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Welcome from the Chairs

Welcome to MPLR 2024, the 21st ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes, held in Vienna, Austria on Thursday, September 19, 2024,
co-located with ISSTA/ECOOP 2024. MPLR is a successor to the conference series on Managed
Languages and Runtimes (ManLang, 2017 and 2018) which in turn is a successor to the conference
series on Principles and Practice of Programming in Java (PPPJ, 2002 through 2016). MPLR is a
premier forum for presenting and discussing novel results in all aspects of managed programming
languages and runtime systems, which serve as building blocks for some of the most impor-
tant computing systems around, ranging from small-scale (embedded and real-time systems) to
large-scale (cloud-computing and big-data platforms) and anything in between (mobile, IoT, and
wearable applications).

Our program includes a keynote talk by Ben L. Titzer, 7 full papers, and 4 shorter work-in-
progress papers. These were selected from 11 full paper submissions and 1 work-in-progress
submission (3 full paper submissions were selected as work-in-progress papers). All papers
received at least 3 reviews from the program committee, listed below. Full papers were evaluated
based on relevance, novelty, technical rigor, and contribution to the state of the art. Work-in-
progress papers were reviewed based more on novelty and probable interest to the community.
The program also includes 2 posters of which one is a poster version of an accepted paper. The
posters received at least 2 light reviews each. Reviewing was double blind, the second time for
MPLR. The review process was all online with consensus reached on each submission. We used
the HotCRP management system and Conference Publishing handled the proceedings. We are
grateful to the program committee for their diligence in reviewing, the quality of the reviews, and
productive nature of the discussion process.

We hope that readers will find these proceedings interesting and that conference attendees
will enjoy MPLR 2024, be they physically or virtually present!

M. Anton Ertl Christoph M. Kirsch
General Chair Program Chair
TU Wien, Austria University of Salzburg, Austria and

Czech Technical University, Prague, Czechia
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Can WebAssembly Be Software’s Final Substrate?
(Keynote)

Ben L. Titzer
Carnegie Mellon University

USA

btitzer@andrew.cmu.edu

Abstract

Since the dawn of computing, many formats for executable

programs have come and gone. The design of an executable

format encounters design choices and tradeo�s such as ex-

pressiveness, ease of parsing/decoding/execution, the level

of abstraction, and performance. With the advent of We-

bAssembly, a portable low-level compilation target for many

languages, an intriguing question arises: can we �nally stan-

dardize a universal binary format and software virtual ma-

chine? After many years, I believe that we �nally can. Unlike

language-speci�c bytecode formats whose abstraction level

serves only one language family well, or machine-code for-

mats that serve speci�c ISAs and operating systems well,

WebAssembly sits between these levels of abstraction. In

this talk I will share my vision for a future where all soft-

ware sits on a standardized, well-speci�ed, formally-veri�ed

substrate that allows innovation above and below, and un-

locks high performance and portability for all programming

languages.

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for pro�t or commercial advantage and that copies
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Lazy Sparse Conditional Constant Propagation in the
Sea of Nodes

Christoph Aigner

Johannes Kepler University

Linz, Austria

christoph.aigner@jku.at

Gergö Barany

Oracle Labs

Vienna, Austria

gergo.barany@oracle.com

Hanspeter Mössenböck

Johannes Kepler University

Linz, Austria

hanspeter.moessenboeck@jku.at

Abstract
Conditional constant propagation is a compiler optimiza-

tion that detects and propagates constant values for expres-

sions in the input program taking unreachable branches

into account. It uses a data flow analysis that traverses the

program’s control flow graph to discover instructions that

produce constant values.

In this paper we document our work to adapt conditional

constant propagation to the Sea of Nodes program repre-

sentation of GraalVM. In the Sea of Nodes, the program is

represented as a graph in which most nodes ‘float’ and are

only restricted by data flow edges. Classical data flow anal-

ysis is not possible in this setting because most operations

are not ordered and not assigned to basic blocks.

We present a novel approach to data flow analysis opti-

mized for the Sea of Nodes. The analysis starts from known

constant nodes in the graph and propagates information

directly along data flow edges. Most nodes in the graph

can never contribute new constants and are therefore never

visited, a property we call lazy iteration. Dependences on

control flow are taken into account by evaluating SSA 𝜙

nodes in a particular order according to a carefully defined

priority metric.

Our analysis is implemented in the GraalVM compiler.

Experiments on the Renaissance benchmark suite show that

lazy iteration only visits 20.5 % of all nodes in the graph.

With the constants and unreachable branches found by our

analysis, and previously undetected by the GraalVM com-

piler, we achieve an average speedup of 1.4 % over GraalVM’s

optimized baseline.

CCS Concepts: • Software and its engineering→ Just-
in-time compilers; Dynamic compilers; Correctness.
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1 Introduction
Constant Propagation is a compiler optimization that tries

to perform as many calculations as possible at compile time,

minimizing execution time by not needing to calculate those

values at run time. Because detecting every compile time

constant is generally an undecidable problem [5], the best

one can do is to employ an algorithm with reasonable time

complexity that, although not finding every possible con-

stant, finds most constants and does so without reporting

non-constant values as constant.

The state of the art in constant propagation isWegman and

Zadeck’s Sparse Conditional Constant (SCC) algorithm [7].

It uses a data flow analysis on a program represented as a

control flow graph (CFG) consisting of basic blocks of instruc-

tions in Static Single Assignment (SSA) form [3]. The analysis

is sparse as it exploits SSA form to associate constants found

with SSA variables, as opposed to earlier non-SSA algorithms

which associated analysis results with pairs of variables and

program points. SCC is conditional in that the found con-

stants are also taken into account when evaluating branch

conditions and to mark unreachable program paths which

do not need to be analyzed. Skipping unreachable paths, in

turn, allows finding more constants, so that this composi-

tion of simple constant propagation and unreachable code

elimination is more powerful than arbitrary iterations of the

separate analyses [1].

In this work we adapt sparse conditional constant prop-

agation to the Sea of Nodes program representation in the

GraalVM compiler (see Section 2.3). Graal IR is in SSA form,

but most instructions ‘float’ rather than being assigned to

specific basic blocks [4]. While SCC propagates values across

the SSA data flow graph, it also needs the CFG for marking

control flow edges as reachable or unreachable, and for visit-

ing all instructions in a block. Our algorithm also propagates

2
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values over the data flow edges of the Graal IR graph, but

control flow reachability is propagated differently.

The main contributions of this work are:

• Data flow analysis using lazy iteration: Most nodes in

the IR graph never need to be visited because they will

never produce a constant, even if they can be executed.

This is in contrast to Wegman and Zadeck’s algorithm,

which needs to visit every reachable instruction in the

program.

• The worklist priority ordering: Optimistic data flow

analysis using lazy iteration is only correct if SSA 𝜙

nodes are visited in a particular order, for which we

developed a priority ordering (Section 3.5.2).

We present experimental data that shows that lazy itera-

tion is very effective, visiting only 20.5 % of all nodes in the IR

on average. It finds new constants not previously detected by

the GraalVM compiler, which only features a non-optimistic

version of constant propagation that does not compute opti-

mistic fixed points over loops. The detected constants and

unreachable CFG edges lead to an average speedup of 1.4 %

on the standard Renaissance benchmark suite.

2 Background
2.1 Sparse Conditional Constant Propagation
The following summary of sparse conditional constant prop-

agation is based on Wegman and Zadeck [7].

0. . . -1 . . .1

Figure 1. Three-tier value lattice.

SCC uses a three-tier data flow lattice shown in Figure 1.

The lattice element for each variable is initially ⊤, represent-
ing a value that is yet unknown but may be determined to

be a constant by the analysis. The constant elements in the

middle tier represent values that will always evaluate to the

given constant at runtime. The ⊥ element denotes values

for which the analysis cannot guarantee a constant value.

Lattice values are combined using the meet (greatest lower

bound, ⊓) operation. Thus values can only be ‘lowered’ until

a fixed point is reached.

The analysis tracks reachability of CFG edges using a

two-tiered lattice, initially assuming that all edges are un-

reachable. At a control flow split, the analysis evaluates the

split condition using its current information. Depending on

whether the result is constant or not, only one or all outgoing

control flow edges are marked as reachable and enqueued in

Listing 1. Example of optimistic conditional constant propa-

gation [1]. The if-branch inside the loop is never taken, and

the function always returns 1.

public static int exampleCC(int a) {

int x = 1;

do {

if (x != 1) {

x = 2;

}

} while (a-- >= 1);

return x;

}

a worklist for further iteration. Once a CFG edge is marked

as reachable, it cannot become unreachable again.

Sparse conditional constant propagation is an optimistic

analysis: When a control flow join point is reached but anal-

ysis information for some of the control flow predecessors is

not yet available, the analysis can optimistically assume that

the corresponding 𝜙 inputs are ⊤ and continue propagat-

ing information under this assumption. If the corresponding

control flow paths are reachable, the algorithm guarantees

that they will be traversed by the analysis at some point. If

at that point the analysis provides a new value for a 𝜙 input,

the optimistic assumption is invalidated, and program parts

are re-analyzed with the new, lowered, information.

Optimistic analyses can discover more information than

pessimistic ones, but they can only guarantee correctness

if the analysis runs to completion, while pessimistic analy-

sis can be interrupted at any time and still provide correct

information [1]. Sparse conditional constant propagation

is optimistic and integrates constant propagation with the

analysis of unreachable code: Unreachable code paths are

never analyzed and, by being associated with ⊤ data flow

information, do not affect the analysis at all.

Listing 1 shows a small example adapted from [1] for

a constant that cannot be found by any sequence of dead

code elimination and simple constant propagation but can be

found by conditional constant propagation. This is because

of a cyclic dependency between data flow and control flow

analysis. To detect x as constant, it must be known that the

assignment statement x = 2 is unreachable. To detect this

statement as unreachable, it must be known that x is con-

stant. This constant can only be found by first optimistically

assuming x to be constant and subsequently verifying that

the assumption was correct.

2.2 GraalVM
GraalVM

1
is a high-performance polyglot virtual machine.

It executes programs written in Java, other languages that

1https://www.graalvm.org/

3
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compile to JVM bytecode, and any other programming lan-

guage implemented using GraalVM’s Truffle language imple-

mentation framework. All input languages are transformed

into a uniform internal representation and compiled to high-

performance native code by the GraalVM compiler. GraalVM

supports both just-in-time (JIT) and ahead-of-time (AOT)

compilation of JVM languages.

2.3 Graal IR
The GraalVM compiler’s intermediate representation (Graal

IR) [4] is based on the Sea of Nodes concept [1]. This IR
represents a program as a directed graph. Each node in the

graph represents an operation. Edges between the nodes

represent data and control dependences. Nodes are doubly-

linked, i. e., from each node we can iterate efficiently both

over its inputs and its usages.

Control flow edges only exist between so-called fixed
nodes that must be strictly ordered because they have side

effects (e. g., memory writes or method calls) or because

they represent control flow transfers (branches, operations

raising exceptions, or control flow merge points). All other

nodes are floating nodes that are only constrained by data

flow dependences. Floating nodes that are not connected

via dependences are not ordered with respect to each other.

Floating nodes are not assigned to any particular basic block.

For final code generation and for certain optimizations, the

GraalVM compiler computes a full schedule of the graph

which assigns all nodes to blocks and imposes a strict order

on them. Scheduling is an expensive operation, therefore

most optimizations should work without a schedule.

Loops in the input program must be reducible, i. e., have a
single loop entry. Graal IR uses a LoopBegin node to repre-

sent this entry point. Exits from the loop are represented as

LoopExit nodes, and backedges are represented by LoopEnd
nodes. Two-way control flow splits are represented as If
nodes (multi-way Switch nodes are also available). The

merging of control flow paths except loop backedges is rep-

resented as Merge nodes.
Graal IR uses SSA form, with 𝜙 nodes at loop begin and

merge nodes, with one input per control flow predecessor.

A 𝜙 node is a floating node but is connected to its fixed

merge point by a control dependence edge. At a loop begin,

the 𝜙 ’s first input is always the initial value on loop entry.

At the point in the compilation pipeline when our constant

propagation runs, the graph is in loop-closed SSA form: Values

defined inside a loop must not be used directly outside the

loop. Instead, special proxy nodes at loop exits mark the

points where a value flows out of the loop.

Figure 2 shows a slightly simplified Graal IR generated

for the method from Listing 1. In calculations, a constant

input is directly shown in the node instead of connecting

the node to the appropriate constant node in order to reduce

the number of edges in the figure.

