisms that
enable some form of temporal isolation for resources like
CPU, disk, and I/O.

One of the the first models proposed is the fair queue-
ing model in the context of communication networks [25,
26]. In a simplified version, each communication source
is serviced in a dedicated queue of infinite storage size
and the queues are handled in round-robin fashion. Isola-
tion is provided in the sense that a source will not affect
other sources if it receives more requests than specified.

The Generalized Processor Sharing (GPS) ap-
proach [27] also allows communication sources to be iso-
lated in their temporal behavior under the assumption
that the network traffic is infinitely divisible. Both [27]
and [26] describe approximations of the GPS algorithm
that are viable for real systems. The methods described
above are similar to proportional share allocation (PSA)
introduced in [28,29] which allows weighted sharing of
computing resources in isolation. Each shared resource
is discretized in quanta of size q and each process is as-
signed a fraction of the resources through a predefined
weight. The deviation of this model from the ideal one
is bounded by q [29].

In the context of CPU scheduling for real-time sys-
tems, the concept of CPU capacity reserves was intro-
duced in [30,31] for both real-time and non-real-time
processes. Virtual periodic resources [8] are similar to
CPU capacity reserves but are used to describe periodic
resource allocation used in compositional timing analy-
sis. We describe a more general form of resource reser-
vations that are not restricted to the CPU resource. The
resource reservation concept is extended in [32] to in-
clude other system resources with a focus on QoS guar-
antees. The model in [32] is similar to ours but uses
resource fractions instead of limits and periods. As a
consequence, there are no process actions and hence no



18 S.S. Craciunas et al.: Temporal Isolation in Real-Time Systems: The VBS approach

deadlines that would enable EDF [2] scheduling. A simi-
lar model is found in the Rialto [33,34] system but lacks
the concept of sequential process actions from the VBS
model. SMART [35] is another related scheduling model
intended for adaptive multimedia and soft real-time pro-
cesses. Similar to our approach, SMART allows processes
to vary their alloted reservation but is not designed to
support hard deadlines.

Server mechanisms [3] are another form of resource
reservations. A server is usually defined by a server ca-
pacity or limit (CS) and a server period (TS) [13]. A
process that is encapsulated within a server will execute
at most CS time units in a time window of TS time
units. A large variety of server mechanisms have been
introduced, e.g., [36,11,12,37,3,38].

The constant-utilization server (CUS) [37,39] and
the total-bandwidth server (TBS) [38] are very similar
to VBS but do not have the ability to change the server
limit and period at runtime. There is no notion of se-
quentiality within a process, i.e., there is no counterpart
of our action model.

The work on constant-bandwidth servers (CBS) [3] is
highly related to ours, as already elaborated in the pre-
vious sections. Similar to CBS, VBS also uses an EDF-
based algorithm for scheduling. The drawback of a CBS,
like with CUS and TBS, is that its resource’s limit and
period cannot be changed. As elaborated before, a pro-
cess may sometimes need to execute a small portion of
its code with lower latency than the rest of its code and
therefore temporarily require a shorter period [4,40]. We
next present several related mechanisms that allow such
a change in the rate of execution within the process.

RBED [41,42] is a rate-based scheduler that in-
volves a modified EDF process model which allows the
bandwidth (limit) and rate (period) of processes to be
changed at runtime. RBED is most closely related to
VBS as it also incorporates dynamic adjustments in pro-
cess parameters. RBED and VBS differ on the level of
abstraction: in VBS, processes are modeled as sequences
of actions to quantify the response times of portions of
process code where each transition from one action to
the next offers the possibility of parameter adjustment.
RBED provides ranges of feasible reconfiguration but
does not specify any higher-level mechanism for chang-
ing the period or limit of processes. Moreover, the re-
configuration is done within the limits of the currently
available system utilization making an offline analysis
difficult.