LoopBegin

If

LoopExitBegin

LoopEnd

Return

ValueProxy

If

Merge

Begin Begin

End End

Phi (x')

Phi (x)

C(1)

C(2)

!= 1

Phi (a)

- 1

P(a)

>= 1

B0

B1

B2 B3

B4

B5

Start

B6

Figure 2. IR for the example presented in Listing 1.

A red dotted downward arrow represents a control flow

successor, a black upward arrow depicts a control depen-

dence, while a blue upward arrow with an empty head repre-

sents a data dependence. All nodes with rounded corners are

fixed nodes and can therefore be directly attributed to a basic

block, denoted by a dashed green outline enclosing multiple

nodes. All nodes with sharp corners are floating nodes. Light

gray nodes denote constants (C) or method parameters (P).
The LoopEnd node causes a jump back up to the LoopBegin

node with which it is connected via a control dependence

edge. The LoopExit node denotes control flow leaving the

associated loop. ValueProxy nodes, which are connected

with a loop exit, are inserted for values used inside the loop

before any usage outside the loop.

The GraalVM compiler already performs constant propa-

gation, but does not compute optimistic fixed points for loops.

It also includes a general data flow analysis framework, but

only for fixed nodes. This is sufficient for implementing its

4
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Partial Escape Analysis [6] but is not appropriate for anal-

yses that reason about floating arithmetic nodes, as would

be needed for constant propagation. The GraalVM compiler

currently has no data flow analysis framework that would

take floating nodes into account. This work is the first step

in a project to formulate such a general framework without

needing to compute a schedule of the graph.

3 Approach
The approach presented in this paper aims to minimize anal-

ysis time of the graph by only lazily iterating over the parts

of the graph relevant for finding constants while maintaining

the power of Conditional Constant Propagation (CCP). This

is in stark contrast to previous algorithms like Sparse Condi-
tional Constant Propagation (SCCP) and Sparse Simple Con-
stant Propagation (SSCP) which evaluate the entire (reachable
portion of) the graph [7]. Additionally, while SCCP in the

form described in the paper by Wegman and Zadeck [7]

would require us to calculate a full schedule and to subse-

quently iterate over the entire reachable portion of the graph,

our Lazy Sparse Conditional Constant Propagation (LSCCP)

algorithm works directly on an unscheduled version of the

Sea of Nodes representation.

Leaving parts of the graph unevaluated means that LSCCP

needs to deal with unevaluated values as inputs for nodes

and cannot assume that such nodes will be analyzed again

later when complete information about all reachable inputs

is available. Thus it needs to discern whether an input is

unevaluated because the analysis has not reached it yet, or

because this input will never generate a constant value and

will therefore never be evaluated throughout the analysis.

The idea to mitigate this problem is to generally evaluate

the program graph in a forward traversal order consistent

with the order of execution which we refer to as a ‘top-down’

order (Section 3.5). This allows assumptions substituting

missing information about inputs to be made safely.

Since LSCCP operates on an unscheduled Sea of Nodes

representation where no global order of operations is known,

we designed a priority metric for the work list based only on

the available information. The priority metric enforces an

order at critical points of the analysis where value flow anal-

ysis and reachability analysis influence each other (𝜙 nodes

and control split nodes). This allows value flow analysis and

reachability analysis to be kept up to date with each other

to provide each other with the best information possible.

Unlike classical data flow analysis where the order of

evaluation is only relevant for the speed of the analysis, in

our algorithm the order in which nodes are evaluated is

essential for correctness.

3.1 Evaluation Domains
LSCCP uses two separate lattices to represent information

in its value flow and reachability analysis respectively.

Value lattice. Values are represented by a lattice as in

SCC. To avoid confusion with the values of the reachability

lattice, we refer to the value lattice’s ⊤ element as UNSEEN
(no value known yet), the middle tier values as CONSTANT,
and the ⊥ element as UNRESTRICTED (no constant can be

guaranteed). We use the name UNSEEN as a shorthand: It de-

notes both nodes that have never been visited by the analysis

as well as nodes that have been visited but that have UNSEEN
inputs.

Reachability lattice. In LSCCP all CFG edges are an-

notated with a reachability. Unlike SCC’s two-tiered CFG

reachability lattice, our reachability lattice contains three

elements: UNKNOWN (⊤), UNREACHABLE and REACHABLE (⊥).
Using a lattice we can use logic in the reachability analysis

that is similar to the value flow analysis when dealing with

unevaluated inputs.

3.2 General Value Propagation
Initially all nodes in the graph are marked as UNSEEN. Due
to the fact that value propagation starts at constants and

not the CFG entry, evaluation may hit cases where a node’s

input is UNSEENwhile it would be UNRESTRICTED if the input
had been evaluated.

For example, consider evaluating the inequality check

node representing the comparison Phi(𝑥) ≠ 1 in the graph

in Figure 2. The first time we encounter this node in the

analysis, one input is a constant 1 while the other input

(Phi(𝑥)) is still UNSEEN. We do not want to prematurely lower

this to UNRESTRICTED since the UNSEEN input will become a

constant later on, in which case we will want to produce a

constant value for this node.

When visiting such a node, we treat all UNSEEN inputs

as UNRESTRICTED. This still allows us to correctly treat an

expression like a * b as 0 if a has been evaluated to 0 while b
is still marked as UNSEEN. However, if any input was UNSEEN
and the result of the visit would be UNRESTRICTED, we still
propagate an UNSEEN result to signal that the result may be

lowered to a constant later.

This allows us the flexibility to revisit nodes while pre-

serving the overall invariant that a node’s lattice value may

only change to a lower value. In contrast to SCCP, an UNSEEN
value for a node does not imply that the node has not been

visited by the analysis yet.

3.3 Handling of 𝜙 nodes
The evaluation of 𝜙 nodes depends on both the value lattice

elements for the 𝜙 ’s inputs and the reachability lattice ele-

ment of the control flow edge associated with each input. For

inputs coming from edges marked UNKNOWN, an assumption

needs to be taken to evaluate the 𝜙 node. In general, a 𝜙

node can be evaluated using a pessimistic or an optimistic as-
sumption regarding reachability. This means that incoming

control flow edges with UNKNOWN reachability can be either

5
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pessimistically interpreted as REACHABLE or optimistically

interpreted as UNREACHABLE. A pessimistic assumption only

retains maximum precision when we are sure that UNKNOWN
edges will not be lowered to UNREACHABLE in the future.

3.3.1 Straight-Line𝜙 nodes. Generally non-loop𝜙 nodes

are evaluated pessimistically. The top-down order of evaluat-

ing the graph ensures that the reachability information has

already been calculated when evaluating the 𝜙 node, given

that this 𝜙 node does not depend on backedges for which

reachability can not yet be known and is subject to change.

To show why we need pessimistic evaluation here, consider

the following structure inside a loop:

if (condition)

if (true)

x1 = 1;

else

x2 = 2;

else

x3 = 3;

x4 = 𝜙(x1, x2, x3);

Here condition is not constant and will never be visited

by our analysis because it cannot be evaluated at compile

time, thereby leaving the reachability of the x3 input of the 𝜙
instruction UNKNOWN. The inner condition can be evaluated,

leaving x1 as REACHABLE and x2 as UNREACHABLE. If we now
optimistically assumed x3 to be UNREACHABLE, we would

propagate the constant 1 into x4 which is an incorrect result.

We would not recover from this mistake because condition
will stay unevaluated throughout the analysis, thereby not

triggering a reevaluation.

For a pessimistic evaluation to be admissible, it is required

that UNKNOWN inputs are stable, which is the case for straight-

line 𝜙 nodes as described in Section 4.2.

3.3.2 Loop 𝜙 nodes. Our handling of loop 𝜙 nodes com-

bines both optimistic and pessimistic evaluation: We treat

them optimistically when first entering a loop, but pessimisti-

cally after visiting the loop body.

In contrast to non-loop 𝜙 nodes, final reachability infor-

mation for loop 𝜙 nodes is not yet available when a loop 𝜙 is

evaluated for the first time when reaching a loop begin node.

As the running example from Listing 1 demonstrates, a pes-

simistic assumption at this point would lose precision: Evalu-

ating 𝑃ℎ𝑖 (𝑥) pessimistically would never allow the CONSTANT
1 to enter the loop, thereby inhibiting the path through B2

to be found unreachable. This discovery is needed, however,

to conclude that x is not modified inside the loop. Therefore,

the loop 𝜙 must be evaluated optimistically to find that x is

constant.

On the other hand, SCCP’s optimistic analysis relies on

the fact that every reachable block in the program will be

visited, and every reachable control flow edge will be explic-

itly marked as reachable during the analysis. This allows the

analysis to find the final value for a loop 𝜙 once the reach-

ability information has stabilized. We cannot do the same

kind of optimistic analysis since our analysis does not visit

and mark all reachable control flow edges.

Therefore, we handle loop 𝜙 nodes as follows: When a

loop is first entered, the loop begin’s 𝜙 nodes are evaluated

optimistically. This means that we assume that any UNKNOWN
backedge may in fact be unreachable, and we ignore the

associated input values. This allows us to propagate any

constants entering the loop into the first loop iteration. At

the same time, we schedule any loop 𝜙 with a not-UNSEEN
lattice value for reevaluation after the entire loop (see Sec-

tion 3.5.2). The organization of the worklist guarantees that

the entire body is evaluated as far as possible before revisit-

ing the loop 𝜙 nodes. At this point, the reachability of any

UNKNOWN loop ends is guaranteed to be final (Section 4.2), and
the loop 𝜙 node can safely be evaluated pessimistically, i. e.,

assuming that any still UNKNOWN backedge is now reachable.
This may replace optimistically assumed constant values

with the correct UNRESTRICTED value.

3.4 Reachability Propagation
To detect conditional constants, in addition to value flow,

reachability needs to be taken into account. This information

is tracked on a per edge basis because tracking it on a per

block basis can lead to imprecisions, inhibiting detection

of constants as shown by Click [1]. Processing, however, is

done on blocks instead of edges by taking the reachabilities

of the block’s predecessor edges and its input values into

account to calculate the reachability of its successor edges.

For a block to be considered reachable, it either has to

be the start block of the CFG, or it has to have at least one

predecessor edge that is not marked as UNREACHABLE. We can

ignore backedges in this case because they can only occur

on loop begins which have to be traversed to reach these

backedges in the first place.

If a block has more than one successor, it must end with a

control split node. In this case, the control split node is eval-

uated given its inputs and the successor edges are marked

with the appropriate reachability lattice element. Similar to

value flow explained in Section 3.2, immediately lowering

successor edges from UNKNOWN to REACHABLE while prede-

cessor edges are still UNKNOWN may inhibit future discovery

of UNREACHABLE edges later on. Therefore, if an edge is con-

sidered reachable while predecessor edges are still UNKNOWN,
we propagate UNKNOWN to signal that this edge might still be

lowered later on.

To ensure that the control split nodes to be evaluated

do in fact have up-to-date information from the value flow

analysis, instead of immediately propagating reachability

through them, they are scheduled using the worklist. While

propagating reachability along the CFG, the reachability of

6
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input edges of 𝜙 nodes may change. This new information

triggers a reevaluation of all affected 𝜙 nodes.

3.5 Top-Down Analysis of the Graph
LSCCP evaluates nodes directly involved or closely related

to control flow (such as 𝜙 nodes) in a forward traversal order

consistent with the order of execution. Loops are analyzed to

completion before information is propagated out of the loop,

and predecessor blocks of control flow merges are evaluated

before the merge. It creates conditions suitable for making

assumptions about unevaluated inputs and to ensure that

the best correct result can be calculated. This is achieved by

the use of a priority-ordered worklist.

In the presentation that follows, lower numeric values

denote higher priorities.

3.5.1 Base Priority Metric. In a quick pass over the CFG,

a base priority is calculated for each block. This base priority

is based on the minimal visit depth of a CFG block in a re-

verse postorder traversal [2]. A block’s depth is calculated by

incrementing the maximum of the depths of its predecessors

by 1, ignoring loop backedges. The start block has a depth

of 0.

The LSCCP base priority metric follows the same structure

but extends it by adding one extra condition: If a block is a

loop exit, its base priority does not only depend on its im-

mediate predecessors but also all loop ends of the associated

loop. All these loop ends are therefore regarded as predeces-

sors of the loop exit while calculating the base priority. This

effectively moves the loop exit below the entire loop in the

priority.

B1

B2 B3

B4

B5

B6

0

1

2

3

4

B0

5

Figure 3. CFG for the IR presented in Figure 2.

Recalling the example introduced in Section 2.1, Figure 3

depicts the CFG from Figure 2. To the right of the CFG, the

base priority of the blocks in the given line is given. Blocks

that do not affect each other (in this example B2 and B3) can

have the same base priority since the order in which they

are processed does not affect the result of the analysis. The

loop exit block B6 has a lower priority than any block in

the loop, including the backedge block B5. This ensures that

the loop is fully evaluated before evaluating any usages of

values which depend on the given loop.

3.5.2 Priority-Ordered worklist. LSCCP uses a single

priority-orderedworklist for both value flow and reachability

analysis. This worklist internally consists of two queues.

The first one is an unordered queue used for scheduling

pure value flow nodes, such as arithmetic nodes. Elements

are first removed from the unordered queue. Only if this

queue is empty are elements from the second queue taken.

Whenever a node from either worklist is visited, its usages

are enqueued in the appropriate worklists if the analysis

information associated with the current node changed.

This second queue is a priority queue. Elements are visited

highest priority first (lowerst numeric priority value first).

BEGIN BODY SPLIT RE-PHI

Base Priority Class nClass n-1 Class n+1

......

n 4+1 n 4+2 n 4+3n 4

BEGINRE-PHI

Figure 4. Internal layout of a block’s base priority class.

The actual priorities used in the second queue are laid out

as presented in figure 4. To maintain an approximation of the

order of nodes within a basic block, the block’s base priority

𝑛 is quadrupled to allow us four priority classes per block. A
priority class is a set (an equivalence class) of nodes with

the same numeric priority value. We are not interested in

the ordering of nodes within a priority class, and we do not

need to represent the classes as explicit data structures. We

only need nodes in higher-priority classes to be processed

before nodes in lower-priority classes, which is ensured by

the queue.

Nodes at the start of a CFG block and 𝜙 nodes are sched-

uled in the BEGIN class of their block’s base priority class to

ensure they are processed before any nodes in the current

block that might use the value produced by this node.

Normal fixed nodes that can produce constant values (e. g.,

fixed division nodes that may raise an exception) are then

scheduled using the BODY class. Finally, control split nodes

that terminate blocks are scheduled after all fixed nodes

in a block in the SPLIT class to ensure that all values that

originate in the current block, in particular the condition

controlling the split, are evaluated before the split itself.

In addition to scheduling a node given its base priority

and position within a block, the worklist offers a second

scheduling mode for 𝜙 nodes on loop begins (loop 𝜙 nodes

for short). As will be discussed below (Section 3.3.2), loop 𝜙

nodes must be re-evaluated after the loop body has been

fully evaluated. Therefore every loop 𝜙 is scheduled again in

the RE-PHI class in the loop’s last loop end (backedge) block

in the priority queue.

7
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Recalling the IR graph from Figure 2, Phi(𝑥) is initially
scheduled with priority 4, which is the BEGIN class of the

base priority class 1 of its associated loop begin. Scheduling

the If node with the condition x==1 shows why maintaining

an order within a basic block is necessary. The If node uses

a value which depends on Phi(𝑥) in the same basic block.

Therefore the If needs to be evaluated after the given 𝜙

node in the SPLIT class, resulting in a scheduling priority

of 6. To reschedule Phi(𝑥), we first obtain the maximum base

priority class of any associated loop end (which is 4 for B5).

Then, to ensure we capture all values produced by this block,

we schedule it using the RE-PHI class resulting in an effective
priority of 19.

If the node Phi(𝑎) were ever to be scheduled, it would

receive the same priority as Phi(𝑥) because their relative

positions in the graph are the same. This collision does not

matter: Control split nodes and𝜙 nodes that receive the same

priority are guaranteed to be independent and can therefore

be evaluated in any order. In practice, the data structure used

is a priority queue, therefore nodes with the same priority

are evaluated in a first-in-first-out manner.

The worklist keeps track of currently scheduled nodes,

ensuring each node only exists in the list once. If a node is

trying to be scheduled a second time with a different priority,

the original priority is kept.

Overall our priority-ordered worklist captures the same

relative ordering information between nodes that we would

need from a schedule of the graph. However, as we only

need ordering information between certain fixed nodes and𝜙

nodes, and as nodes are only added to the priority queue on

demand as required by the analysis, the computation of this

ordering information is much cheaper than the computation

of a full schedule.

3.6 Putting Everything Together
Finally, we present the full Lazy Sparse Conditional Constant

Propagation in Algorithm 1.

We start by setting the value lattice elements of all nodes

(denoted by 𝜆(𝑛𝑜𝑑𝑒)) to UNSEEN and the reachability lattice

elements of all CFG edges (denoted by Λ(𝑒𝑑𝑔𝑒)) to UNKNOWN.
Then we initialize the worklist with all constant nodes in the

graph. LSCCP processes nodes until the worklist is empty.

Finally, we replace all nodes for which we found new con-

stants.

3.7 Example of LSCCP analysis
In this section we present a full run of LSCCP on the running

example program with its graph shown in Figure 2. Table 1

shows the states of the worklist throughout the example

run. The worklist is separated into the value queue holding

floating arithmetic nodes, and the priority queue holding

fixed nodes as well as 𝜙 and proxy nodes.

Algorithm 1 LSCCP

1: procedure LSCCP
2: initialize all nodes with UNSEEN
3: initialize all CFG edges with UNKNOWN
4: initialize worklist with all constants

5: while worklist has items do
6: 𝑐 ← worklist .next ()
7: if 𝑐 is a 𝜙-node then
8: ProcessPhi(𝑐)

9: else if 𝑐 is a control flow node then
10: ProcessControlFlowNode(𝑐)

11: else
12: ProcessValueFlowNode(𝑐)

13: replace all nodes found to be constant

14: procedure ProcessPhi(𝑝ℎ𝑖)
15: if 𝑝ℎ𝑖 is a loop 𝜙 node ∧ 𝜆(phi) = UNSEEN then
16: 𝑛𝑒𝑤 ← 𝜆(first input of phi)
17: reschedule phi if lowered
18: else
19: 𝑛𝑒𝑤 ← meet(𝜆(reachable inputs of phi))
20: UpdateValueLatticeElement(phi, new)
21: procedure ProcessControlFlowNode(flow)
22: for all 𝑒 in successor edges of flow do
23: if CFG block of flow is reachable then
24: new ← true if flow is no control split or 𝑒

is reachable according to

𝜆(flow.condition) else false
25: else
26: new ← false
27: UpdateReachability(𝑒, new)
28: procedure ProcessValueFlowNode(val)
29: new ← evaluation of val given its inputs

30: UpdateValueLatticeElement(val, new)

31: procedure UpdateValueLatticeElement(node, elem)

32: if elem < 𝜆(node) then
33: 𝜆(node) ← elem
34: schedule usages of node
35: procedure UpdateReachability(edge, reachable)
36: target ← target of 𝑒

37: if reachable is false then
38: new ← UNREACHABLE
39: else if Λ(𝑒) = UNREACHABLE then
40: new ← REACHABLE
41: else return
42: Λ(edge) ← new
43: schedule 𝜙-nodes at the start of target
44: schedule target
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Table 1. Worklist states throughout the example run

Step Current Node Evaluation result Value Queue (after) Priority Queue (after)

0 (initial state) C(1), C(2)

1 C(1) 1 C(2), ≠1, -1, ≥1 4: 𝑃ℎ𝑖 (𝑥)
2 C(2) 2 ≠1, -1, ≥1 4: 𝑃ℎ𝑖 (𝑥), 12: 𝑃ℎ𝑖 (𝑥 ′)
3 ≠1 UNSEEN -1, ≥1 4: 𝑃ℎ𝑖 (𝑥), 12: 𝑃ℎ𝑖 (𝑥 ′)
4 -1 UNSEEN ≥1 4: 𝑃ℎ𝑖 (𝑥), 12: 𝑃ℎ𝑖 (𝑥 ′)
5 ≥1 UNSEEN 4: 𝑃ℎ𝑖 (𝑥), 12: 𝑃ℎ𝑖 (𝑥 ′)
6 𝑃ℎ𝑖 (𝑥) 1 ≠1 12: 𝑃ℎ𝑖 (𝑥 ′), 19: 𝑃ℎ𝑖 (𝑥)
7 ≠1 true 6: If(B1), 12: 𝑃ℎ𝑖 (𝑥 ′), 19: 𝑃ℎ𝑖 (𝑥)
8 If(B1) Λ(B1→ B2) := UNREACHABLE 8: Begin(B2), 12: 𝑃ℎ𝑖 (𝑥 ′), 19: 𝑃ℎ𝑖 (𝑥)
9 Begin(B2) Λ(B2→ B4) := UNREACHABLE 12: 𝑃ℎ𝑖 (𝑥 ′), 15: If(B4), 19: 𝑃ℎ𝑖 (𝑥)
10 𝑃ℎ𝑖 (𝑥 ′) 1 15: If(B4), 19: 𝑃ℎ𝑖 (𝑥), 20: ValueProxy
11 If(B4) 19: 𝑃ℎ𝑖 (𝑥), 20: ValueProxy
12 𝑃ℎ𝑖 (𝑥) 1 20: ValueProxy

13 ValueProxy 1 21: Return

14 Return

Steps 0–2. First we start by adding the two constant nodes
C(1) and C(2) to the worklist. As these nodes are neither

fixed nodes nor 𝜙 nodes, they are inserted into the value

queue of the worklist. Now we remove C(1) from the work-

list, set its value to a CONSTANT 1 and schedule all its usages.

The inequality, subtract and greater-equal nodes are sched-

uled in the value queue of the worklist (recall that for brevity

the usage of C(1) in these nodes was not indicated by edges),

while Phi(𝑥) is scheduled in the priority queue with priority

4 (= 1 · 4 + 0, see Section 3.5.2). Evaluating C(2) similarly

causes its value to be set to a CONSTANT 2, and its usage

Phi(𝑥 ′) is scheduled with priority 12 (= 3 · 4 + 0).

Steps 3–5. Evaluating the previously scheduled inequal-

ity, subtract and greater-equal nodes yields UNSEEN: Each of

these nodes has one UNSEEN and one constant input. Eval-

uation results in an unknown value which is propagated

as UNSEEN to signal the possibility that the value may still

become a constant in the future (see Section 3.2). Because

this does not change the lattice values for these nodes, their

usages are not scheduled.

Step 6. Now the value queue of the worklist is empty,

therefore we remove the first element of the priority queue,

which is Phi(𝑥). As explained in Section 3.3.2, we optimisti-

cally assume the second input of Phi(𝑥) to be UNREACHABLE
and propagate the CONSTANT 1 through this node. To check

this assumption later on, we reschedule Phi(𝑥) with priority

19 (= 4 · 4+3). Because we lowered the value of Phi(𝑥), all its
usages will be scheduled, causing the inequality and Phi(𝑥 ′)
to be scheduled. Since Phi(𝑥 ′) already exists in the worklist,

it is not inserted a second time (see Section 3.5.2).

Step 7. The next node to be evaluated is the inequality

node. This node now has two constant inputs and can be

evaluated to a CONSTANT true, scheduling the associated If
node with priority 6 (= 1 · 4 + 2).

Steps 8–9. Evaluating the If node scheduled right before,

we see that the false branch of this condition is unreachable

because of the CONSTANT true input. Therefore, we set the
edge from B1 to B2 to UNREACHABLE and schedule the begin

node of B2 with priority 8 (= 2 · 4 + 0) to represent the entire
block for reachability analysis, see Section 3.6. This node

is immediately removed from the worklist and since the

only predecessor edge is UNREACHABLE, the successor edge
from B2 to B4 is marked UNREACHABLE and the If node at

the end of B4 is scheduled (see Section 3.6) with priority

15 (= 3 · 4 + 3) to represent B4 for reachability analysis.

Additionally, 𝑃ℎ𝑖 (𝑥 ′) at the start of B4 would be scheduled

if it were not already in the worklist.

Step 10. Now Phi(𝑥 ′) is the next node to be evaluated. Its

inputs are a CONSTANT 2 on the first input and a CONSTANT 1

on the second input. However, the first input value is con-

sidered unreachable because it corresponds to the CFG edge

from B2 to B4, therefore the CONSTANT 1 from the second

input can be propagated. We would schedule its usage (i.e.

the loop Phi(𝑥) with priority 4), but because it is already in

the worklist with priority 19, we do not re-schedule it. The

second usage of Phi(𝑥 ′) is the ValueProxy node which gets

scheduled in its loop exit block with priority 20 (= 5 · 4 + 0,
see Section 5).