Elastic scheduling [43,44] introduces a new process
model in conjunction with EDF, which views process
utilization as a spring with a certain elasticity and max-
imum length configuration. Given the configuration, pro-
cesses can change both limit and period within the re-
sulting constraints. In [45], CBS are dynamically recon-
figured using a benefit function through genetic algo-
rithms. The goal of this and similar approaches, such
as [46], is mainly to handle reconfiguration of processes

and the potentially ensuing overloads in a more robust
manner by performing adaptations based on the current
system utilization. The VBS model offers flexibility by
defining processes whose throughput and latency change
at runtime through individual actions, and therefore dif-
fers in implementation and goal from the mentioned ap-
proaches.

In [47], the authors discuss dynamic reconfiguration
of servers based on TDMA that enables a change in both
limit and period of the TDMA partitioning allocation.
The authors present schedulability analyses and algo-
rithms for all possible reconfiguration cases.

In the context of virtualization research, XEN [48]
employs three schedulers which were compared and dis-
cussed in [49]: borrowed virtual time [50], a weighted
proportional-share scheduler; SEDF [51], a modified ver-
sion of EDF; and a credit scheduler that allows auto-
matic load balancing. Another scheduling method for
XEN, which gives more attention to I/O-intensive do-
mains, was presented in [52].

Other areas of related work that enable either tem-
poral isolation or dynamic reconfiguration of systems are
strongly partitioned systems (e.g. [39,53–55]) and mode
switches in real-time systems (cf. [56]). Our system can
be seen as scheduling partitions, namely processes cor-
respond to partitions and inside a partition actions are
sequentially released processes. Similarly, on an abstract
level, actions of VBS processes can be interpreted as dif-
ferent modes of the same process and the VBS mech-
anism as providing safe mode changes. The scheduling
goal, process model, and methods, however, are in both
cases different from the mentioned areas of research.

Finally, we compare the complexity of our queue
management plugins and scheduler to other work. By
n we denote the number of processes. The SMART [35]
scheduler’s time complexity is determined by the com-
plexity of special list operations and the complexity of
schedule operations. The list operations complexity is
O(log(n)) if tree data structures are used and O(n) oth-
erwise. The schedule complexity is O(n2R), where nR is
the number of active real-time processes with higher pri-
ority than non-real-time processes. The authors in [35]
point out that, in special cases, the complexity can be
reduced to O(n) and even O(1). The Move-to-Rear List
scheduling algorithm [32] has O(log(n)) complexity. A
recent study [57] on EDF-scheduled systems describes
an implementation mechanism for queue operations us-
ing deadline wheels where the resulting time and space
complexities are similar to those achieved by our four
queue mechanisms.

9 Conclusions

We have presented a comprehensive study of theoreti-
cal and practical aspects of variable-bandwidth servers
(VBS) [1]. In particular, we focused on the VBS process
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model and schedulability results with detailed proofs.
Furthermore, we have presented implementation details
and experimental results involving four queue manage-
ment plugins that allow trading-off time and space com-
plexity of the VBS scheduler. We have also presented a
survey of results on scheduler overhead accounting [6]
and power-aware scheduling with VBS [7].

We now briefly discuss possible future work. On the
practical side, it is certainly interesting to see VBS in
action, i.e., scheduling realistic case studies (beyond syn-
thetic benchmarks). Another practical issue would be to
exploit even further the possible ways to efficiently im-
plement the queues, e.g. using (binary) heap(s) [58].

On the conceptual side, temporal isolation is just one
type of process isolation. Another well-known type of
process isolation that is relevant in virtually all com-
puter systems including non-real-time systems is spa-
tial isolation. Processes that are spatially isolated do not
tamper with the memory regions of one another, except
when explicitly allowed. A third, more recently studied
type of process isolation is power isolation where the
amount of power consumed by a process may be approx-
imated independently of the power consumed by other
processes [59], or individually controlled and capped by
a power manager [60,61]. We envision a system that pro-
vides full temporal, spatial, and power isolation of soft-
ware processes simultaneously [62]. We have taken the
first step towards this goal by studying process isola-
tion with respect to each property individually, through
the VBS approach for temporal isolation, the compact-
fit memory management system [63] for spatial isolation
in real time, and the work on power isolation in EDF-
scheduled systems [59]. The key insight is that there ap-
pears to be a fundamental trade-off between quality and
cost of time, space, and power isolation. Designing an
integrated system that supports temporal, spatial, and
power isolation remains the key challenge in this context.
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