Step 11. The next node to be evaluated is the If node at
the end of the basic block B4. B4 is considered reachable

because it does not exclusively have UNREACHABLE edges as
predecessor edges (the edge from B2 to B4 is UNKNOWN which
is interpreted as REACHABLE, see Section 3.4). This in combi-

nation with the UNSEEN input coming from the greater-equal

9
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node results in both successor edges being considered reach-

able, resulting in no change to their associated reachability

lattice level.

Step 12. Then Phi(𝑥) is reevaluated to check if the pre-

vious assumption for this node still holds. Both incoming

control flow edges are UNKNOWN and therefore considered

reachable, but both inputs to the 𝜙 are also associated with a

CONSTANT 1. Therefore, this node is evaluated to CONSTANT 1
which confirms our optimistic assumption made earlier and

the value of Phi(𝑥) is not lowered further.

Steps 13–14. The next node to process is the ValueProxy
which propagates its input CONSTANT 1, resulting in the

Return node to be scheduled with priority 21 (= 5 · 4+ 1, see
Section 3.5.2). Finally, the Return node is processed. Since it

does not produce a value it is not analyzed further, thereby

leaving the worklist empty.

End. This concludes the analysis for conditional constants.
We found four nodes (Phi(𝑥), inequality, Phi(𝑥 ′) and Value-
Proxy) that can be replaced with constants at their usages.

Additionally we found two CFG edges (B1 to B2, B2 to B4)

and one basic block (B2) to be unreachable. These can be

eliminated from the CFG.

4 Correctness and Precision
This section provides reasoning for the assumptions made in

Section 3 that are needed to ensure that LSCCP finds at least

as many constants as SCCP while not erroneously reporting

values as constant.

4.1 Isolated Analyses
Looking at the general value flow analysis presented in Sec-

tion 3.2 in isolation, we can conclude that for any given input,

this analysis produces a correct result that is at least as high

as the one generated by SCCP when interpreting UNSEEN as

UNRESTRICTED, because we propagate constants as soon as

possible while never blocking future analysis. All evaluation

functions are designed to lower a value from UNSEEN as soon
as possible without blocking future discovery of constants.

If at any point in the analysis all inputs of a general value

flow node were not UNSEEN and no CONSTANT value can be

calculated, the evaluation function is required to result in

UNRESTRICTED for all future queries, to uphold the assump-

tion that during the evaluation of the first loop iteration we

have the maximum amount of values assumed to be constant

for Section 4.2.

Inspecting the pure reachability analysis (without control

splits), it is easy to conclude that propagating the blocks

reachability onto the successor edge if the block itself is

considered unreachable, generates a correct result for these

edges when interpreting UNKNOWN as REACHABLE. Since any
unreachable edge must transitively depend on a constant

value which in turn again depends on a constant, our analysis

will find all of these edges.

4.2 Combination of value and reachability analyses
Reachability analysis and value flow analysis interact at con-

trol split nodes and 𝜙 nodes. Control splits depend on the

reachability of their predecessor edges as well as the condi-

tion or value on which they split to produce results in the

reachability analysis. The analysis of 𝜙 nodes depends on

the reachability of the predecessor edges of their connected

Merge as well as their input values to produce a result in the

value flow analysis. To analyze such nodes without gener-

ating incorrect results while still finding at least as many

constants as SCCP, we need to be able to draw reliable conclu-

sions about the true values of UNSEEN and UNKNOWN inputs.

Control splits. These nodes are handled very similarly

to pure reachability analysis (recall Section 3.4). Given the

value which the control split depends on is correct, it is easy

to see that evaluation of these nodes yield the best correct

result. The ordering in the worklist in combination with

the initial optimistic evaluation of the loop 𝜙 nodes (recall

Section 3.3.2) ensure that, any of the split’s successor edges

that is not UNREACHABLE on the first evaluation, will always

be reachable throughout the analysis.

Straight-line 𝜙 nodes. Straight-line 𝜙 nodes can safely

assume that during their first evaluation all inputs associated

with ⊤ lattice elements will stay that way throughout the

analysis due to the worklist ordering, the initial optimistic

evaluation of loop 𝜙 nodes and the evaluation functions of

general value flow analysis as shown in Section 4.1. Such in-

puts can therefore be safely assumed as their ⊥ counterparts

resulting in a correct result that is at least as good as the one

produced by SCCP.

Loop 𝜙 nodes. When re-evaluating a loop 𝜙 node we rely

on the fact that during the first evaluation of the loop, we

work with the maximum amount of values that are assumed

to be constant (which is ensured by the initial optimistic

evaluation of said loop 𝜙 node), which would cause all CFG

edges that might at some time be UNREACHABLE to be low-

ered to this reachability lattice element. This allows us to

safely conclude that all edges that are UNSEEN after the first

evaluation of the loop, are sure to stay that way throughout

the analysis, which we rely on as mentioned in Section 3.3.2.

This creates the necessary preconditions to treat the loop 𝜙

node as a straight-line 𝜙 node upon re-evaluation, meaning

it can be evaluated pessimistically, guaranteeing correctness

upon convergence without lowering precision below SCCP.

4.3 Conclusions
Because all parts of the analysis end up generating correct

results we can conclude that the analysis as a whole gen-

erates a correct result. Termination is guaranteed because
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the transfer functions for all nodes are monotone and the

lattices have finite height.

Because all lattice elements that are UNSEEN or UNKNOWN
throughout the analysis (which are the only lattice elements

in the analysis for which this assumption is taken) can be

safely assumed as their ⊥ counterparts, and because the

value lattice tracks at least as many elements as SCCP, the

result generated by LSCCP is at least as good as the one

generated by SCCP.

5 Implementation
We developed a prototype implementation of the LSCCP

algorithm in the GraalVM compiler.

In our implementation, we assign priorities to loop exit

nodes and the associated proxies (see Section 2.3) so that

these are only visited once the loop’s fixed point has been

reached. Otherwise, if optimistic constant values or reacha-

bility information were to leak out of loops, we would waste

effort analyzing code after the loop which would have to be

re-analyzed once the fixed point is reached.

Additionally, in the procedures UpdateValueLatticeEle-

ment and UpdateReachability, checks were inserted to

guarantee that monotonicity is upheld. In UpdateValueLat-

ticeElement 𝑒𝑙𝑒𝑚 ≤ 𝜆(node) must hold, otherwise mono-

tonicity would be violated while in UpdateReachability

the condition reachable ∨ Λ(𝑒𝑑𝑔𝑒) ≠ REACHABLE must hold

for monotonicity to be upheld.

5.1 Four-tier Value Lattice
In our implementation, the data representation of the value

lattice uses the GraalVM compiler’s existing ‘stamp’ infras-

tructure for representing ranges of values. While we do not

propagate ranges in general, we use the fact that integer

stamps provide a ‘known to be nonzero’ flag. Thus, in con-

trast to previous constant propagation algorithms which

usually operate on a value lattice with three tiers (as pre-

sented in Section 2.1), our value lattice for integers actually

has four levels: An extra level below all nonzero constants is

added expressing that a value is not known to be constant

but known not to be zero. Similarly, we track floating point

values with a four-level lattice with a ‘not-NaN’ level, as well

as object references with a ‘not-null’ level. We refer to these

not-zero, not-NaN, and not-null values as the ‘non-special’

tier in the lattice.

The additional non-special tier is useful for evaluating

common conditions such as value != 0 (e. g. before a divi-

sion) or reference != null (before a memory access that

would otherwise raise an exception). The non-special tier is

also useful for tracking Boolean values. In the JVM, Booleans

are internally treated as 32-bit integer values where true
is defined as any value != 0.2 Therefore, true values are
harder to track because they may not have a constant value

2https://docs.oracle.com/javase/specs/jvms/se22/jvms22.pdf section 2.11.1

associated with them internally, but the non-special tier in

the value lattice allows for easy reasoning.

non-nullnon-zero

null0. . . -1 . . .1

.  .  .

. . .

Figure 5. Four-tiered value lattice used by LSCCP.

The four levels described above are illustrated in Figure 5.

The lattice elements between ⊤ and ⊥ are color-coded to

represent types. Integer values are outlined in orange (solid)

while object references are outlined in green (dashed). The

three dots on the left-hand side indicate that there are more

types (e.g. floating point values) in this lattice than shown

in the figure.

5.2 Conditional Nodes
The GraalVM compiler has conditional nodes representing

the computation condition ? trueValue : falseValue,
which are a fusion of a control split followed by an immediate

merge and a phi node. This floating node poses an interesting

problem because it has no ties into the control flow portion

of the graph and is therefore hard to schedule with priority

using the worklist.

While in the case of 𝜙 nodes, the condition and its asso-

ciated control flow are guaranteed to be evaluated before

the 𝜙 node, this is not the case with conditional nodes. Con-

sider the case of a conditional condition ? 1 : 2, where
the condition is still associated with the UNSEEN state. We

might want to propagate the non-zero value for the result of

this expression. However, if the condition became a known

constant later, we would have to change this result from

non-zero to a constant. This would violate monotonicity, as

the non-zero tier is below the constants in the lattice, and

values must only change to lower lattice elements.

To resolve this issue, we prevent the evaluation of a con-

ditional node to non-zero if its condition is associated with

UNSEEN. While this may inhibit further discovery of values,

tests showed that this case rarely shows up in practice. It

would be possible to handle this case precisely by adding

another kind of ‘non-zero’ tier above the constant layer in
the value lattice. We decided that this case was not worth

11
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Figure 6. Results obtained for the Renaissance Benchmark Suite.

the extra complexity and prefer the slight imprecision from

propagating UNSEEN instead.

6 Evaluation
Our implementation passes the unit test suite of GraalVM

and the compilation of the entire Java Standard Library.

6.1 Benchmarking setup
We evaluated our implementation of LSCCP on the Renais-

sance benchmark suite
3
. The system used for testing runs

Ubuntu 22.04 on an Intel 11th Gen Intel Core i7-1165G7 pro-

cessor equipped with 64GB of RAM. A command line switch

was built into GraalVM to disable the newly implemented

conditional constant propagation phase to test baseline and

the implementation of LSCCP on the same build. For each

benchmark, warm-up runs are executed, followed by timed

runs which contribute to the final result. The per-benchmark

default number of warm-up and timed runs specified by the

Renaissance benchmarking harness were used in this eval-

uation. In an effort to reduce the effect of noise, the entire

benchmark suite was executed 15 times for both baseline

and LSCCP. Baseline and LSCCP runs were carried out alter-

nately to increase fairness.

3https://renaissance.dev/

6.2 Results
Figure 6 shows average results over the 15 benchmark runs

for the 20 benchmarks of the Renaissance benchmark suite

that are supported on the platform used for testing. The er-

ror bar indicates the standard deviation encountered over all

timed iterations of the 15 LSCCP runs. As expected, LSCCP

performs slightly better (though still mostly within margin

of error) than baseline for most cases. No benchmark has

seen any reliably measurable performance regression. The

mean increase in performance measured over all 20 bench-

marks in this suite was 1.4 % (minimum -0.28 %, maximum

5.25 %, median 1.43 %). LSCCP found on average 0.15 % of

the values in the graphs to be constant, excluding constants

found earlier through non-optimistic constant propagation.

The ‘par-mnemonics’ benchmark has seen the largest per-

formance improvement of 5.25 %. In this benchmark, 0.29 % of

all nodes were newly evaluated to be constant by LSCCP. The

worst performance regression was measured for ‘philoso-

phers’ with 0.28 %, for which only 0.03 % of all nodes were

newly evaluated to constant by LSCCP. Since the conditional

constant propagation phase does not change the graph if

no new constants were found, the difference produced by

LSCCP was negligible for this benchmark. We conclude that

this result is within margin of error to baseline.

Our evaluation also showed that lazy iteration is very

effective, as LSCCP only evaluates 20.5 % of the nodes in the

graph on average. This is a significant improvement over the

12
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previous state of the art, which would evaluate the entire

reachable portion of the graph, which makes up 99.3 % of all

basic blocks in the evaluated benchmarks. For the nodes that

are visited by the analysis, the average number of visits per

node is 1.1, indicating that the analysis quickly converges

towards a fixed point.

Overall our optimization improves peak performance by

an average of 1.4 % over GraalVM’s optimized baseline on

the Renaissance benchmarks, although this is mostly within

the measurement noise on these benchmarks.

6.3 Discussion
As discussed before, GraalVM already performs conditional

constant propagation, but only computing pessimistic fixed

points for loops. Therefore any difference in our results vs.

GraalVM’s baseline analysis can only come from certain de-

generate loop patterns, where our optimistic LSCCP analysis

can prove that the loop will be exited on its first iteration, or

that a variable used in the loop is a loop-invariant constant.

We do not provide a more detailed comparison of the

two approaches: As GraalVM performs its non-optimistic

constant propagation on the fly while simplifying nodes

during other phases, there is no distinct non-optimistic con-

stant propagation phase. Therefore, a more direct compari-

son against GraalVM’s existing constant propagation would

not be possible to do fairly since constant folding and prop-

agation is deeply intertwined with the ‘canonicalization’

cleanups that run many times during compilation. Most com-

piler phases expect the program to be in canonical shape

before they process them. Removing constant folding from

canonicalization would have a very large detrimental im-

pact on most of the compiler. Running a specialized baseline

constant propagation pass at one or a few points in the com-

pilation pipeline would be possible, but it would not make up

for optimization opportunities lost from compiler phases that

were unable to do their work on non-canonical inputs. Any

such restructuring of the compiler would produce entirely

artificial results.

7 Conclusions and Future Work
We presented a formulation of conditional constant prop-

agation in a Sea of Nodes, exploiting the properties of its

floating nodes and carefully organizing the iteration order

of the analysis to connect data flow to control flow. Our ap-

proach features lazy iteration to reduce the portion of the

graph necessary to be evaluated for finding all conditional

constants. The evaluation of our prototype showed that lazy

iteration is very effective, only evaluating 20.5 % of the graph.

In a next step, this analysis could be extended to allow

if and switch statements to generate new data flow facts

in the respective branches for the usages of the values they

depend on. To achieve this, an approximation of a schedule

must be calculated for values those values to find the correct

usages to inject the data flow facts into.

This work is part of a larger project aimed at implement-

ing a general data flow analysis framework in the GraalVM

compiler. To our knowledge, this is the first general data flow

analysis on the data flow component of a Sea of Nodes graph.

Click’s thesis [1] presents a powerful combined analysis that

identifies constants, unreachable code, and congruences be-

tween values in the Sea of Nodes. However, this is a custom

analysis that is not formulated in terms of a general data

flow analysis framework.
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Abstract

Object placement impacts cache utilisation, which is itself
critical for performance. Managed languages o�er fewer
tools than unmanaged languages in the way of controlling
object placement due to the abstract view of memory. On
the other hand, managed languages often have garbage col-
lectors (GC) that move objects as part of defragmentation.

In the context of OpenJDK, Hot-Cold Objects Segregation
GC (HCSGC) added locality improvement on-top of ZGC by
piggybacking on its loaded value-barrier based design. In
addition to the open problem of tuning HCSGC, we identify
a contradiction in two of its design goals and propose LR,
that addresses both these problems.

We implement LR on-top of ZGC and compare it with GCs
in OpenJDK and with the best performing HCSGC con�gura-
tion using DaCapo, JGraphT and SPECjbb2015. While using
less resources, LR outperforms HCSGC in 18 con�gurations,
matches performance in 17, and regresses in 3.

CCSConcepts: • Software and its engineering→Garbage

collection.
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1 Introduction

Garbage collection (GC) provides a natural opportunity to
adjust the placement of objects in memory, taking into ac-
count the complexities of varying lifetimes and access pat-
terns across individual objects, object types and program
phases. The growing gap between processor speed and mem-
ory speed [31] stresses the importance of such movement to
improve cache locality. In this paper, we identify limitations
in a state-of-the-art design for using garbage collection to
improve data locality and demonstrate how to address them
to both improve performance and reduce overhead.
Using GC to improve object locality has been explored

extensively [10, 11, 15, 18, 25, 30], with the Hot-Cold Objects
Segregation GC (HCSGC [33]) being one of the most recent
proposals. HCSGC provides two main ways of improving
locality: 1) it tracks which objects were recently accessed
by mutators—hot objects—and segregates these objects from
cold objects during evacuation and, 2) it piggybacks on ZGC’s
load value barrier based design to have mutators move ob-
jects they access into local allocation bu�ers during GC. The
�rst increases cache utilisation by increasing the probability
that objects on a cache line are accessed. The causes objects
accessed by a mutator to be placed adjacent in access-order
so repeated accesses enjoy good cache locality.

Because HCSGC move objects to improve locality as part
of ZGC’s GC, only objects on sparsely populated pages will
be moved by mutators because ZGC only evacuates sparse
pages. HCSGC supports classifying pages that have mostly
cold objects as sparse (even if they are not sparse) by assign-
ing a weight to cold live bytes or evacuating all pages in the
heap in every GC cycle. How to properly select a weight for
a given program is an open problem and likely no generic
solution exists. However, HCSGC showed that evacuating
all pages in the heap leads to good performance despite the
extraneous copying, as it is built on-top of a concurrent GC.
The drawback is that a substantial number of cold objects
will be moved by GC threads, without any immediate bene-
�ts to locality. Therefore, selecting all pages for evacuation
only works when there is ample of headroom in the machine.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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We present a locality-improving extension to ZGC that
does not need tuning of a threshold value and uses substan-
tially less CPU than HCSGC. We call our system LR. Our
implementation, LR-ZGC, consistently outperforms HCSGC
and incurs less overhead on the system, by copying fewer
cold objects compared to evacuating all pages in the heap,
as the best-performing con�gurations for HCSGC.

1. We identify a contradiction in the goals of the design
of HCSGC that cannot be addressed simultaneously:
moving hot objects to put them in mutator-accessed
order for locality improvements; and moving only ob-
jects on sparsely populated pages to avoid work that
does not lead to memory reclamation (§2.6).

2. We propose LR, which can address both goals simul-
taneously and show how it reduce movement of cold
objects while giving mutators the opportunity to move
any object they access (§3).

3. We evaluate LR through our implementation called
LR-ZGC, which is built on-top of OpenJDK. We com-
pare against existing production-grade throughput-
oriented and latency-oriented collectors on OpenJDK
with benchmarks constrained to large heaps (§§4 to 5).
An artefact containing our implementation can be
found at [23].

2 Background

2.1 The Memory Wall and Cache Locality

Thememorywall [31] refers to the performance gap between
processors and memory. This gap leads to performance being
memory-bound, as the processor spends much of its time
waiting for the much slower memory to deliver data. Cache
memories can often hide these latencies by taking advantage
of the temporal locality (re-using the same value within a
short time) and spatial locality (using values that are close to-
gether in the address space within a short time) of programs.
Data that can be served from cache is retrieved several orders
of magnitude faster than from main memory.
Performance-sensitive programming often involves opti-

mising the layout of data structures to ensure cache friendli-
ness. This may involve storing values that are used together
adjacently in memory or changing the order of loops to
increase data reuse. Such optimisations are complex, as pre-
dicting the access patterns critical for performance can be
di�cult and may vary between phases of a program or be
determined by user input. Even if a priori knowledge can
be provided by an oracle, constructing the perfect memory
layout is an NP-complete problem [24], making it impossible
to construct a general algorithm that can optimally solve this
problem. Automated techniques for improving cache perfor-
mance show promising results [8, 10, 11, 13, 18, 25, 30, 33].
In languages where the programmer cannot explicitly in�u-
ence object placement in memory, automated techniques are
important for cache friendliness.

2.2 Creating and Maintaining Cache Locality

The combination of application access patterns and how the
runtime allocates and moves objects determines the data
locality and cache performance. For example, applications
frequently access objects in the order they were created,
suggesting that allocators should make an e�ort to allocate
objects in address order based on object creation order. In-
deed, Abuaiadh et al. [1] showed that disturbing this order
could drastically reduce application throughput and Nor-
linder et al. [22] showed that keeping object creation order
improves throughput by 53% and reduces cache misses by
79% in the sun�ow benchmark in DaCapo [4].

Bump-pointer allocation is common inmanaged languages,
gives good locality and deliver high allocation throughput. It
maintains a pointer to the beginning of free space and alloca-
tion “bumps” the pointer by the requested size. This scheme
has gained popularity not only because of its simplicity but
also its implication for object locality. If an application ac-
cesses objects in the order they were created, bump-pointer
allocation gives rise to good locality by design.

Using GC to moving objects during garbage collection to
improve locality is well-documented [2, 13, 33] and there are
several proposals to improve the organisation of objects in
memory during garbage collection. For example, Blackburn
et al. [3] found that copying objects in depth-�rst order rather
than in breadth-�rst order in a copying collector yields better
performance, and Courts [13] and Yang et al. [33] improve
throughput by letting mutators move hot objects.

2.3 Barriers and their Use to Detect Access Patterns

Concurrent GC permits garbage collection without stopping
the program. This requires coordination between the pro-
gram and the collector. This coordination is opaque to the
programmer but may introduce performance regressions.
One technique for such coordination is by inserting barriers

in the programs. Barriers force a program to interact with
the collector at key places to ensure correctness. There are
di�erent types of barriers with di�erent trade-o�s in over-
head and capabilities. Yang et al. [35] and Blackburn and
Hosking [5] have studied the overhead of di�erent barriers
and show load barriers, barriers that are inserted around
loads of references from the heap, are more expensive than
write barriers, inserted in stores of references to the heap.
The fundamental reason for this is that programs tend to
have more reads than writes.
Load barriers enable evacuation concurrently with appli-

cation threads. In the context of cache locality, load barriers
can provide information on the mutators’ access patterns
and permits objects to be moved in the application’s access
order. Previous work has successfully used information ob-
tained from load barriers to group objects concerning their
access frequency [18, 33] and temporal use together [11].
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2.4 Compressed Pointers and Cache Performance

Most systems use a 64-bit addressing architecture. While
this increases the addressable memory, it incurs a 2× over-
head on every pointer in memory (64 bits instead of 32 bits),
regardless of whether the application needs the additional
addressable memory. Venstermans et al. [29] showed that
Java heaps grew by 40% when transitioning from 32-bit to
64-bit mode, data-cache misses increased at all levels, and
throughput declined. One approach to mitigate the costs of
using a 64-bit architecture is to compress pointers to 32-bits
by representing addresses as o�sets from the start address
of the heap. In OpenJDK, for example, all collectors except
ZGC support and automatically use “compressed oops” for
heaps less than 32GB in size (larger heaps are possible at the
cost of additional fragmentation due to an increase in object
alignment). Compressed oops works similarly to barriers:
each time a pointer is loaded from the heap it is decom-
pressed (by applying the heap’s start address and adjusting
for alignment) to a full 64-bit pointer and each time a pointer
is written to the heap, it is compressed. This allows an appli-
cation to store pointers in memory (and in cache) in half the
space, at the cost of compressing respective decompressing
them at reads and writes to the heap.

ZGC does not support compressed pointers because it uses
the higher bits of the pointers to store metadata to support
concurrent garbage collection.

2.5 ZGC: The Z Garbage Collector

For brevity, we focus on the parts of ZGC that are most
relevant to this work. For a more complete and detailed
explanation, please refer to Yang and Wrigstad [34].

ZGC is a mostly concurrent, low-latency, parallel, mark–
evacuate GC in OpenJDK. Its goal is to deliver low tail latency
and happily trades decreased throughput for lower latency.
ZGC is similar in many ways to Pauseless [12] and C4 [28].
OpenJDK contains both in a non-generational (currently
default) and a generational version of ZGC. We limit our-
selves to non-generational ZGC for a better comparison with
HCSGC, leaving a generational version for future work.
ZGC GC cycles are most commonly triggered by the al-

location rate rule, due to the predicted duration of the next
GC cycle being too close to the predicted time when the
system would otherwise run out of memory (using a conser-
vative prediction of the allocation rate to account for sudden
spikes). (HCSGC and LR inherit the exact same mechanisms.)
The cycle begins by GC workers walking the object graph,
marking all live object. The liveness information is then used
to select memory regions, or pages in ZGC parlance, that are
sparsely populated for evacuation. These sparse pages are the
from-space and ZGC allocates new page(s) as to-space. Once
all live objects on a from-space page are moved to to-space,
the page is reclaimed. ZGC uses loaded value barriers [28]
to prevent mutators from following pointers which have

been invalidated due to concurrent object movement. ZGC
tracks pointer validity by “colouring” pointers on the heap.
A pointer is guaranteed to be valid it is has the good colour ;
else is has a bad colour and is invalid. Colouring is done by
using four higher bits in each pointer to encode its colour.

The loaded value barrier inspects the colour bits each time
a pointer is loaded from the heap. A good-coloured pointer
can be used directly, but a bad-coloured pointer �rst requires
checking if the pointer points to an object that may have
been, or is scheduled to be, moved. If the object has already
been moved, the correct pointer is looked-up in a forwarding
table. Otherwise, the object is moved before its new address
is loaded. In both cases, the original pointer is patched to
point to the correct location (with the good colour) for future
access. (The barrier is “self-healing”.)

A ZGC cycle consists of three phases, marking/remapping

(M), eviction candidate selection (C) and evacuation (E), as
shown in Fig. 1. The phases are concurrent with mutators
and before each phase is a brief stop-the-world pause.

2.5.1 Marking and Remapping (M). During marking
and remapping phase the live heap is walked. At the start
of each cycle, all pointers are invalidated by changing what
is the good colour. Colour invalidation is needed to support
concurrent marking. As a side-e�ect of marking, colours are
updated to the good colour and addresses to moved objects
are remapped to their new locations.

2.5.2 Selection of Evacuation Candidates (C). In the
EC selection phase, ZGC iterates over pages and uses the
liveness information from the M phase to identify sparsely
populated pages. Only sparse pages are selected for evacua-
tion to minimize the number of object that must be moved
to be able to free the pages. These pages are added to the
evacuation candidates set (EC set) to be reclaimed after their
live objects have been moved in the E phase. The default
fragmentation tolerance in the heap is 25%. Pages are added
to the EC in order of decreasing sparsity, such that the frag-
mentation of the remaining pages is less than the tolerance.

2.5.3 Evacuation (E). In this phase, GC threads evacuate
the pages in the EC set by moving all their live objects. When
all live objects from a page have been moved, the page may
be reclaimed. During the evacuation process, ZGC stores
forwarding information for the moved objects on the heap.
This, together with the loaded value barrier and pointer
colouring, allows the pages to be reclaimed immediately
once all their live objects have been moved without waiting
for all pointers to the old locations to be updated �rst.

2.6 HCSGC: Hot–Cold Segregation GC

HCSGC’s [33] goal is to place hot objects (recently accessed by
mutators) close in memory to improve locality and thereby
enhance cache performance. HCSGC is built on-top of ZGC
and uses ZGC’s loaded value barriers to drive movement of
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hot objects. Evacuation in HCSGC follows ZGC as shown
in Fig. 1a. This means that during this phase, mutators and
GC workers “compete” to move objects. As the former leads
to locality improvements and the second does not, HCSGC
permits delaying evacuation by GC workers to the start of
the next GC cycle, as shown in Fig. 1b. This increases the
probability that object movement is performed by mutators.

Since ZGC only condemns sparse pages, evacuation does
not improve locality of objects on dense pages. To this end,
HCSGC permits assigning weights to cold live bytes so that
dense pages with few hot objects appear sparse, allowing
movement of objects on this page: if a page has 100 kB live
bytes in cold objects and the weight is 0.5, we count those
live bytes as 50 kB. How to �nd a good weight for cold bytes
for a particular application is an open problem and there is
no intuition for programmers to make a selection as they are
not in control of how objects are placed in memory. Picking
a too low weight risks moving more cold objects as more
pages are added to the EC set; picking a too high weight
risks prevents hot objects from being moved. This requires
tracking whether an object is hot or cold, which incurs a
small performance and memory overhead.

In this paper, we focus on the HCSGC con�guration that
avoids the problem of �nding a good weight: evacuate all
pages on the heap each GC cycle. The performance of this
con�guration was among the best, except in the case of
a saturated machine [33].1 In this con�guration, HCSGC
delays evacuation by GC workers until the next GC cycle (as
in Fig. 1b). To ensure that all hot objects can be moved, all
pages are included in the EC set. This means all objects will
be moved each GC cycle, it adds considerable extra work but
avoids the cost of tracking per-object hotness.

The evaluation of HCSGC [33] shows that this con�gura-
tion performs the best for most benchmarks. Notably, this
is the opposite of what ZGC does: HCSGC constructs the
largest EC set (all objects) and lets mutators move the hot
ones while GC threads move the others. ZGC, in contrast,
only moves objects on sparse pages and GC threads move as
many objects as possible to o�-load mutators. The drawback
of the HCSGC approach is unnecessary movement of many
cold objects, and its performance decreases in CPU/memory-
constrained environments. Moreover, numerous forwarding
tables are allocated, which increases memory overhead.
HCSGC ends up trying to achieve con�icting objectives:

1. Move all hot objects to place them in mutator-accessed
order to increase locality, which requires that all (even
dense) pages are in the EC set.

2. Evacuate only sparsely populated pages to avoid wast-
ing time on movement that does not lead to memory
reclamation.

1From this point, we use con�guration 4 from HCSGC as our baseline. In

this con�guration, per-object hotness is not tracked, all objects on all pages

are moved each GC cycle, and evacuation by GC workers is delayed.
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(b) Phase order and object movement in HCSGC and LR.

Figure 1. Phases in ZGC, HCSGC and LR. Mutators move
objects in the loaded value barrier when an invalid pointer is
loaded from the heap. GC threads evacuate objects in address-
order by iterating over a livemap.

SinceHCSGC is built upon the infrastructure in ZGC, the �rst
objective demands a large EC set, while the latter demands
a small EC set. In the next section, we propose a design
that solves this problem by trading improved locality for
increased fragmentation; it permits hot objects to be moved
while permitting the cold objects to stay in place.

3 The Design of LR

In this section, we describe the design of our system which
we call LR, short for Locality-Re�ned. LR overcomes several
of the limitations of HCSGC and removes the need for tuning
knobs. As will be demonstrated using our implementation
of LR called LR-ZGC in §4, LR delivers higher performance
than HCSGC overall at a lower overhead.
LR is a GC-based technique for improving locality that

addresses the trade-o� between moving objects to reclaim

memory and to improve locality. LR is inspired by Courts
[13] and Yang et al. [33] and, as HCSGC, uses mutators to
drive the locality optimisation. However, unlike HCSGC, LR
decouples locality optimisation from memory reclamation
and addresses each objective separately. Speci�cally, in LR,
the ZGC EC set retains its sole purpose of being used only to
reclaim memory. To address locality optimisation, LR intro-
duces a new LOC set—the locality optimisation candidates
set—which consists of all non-EC pages whose objects may
be moved. For technical reasons that are speci�c to ZGC,
objects allocated in cycle = cannot be moved until cycle = + 1.
Thus, LR (just like HCSGC) only supports locality improve-
ment of objects on pages at least as old as the previous cycle.
We refer to these as the movable pages. A mutator accessing
objects in the LOC set sees the object as movable, causing
it to be moved if its reference is loaded to the stack. A GC
worker is unaware of the LOC set and only works on the
disjoint EC set.
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Movement of objects in LR works as in HCSGC (Fig. 1b).
An object in LOC may be moved at most once by a mutator
(if accessed) but never by a GC thread and an object in the
EC set is guaranteed to be moved exactly once by either a
mutators or by a GC thread (depending on who accesses it
�rst—mutator or GC worker). Since the EC set only contains
sparsely populated pages and only hot objects in the LOC set
are moved, object movement work is signi�cantly reduced
compared to HCSGC’s movement of all objects. Additionally,
this approach does not miss locality optimisation for densely
populated pages and does not incur the additional cost of
hotness tracking. The cost is an increase in fragmentation
due to moving hot data out of dense pages, creating a hole.

The use of separate EC and LOC sets achieves both objec-
tives simultaneously andwithout con�ict: the EC set includes
only sparsely populated pages, such that evacuating them
maximises the amount of memory reclaimed for minimal
work, and only the hot objects from the LOC set are moved,
thereby achieving the full mutator-driven locality orgnisa-
tion without moving any cold objects.
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Figure 2. Comparison of how ZGC, HCSGC and LRmove ob-
jects. Mutators move objects to mutator TLABs; GC threads
evacuate to GC TLABs.

Fig. 2 compares the movement strategies in ZGC, HCSGC
and LR and its impact on what objects are moved and by who
(mutator or GC). It contains a sparse page (in EC set) and a
dense page, plus two thread-local allocation bu�ers (TLABs)—
one for a single mutator and one for a single GC worker—
where all allocations happen. In the �gure, all allocations are
due to object movement. The dotted line shows the order
in which a mutator accesses the round objects, from left to
right. Square objects are not accessed by mutators.
Whether the page where an object resides is included in

EC or LOC, and whether a mutator or a GC worker is �rst to
access it determines if an object is moved and by whom (and

thus to where). ZGC’s EC set only include sparsely populated
pages. Thus, as shown in Case (Z) of Fig. 2, we can typically
expect only a small number of the objects to be moved in
mutator access order (0, 4 and 1 are put in access order in
the Mutator TLAB), as only those on sparse pages are moved
and the mutator has to get to them before the GC threads do.
(The �gure shows the best case for ZGC, where the mutator
always gets to the objects �rst.) In HCSGC, all objects will be
moved, so even those that are on the densely populated pages
(2, 3, 6, 8, ℎ, 0=3 9 ) will be moved.2 Due to the delay of the
evacuation phase showed in Fig. 1, the probability that the
mutator getting to move objects in access order is increased,
as shown in case (H) where 0, 4 , 1, 2 , 6, and 3 are moved
in order. However, objects that were not accessed by the
mutator (5 , ℎ, 8, 0=3 9 ) are moved by the GC, even if they
were on a densely populated page—the price of having to put
a page in from-space to make it movable. For LR, all objects
touched by the mutator are moved as with HCSGC, but cold
objects on densely populated pages remain in place (due to
the pages being in the LOC set). This means that only objects
that could bene�t from access order placement (0, 1, 2, 3, 4, 6)
or that would free up a sparse page (5 ) are moved.
This example shows why LR and HCSGC will typically

move more objects than ZGC. Notably, in HCSGC, all object
movement is subject to “competition” between the mutator
and the GC thread. In LR, this is only the case for objects on
the sparsely populated page (since this page is selected for
evacuation to reclaim memory).

3.1 Trading Fragmentation for Possible Cache

Performance Improvement

The LOC set trades increased heap fragmentation for im-
proved cache performance. The increase comes from moving
an object leaving an unusable gap in its place. In the next
section, we discuss how we can use this fragmented space.

There is a built-in feedback loop to mitigate this. If a page
becomes very fragmented due to objects being moved from
the page in order to improve their locality, the page will
eventually be added to the EC set by ZGC’s criteria and
reclaimed in the next cycle.

Just like in the case for HCSGC, LR’s design is based on the
assumption that the application exhibits su�ciently stable
and recurring access patterns that the added cost of mov-
ing objects according to those patterns can be earned back
through improved cache performance when they are re-
peated. In § 3.3, we discuss possible mitigations for cases
where this assumption turns out to be false.

2Assuming a good weight for cold live bytes could be obtained for HCSGC

(so dense pages can be in EC), or if HCSGC is con�gured to always put all

pages in the EC set. If not, HCSGC would behave like ZGC, except that

mutators are more likely to win the competition to move objects.
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3.2 Forwarding Information

In all three cases, objects are moved concurrently with mu-
tator accesses, which necessitates storing forwarding infor-
mation for the moved object to ensure correctness. Next, we
look at how tomanage forwarding information for moved ob-
jects in the LOC set. A straightforward solution is to use the
same strategy as ZGC uses for pages in the EC set: o�-heap
forwarding tables. A downside to this approach is that these
tables can consume a substantial amount of memory [22].
The motivation for using o�-heap forwarding tables—to en-
able the reclamation of the page as soon as the last object is
moved o� it, rather than having to wait until all references
have been updated— does not apply, as we do not condemn
LOC pages, only move objects that are accessed by mutators.
A more memory-e�cient approach is to store the new

address in the old location of a moved object, as in Cheney’s
copying GC [9]. In this design, the old objects’ locations hold
the forwarding addresses until the end of the GC cycle, at
which point all old pointers will have been remapped and
the forwarding addresses are no longer needed. In contrast
to storing forwarding information on a page that is being
evacuated in order to be reclaimed, this does not delay the
earliest possible reclamation of these pages.
In ZGC, only pages in EC have a forwarding table. ZGC,

HCSGC and LR all check whether a page is in EC by looking
up its forwarding table. Since in LR, all non-EC pages are
in LOC, absence of a forwarding table means membership
in LOC, meaning forwarding addresses for objects on that
page are stored in the original copy of the moved object.

3.3 Limitations and Future Work

Movement of objects on LOC pages piggybacks on ZGC’s
loaded value barriers which only move objects during a GC
cycle. Thus, locality optimisation in LR is controlled by the
number of GC cycles. Considering that the purpose of GC
cycles (reclaiming memory) and object reorganisations (lo-
cality optimisation) do not completely align, it would be
more �exible if they were fully decoupled. That would make
locality optimisation independent of running GC, similar
to work by Chen et al. [8]. This is an interesting direction
for future work and will require developing new heuristics
for when to perform locality improvements. We speculate
that the information collected via loaded value barriers could
be used to construct a metric for locality; if its value drops
below a threshold, trigger a pure locality optimisation cycle.

The current design does not have a mechanism for check-
ing whether this assumption holds for a particular program
or part of the heap. With such a mechanism, it would be
possible to back-o� trying to improve locality for particular
threads, parts of the memory, or all together. Such a mech-
anism could be based on monitoring cache performance
counters before and after “location improvement cycles”, for
example. We leave further exploration of this to future work.

Additionally, we might consider �ltering which objects
are moved to improve locality. Most likely, moving objects
that span several cache lines will have a limited impact on
cache performance as accesses to proceeding objects will
only bring a small portion of the object into cache. ZGC—and
by extension HCSGC and LR—all divide objects into three
size classes: small, medium and large (c.f., [34]). We only per-
form locality optimisations for objects on small pages.Thus,
currently, LR puts movable pages in LOC if they hold “small
objects” (up to 256Kb), which is far larger than the 64B
cache lines. We believe that a more �nely-tuned and possibly
adaptive, size threshold could minimize copying overhead
without hurting locality improvements. Likewise, we might
consider �ltering based on ages—short-lived objects have
a higher likelihood of yielding a low return on investment.
Based on this observation, integrating LR into generational

ZGC is a promising next step for this work, with consider-
able technical challenges due to implementation details in
ZGC. We intend to pursue this as future work.

4 Method

We build LR-ZGC, our implementation of LR, on top of ZGC
in OpenJDK 15. We benchmark on an AMD Ryzen 9 5900X
with 12 cores with two threads per core, 32kB data and 32kB
instruction L1 per core, 512kB L2 per core, 64MB of shared
L3 and 128GB of RAM, running Ubuntu 22.04.4 LTS with
Linux kernel 6.5.0-28-generic. OpenJDK3 was compiled with
GCC 11.4.0 with gnu++11. C-states were disabled and CPU
governor was set to performance for all cores.

4.1 Evaluated Collectors

We compare LR-ZGC with the Garbage-First (G1), Paral-
lel, Shenandoah and ZGC collectors from OpenJDK 15 and
HCSGC. The Parallel GC is a generational STW collector
optimised for throughput. G1 [14] is a mostly-concurrent
generational collector. G1 performs all activities concurrently
with mutators except for moving objects. This reduces pause
times substantially, but worst-case pause times are still pro-
portional to the size of the live set. To support concurrent
marking, G1 uses write barriers.

The Shenandoah collector is a non-generational,4 concur-
rent collector delivering low pause times [16]. A GC cycle
collects the whole heap by starting with concurrent mark-
ing (using write barriers to maintain tri-colour invariants),
continuing with concurrent evacuation of objects in sparse
regions and ending with concurrent updates of pointers for
moved objects and releasing evacuated sparse regions. In
OpenJDK 15, Shenandoah GC uses a Brooks’ barrier [20]

3The source code of OpenJDK 15 we use: h�ps://github.com/openjdk/jdk/

releases/tag/jdk-15+36.
4An experimental version that supports generations is available in later

versions of OpenJDK. We did not use it in this work.
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which uses a pointer in object headers to determine the cur-
rent location of an object. Objects in the EC set that are not
yet moved point to themselves, otherwise they point to the
new location of the object.
We ported HCSGC to OpenJDK 15. Our implementation

is extracted from the artefact provided by Yang et al. [33],
but only includes the logic needed for the con�guration that
moves live objects in all small pages and defer evacuation
to the start of the next GC cycle. This has the added con-
sequence of removing some conditional checks, so if the
performance of HCSGC is a�ected, it should be improved.

4.2 Benchmarks

Akin to Yang et al. [33], we use JGraphT 1.5.0 [19], DaCapo
9.12-bach-MR1 [4] and SPECjbb2015 [27]. From JGraphT,
we run maximal clique (MC), which implements the Bron-
Kerbosch maximal clique enumeration algorithm [26] and
connected components (CC), which implements a bicon-
nected components algorithm [17]. The graph data, uk-2007-
05@100000 and enwiki-2018, are from Laboratory for Web
Algorithms (LAW) [6, 7]. Using the complete data set is ex-
cessively time-consuming so we use a subset. Similar to Yang
et al. [33], in DaCapo, we focus our attention on the only
two applications in DaCapo that supports a huge input size,
namely h2 and tradebeans.5 In these two we also �x the num-
ber of driver threads to four as performance does not scale
by using even more threads as reported in Norlinder et al.
[22] Figure 12 and Kalibera et al. [21]. As the minimal heap
sizes and thus the live sets for the remaining DaCapo pro-
grams are probably small enough to �t in the L3 cache of our
benchmark machine, we do not expect to see any bene�ts
from HCSGC or LR-ZGC for these benchmarks, more likely
regression due to the extra work involved in copying data
which is already in cache. Nevertheless, we include these
applications running them at the largest available input size.

4.3 GCWorker Thread Count

By default, the GCs set the number of threads using heuristics
based on the number of hardware cores, ignoring the number
of application threads.6 To ensure that our results are not
skewed by di�erences in how di�erent GC’s sizes its pool of
workers, we explicitly set the number of GC. For parallel GC
work (work carried out in STW pauses), we use half of the
cores (12 on our machine). For concurrent GC work (work
carried out in concurrent GC phases) we use one-quarter
of the number of available cores (6). A comparison of our

5tradesoap also supports huge input size. However, we encountered crashes

similar to the description in an open issue (h�ps://github.com/dacapobench/

dacapobench/issues/113) of DaCapo, so in the end we were not able to

include it. tomcat also supports a huge input size, but we were not able to

run without crashes. We believe it is due to being built for Java 5.
6In later JDK versions than 15, some GCs can dynamically update the

number of threads with regard to an applications’ footprint on resources

thread assignment and the GC’s defaults is shown in Table
3.

4.4 Heap Sizes

To explore the time-space trade-o�we run benchmarks using
three con�gurations with di�erent heap sizes, {1.5×, 3×, 6×}
the minimal heap size (see below), plus a fourth (see below
also). All collectors available in OpenJDK 15 are included in
the evaluation, and all have di�erent trade-o�s that impose
di�erent heap requirements. Concurrent collectors are used
in scenarios requiring low latency. They typically require
a larger heap compared to throughput collectors, as they
trade memory and throughput for lower latency. When a
concurrent collector is run with a heap that is too small, the
collector eventually su�ers from allocation stalls, when the
reclamation rate is not able to match the allocation rate. This
puts the GC on the critcal path to performance (e.g.,mutators
must wait until GC threads are able to reclaimmemory). This
makes frequent allocation stalls terrible for latency, and if
they occur, the heap size should be increased to provide good
latency. As LR-ZGC is implemented in a concurrent GC it
is paramount that we also evaluate with a heap that is large
enough to avoid frequent allocation stalls. Thus, we also
include a fourth heap size, denoted the “stall-free heap size”.
An application’s minimal heap is the smallest heap that

can be used without crashing due to an out of memory excep-
tion. We determined the minimal heap size for each bench-
mark through a binary search for the smallest heap that
did not cause an out of memory exception using the Serial
GC. The Serial GC was used to minimise the impact of non-
determinism from the VM, application, etc. Stall-free heaps
were found by running each benchmark with ZGC, gradually
increasing the heap size in increments of 10 MB until the
benchmark could be run in 10 consecutive VM invocations
without allocation stalls. For both the minimal heap and
stall-free heap the same VM paramaters were used as in our
performance benchmarking except DaCapo iterations were
limited to one, assuming that the greatest memory pressure
occurs in the �rst iteration. The result is shown in Table 1.
SPECjbb2015 increases its workload progressively until

the Service-level Agreement (SLA) cannot be maintained.
Thus, it does not have a minimal heap size. We evaluate it
with 16 and 32 GB heaps. With 16 GB, concurrent collec-
tors cannot keep up with the allocation rate and numerous
allocation stalls can be observed. With a 32 GB heap, alloca-
tion stalls are substantially reduced or fully eliminated. This
demonstrates that these two heap sizes show di�erent char-
acteristics of the GC concerning the underlying time-space
trade-o�. For SPECjbb2015, which uses much larger heaps
than the other benchmarks, we use large pages so that the
JVM uses 2MB OS pages instead of the default 4 kB pages.
This reduces the translation lookaside bu�er pressure.
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4.5 Data Collection

For each benchmark and heap size, we record execution
time, number of GC cycles, number of allocation stalls, and
cache misses. Cache misses are obtained using perfwith the
cache-misses event. (This event uses the counter for L2 data
and instruction misses on our CPU.) Number of GC cycles
are obtained using the built-in JVM logging. Allocation stalls
is only available with the built-in JVM logging in ZGC-based
GC. Except for the execution time and GC cycles in DaCapo,
our metrics are for the entire JVM process.

To measure how many MB were moved, we added teleme-
try code in ZGC, HCSGC and LR-ZGC. While ZGC and HC-
SGC can utilize existing information, it comes at an extra
cost for LR-ZGC, as movement of objects in the LOC set will
trigger calls to an atomic add. Calls to atomic add could neg-
atively impact performance due to cache invalidations and
increased amount of loads from memory. Thus, the volume
of moved data is collected in separate runs from our other
results. Since HCSGC and LR-ZGC only target small pages
we only include measurements for these kinds of pages. To
facilitate comparability between the plots where metrics are
compared on each axis, i.e., Figs. 5 to 7, all of these are plotted
from runs where the extra telemetry was enabled.

For JGraphT, we launch the JVM 11 times for each bench-
mark and discard the �rst execution to eliminate JVM warm-
up noise (e.g., loading libraries from disk). We run SPECjbb-
2015 10 times and use its built-in metrics for latency per-
formance (critical jOPS) and throughput performance (max
jOPS). Since SPECjbb2015 is a long-running benchmark (each
run >2 hours), there is no need to eliminate warm-up noise.
Following previous work [22, 32, 33, 36], we discard ini-

tial iterations and use repeated VM invocations to facilitate
obtaining statistically signi�cant results of execution time.
In this context, statistical signi�cance means that the con�-
dence intervals is either su�ciently small, or does not appear
to be reducing with additional VM invocations such that the
null-hypothesis can be con�rmed/rejected. We use 10 VM
invocations, where each invocation is con�gured to run 10

iterations of the benchmark. The �rst 5 iterations are treated
as warm-ups and we use the results of the remaining 5 it-
erations for analysis of execution time and GC cycles. The
other metrics are gathered from all runs. We established
su�ciently low variance by running 10 VM invocations.

Statistical signi�cance is established using bootstrapping
(using 10: bootstrap samples) with a 95% con�dence inter-
val akin to [32, 33, 36]; if intervals are non-overlapping, the
means are di�erent. Error bars are used to show the con�-
dence intervals. A cross on the interval speci�es the mean.

5 Results

We compare the results of G1, Parallel, Shenandoah, ZGC,
HCSGC and LR-ZGC. When possible, we include results
with and without compressed oops, as compressed oops also

Table 1. Heap sizes in MB for DaCapo and JGraphT

Heap sizes in evaluation

Benchmark 1× 1.5× 3× 6× stall-free

avrora 8 12 24 48 117

fop 32 48 96 192 190

h2 992 1488 2976 5952 3000

jython 20 30 60 120 2100

luindex 8 12 24 48 100

lusearch-�x 8 12 24 48 1450

pmd 50 75 150 300 480

sun�ow 16 24 48 96 1020

tradebeans 236 354 708 1416 1170

xalan 16 24 48 96 1100

CC uk 312 468 936 1872 600

CC enwiki 320 480 960 1920 330

MC uk 136 204 408 816 380

MC enwiki 320 480 960 1920 400

improve cache utilisation by avoiding storing unused address
bits in the cache. We analyse 11 di�erent applications, using
4 di�erent con�gurations for JGraphT, with 4 di�erent heap
sizes. The symbol indicates that the con�guration could not
run due to out of memory. Note that for Fig. 3 if neither a bar
nor is not present this means that there were no di�erence,
and in SPECjbb2015 missing bars are due to lack of support
for compressed oops for heaps ≥32 GB.
Execution time is measured as a proxy for throughput

in DaCapo and JGraphT. SPECjbb2015 has a built-in metric
called max jOPS. We expect a reduction in cache misses for
LR-ZGC compared to HCSGC from a reduction in moved
objects, a reduction in GC cycles (for each GC cycle, the heap
is partially/fully traversed, leading to many cache misses), or
because LR can facilitate moving hot objects by mutators to a
higher degree due to its LOC set (§3). As LR does not need to
in�ate the EC set, we can therefore expect the number of cold
objects copied in each GC cycles to be reduced. We measure
how much data is copied for the entire VM invocation and
expect this ranking: ZGC < LR-ZGC < HCSGC.
SPECjbb2015 tries to �nd the maximum workload that

the machine can process for a given SLA. SPECjbb2015 has
a 1% survivor rate per GC cycle [33] and that HCSGC was
not able to establish an improvement in SPECjbb2015. HC-
SGC also showed that selecting all pages for evacuation in a
benchmark that tries to saturate the machine is bad for per-
formance as GC threads will have to compete with mutators
for CPU time. Therefore, we expect that improvements over
HCSGC will be driven by the reduction in copying of cold
objects rather than a reduction in cache misses.

Con�gurations using compressed oops are marked by ‘*’.
Absolute numbers with accompanying con�dence intervals
can be found in supplemental tables in the Appendix. In the
plots we denote G1 GC as G1, Parallel GC as P, Shenandoah
as S, HCSGC as HCS and LR-ZGC as LR-Z.
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Figure 3. Throughput results for DaCapo and JGraphT. * = compressed oops was enabled. = out of memory

5.1 Resource Usage

Table 2 shows that HCSGC and LR-ZGC experience stalls in
ZGC’s stall-free heap. LR-ZGC almost eliminates allocation
stalls compared to HCSGC in the benchmarks where we
expect LR-ZGC and HCSGC to perform well (JGraphT, trade-
beans and h2). While there is still a few allocation stalls for
tradebeans, the rate at which they occur is reduced by 95%.
Fig. 7 shows that LR-ZGC copies substantially less MB

than HCSGC. The di�erence is the amount of cold objects
that are no longer unnecessarily copied. In conclusion, LR-
ZGC seems to require less resources than HCSGC.

5.2 DaCapo

With a stall-free heap LR-ZGC outperforms ZGC andHCSGC
in h2 by 36% and 3%, respectively. Recall that each GC cycle
is inducing a substantial amount of cache misses as the object
graph is traversed to determine reachability. LR-ZGC has
a substantial amount of additional GC cycles compared to

Table 2. Allocation stalls per second when running DaCapo
and JGraphT with stall-free heap.

Benchmark Z HCS LR-Z

avrora 0 0.0 0.0

fop 0 126.7 117.3

h2 0 0.0 0.0

jython 0 0.5 0.3

luindex 0 0.0 0.0

lusearch-�x 0 325.0 324.3

pmd 0 57.4 52.0

Benchmark Z HCS LR-Z

sun�ow 0 6.6 9.7

tradebeans 0 124.1 5.9

xalan 0 246.0 249.4

CC uk 0 0.0 0.1

CC enwiki 0 0.6 0.6

MC uk 0 7.4 0.5

MC enwiki 0 6.5 0.0

ZGC (which is natural since, they have di�erent selection
for GC work). This however, drives up the amount of cache
misses and it is hard to determine if the speed-up in LR-
ZGC compared to ZGC for h2 is caused by a reduction of
cache misses and/or more frequent GC cycles. While a small
regression is seen in LR-ZGC in tradebeans compared to ZGC
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it is not statistically signi�cant, and compared to HCSGC
LR-ZGC is 10% faster. A contributing factor for the speed-up
compared to HCSGC in tradebeans is the 95% reduction of
allocation stalls. Additionally, in Fig. 5, the cache misses are
reduced in LR-ZGC compared to HCSGC. The fact that LR-
ZGC has substantially more GC cycles than ZGC andHCSGC
(Fig. 6) and that LR-ZGC copies only slightly more MB than
ZGC (Fig. 7). This suggests that another important factor of
the improvement compared to HCSGC is an improved object
layout without the need of copying cold objects.
For the remaining benchmarks, LR-ZGC had one statisti-

cally signi�ant di�erence compared to ZGC, a regression in
xalan (3.2%), and one statistically signi�ant di�erence com-
pared to HCSGC, an improvement in pmd (2.2%). Compared
to HCSGC, LR-ZGC has only two regressions, one in MC
enwiki (1.5×) and one in CC uk (6×). Comparing LR-ZGC to
the rest of the collectors in OpenJDK, it provides the fastest
results for h2, and for tradebeans ties with ZGC and Parallel
as best GC (with and without compressed oops). For remain-
ing applications in DaCapo, for all heap sizes, LR-ZGC, along
with HCSGC, ZGC and often Shenandoah, falls behind the
other collectors. It is unsurprising that concurrent collectors
that generally optimise for latency do not perform as well
with respect to throughput. It is therefore noteworthy that
LR-ZGC or HCSGC is the best performing collector with
respect to throughput in some benchmarks.
While in 1.5× heap, ZGC, HCSGC, and LR-ZGC struggle

to run most benchmarks, reporting mostly out of memory,
one interesting observation is that HCSGC can run h2 while
ZGC and LR-ZGC cannot. We believe that this is because
HCSGC defragments the entire heap every cycle. This also
keeps �oating garbage at a minimum allowing HCSGC to
operate with a small minimum heap. At 3× all JGraphT appli-
cations, pmd, fop, tradebeans and h2 are able to run. At 6×,
also jython can run. The remaining, avrora, xalan, luindex,
lusearch-�x and sun�ow are only able to run in the stall-free
heap highlighting how ZGC, HCSGC, and LR-ZGC trade
increased memory and lower throughput for low latency.

5.3 JGraphT

At 1.5× heap, ZGC, HCSGC, and LR-ZGC can only run CC
enwiki and MC enwiki, and reports out of memory for the
rest. As soon as the heaps are large enough for the GCs to
run, LR-ZGC beats ZGC on all four con�gurations (10–158%).
LR-ZGC is outperforming HCSGC in 6 con�gurations (1–
25%), on-par in 6 con�gurations and is slower than HCSGC
in 2 con�gurations (3–9%). The largest speed up for LR-ZGC
compared to HCSGC is found in the stall-free heap and the
largest regression compared to HCSGC is found in the 1.5×
heap. That HCSGC can outperform LR-ZGC in smaller heaps
is aligned with our �ndings for h2. The other regression
compared toHCSGC is found in CC uk for the 6× heap, which
is also the largest heap that is evaluated for this benchmark.
Examining Fig. 5 for CC uk 6× heap, HCSGC has 4% fewer
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critical jOPS 32 GB

max jOPS 16 GB

max jOPS 32 GB

Z HCS

−10
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10

Normalised to LR-ZGC.
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−40

−20

0

20

Figure 4. SPECjbb2015 results normalised to G1. * = com-
pressed oops enabled. Missing bars are due to compressed
oops are not available in heaps ≥ 32 GB. Lower is better.

cache misses than LR-ZGC. (Admittedly, this di�erence can
be hard to see due to the scale of the axis, so we defer the
reader to Table 58d in the Appendix.) However, Fig. 6 shows
that HCSGC has the least amount of GC cycles, suggesting
that defragmenting the entire heap at this heap size reduces
the need for future GCwork. It is a combination of improving
object layout using the load-barrier and defragmenting the
entire heap that gives HCSGC a slight edge over LR-ZGC
in this particular case. We speculate that the heap was large
enough and allocation rate was low enough to hide the extra
cost of defragmenting the entire memory on each GC cycle.

Comparing LR-ZGC to the rest of the collectors in Open-
JDK, LR-ZGC is outperforming ZGC and Shenandoah, but
beaten by G1 and Parallel in CC uk. In, CC enwiki LR-ZGC is
also outperforming Parallel, to only be beaten by G1. In MC
enwiki LR-ZGC is on-par with Shenandoah without com-
pressed oops, but beaten by G1, Parallel and Shenandoah
with compressed oops. For MC uk, LR-ZGC provides a sub-
stantial boost over HCSGC, which put it at third place, in a
tie with G1/Parallel (both without compressed oops).

5.4 SPECjbb2015

With respect to throughput, reported by SPECjbb2015 as max
jOPS, G1 and Parallel are the GCs with the highest through-
put in both heap sizes (Fig. 4). With respect to latency, re-
ported as critical jOPS, ZGC is the best-performing GC. This
is unsurprising. HCSGC and LR-ZGC perform substantially
worse than ZGC at 16GB, and are both outperformed by
S*. HCSGC is additionally outperformed by G1*. This is in
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Figure 5. Execution time in seconds (Y axis) vs 109 L2 misses
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line with our expectations that HCSGC and LR-ZGC are bad
�ts for benchmarks like SPECjbb2015, that saturates the ma-
chine and whose typical survivor rate is <1%, meaning there
are few objects whose location can be improved, or that are
accessed after being moved. LR-ZGC outperforms HCSGC
on both scores in both heaps. HCSGC’s regression compared
with ZGC is likely due to mutator-driven movement of pre-
dominantly cold objects due to the low survivor rate. We
believe that the results are a strong indication that LR-ZGC
shows that less work (due to the LOC set) for GC threads
is important in a saturated machine when GC threads and
mutators compete for CPU resources.

5.5 Compressed Oops

Enabling compressed oops can have a substantial improve-
ment in throughput and latency. For instance in SPECjbb2015,
comparing each collector with and without compressed oops,
G1, Parallel and Shenandoah improved its throughput by 17–
19% and its latency by 18–25%. Most benchmarks exhibit a
substantial boost in performance when enabling compressed
oops for the respective GC. Despite lacking support for com-
pressed oops, ZGC is the best-performing GC with respect
to latency in SPECjbb2015 (Fig. 4).
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6 Related Work

Courts [13] developed an adaptive memory management al-
gorithm that increased throughput by locality improvements
in Lisp. The locality was for paging from disk, although they
had a 128 kB cache on the machine. This work was imple-
mented in a generational GC. During garbage collection,
mutators and GC threads competed to move objects. In the
case that the mutator won, it moved the object to a speci�c re-
gion and placed objects in access order. Additionally, objects
were rearranged during program execution for improved lo-
cality using a load barrier with customised hardware support.
Live objects that were not currently used were moved to a
separate region of the heap. Di�erent con�gurations of the
design were evaluated on 4MB and 8MB heaps respectively
with performance improvements as high as 61%–108%.

Huang et al. [18] use a combination of load barriers and
static analysis (to reduce the number of places instrumented
by load barriers) to deliver online object reordering, OOR,
in the context of the GenCopy STW copying collector in
JikesRVM. OOR uses adaptive sampling driven by load barri-
ers to �nd the hot �elds of objects and uses this information
to in�uence the traversal order of GC threads moving objects
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in the heap to produce a to-space with improved cache lo-
cality. OOR’s load barriers are only used to collect sampling
data. A comparison with OOR (implemented on-top of ZGC)
would therefore be interesting.

Chilimbi and Larus [11] use online pro�ling to construct
an object a�nity graph, where nodes are weighted by tempo-
ral a�nity. They also provide a copying algorithm that uses
that graph to place objects with high a�nity together. The
evaluation shows that such placement can reduce cache miss
rates between 21% and 42% and improve application perfor-
mance between 14% and 37%. In contrast, LR does not need
such graph to be constructed, requiring less memory over-
head and reorganise objects according to the access order,
assuming temporal and spatial locality.
A compelling di�erence between OOR and the system

of Chilimbi and Larus [11] and LR is that the former will
only move objects close in memory if they are connected
in the object graph through �elds, whereas LR will move
objects close if they are accessed close in time. In other words,
the previous system used topological information to place
objects suitably for fast mutator access, whereas LR draws
this information from the mutator itself, like Courts [13].
Chen et al. [8] improve locality by pro�ling hot objects

between garbage collection cycles. The hotness information

is used during the garbage collection cycle to aggregate hot
objects to each partition of the heap. They also explore the
implications of doing layout optimisations independent of a
garbage collection cycle. Furthermore, the order of the hot
objects will be “according to a hierarchical decomposition
order based on their inherent structural relationship”. This
design was evaluated on a generational GC in the Common
Language Runtime, version 2.0, using six C# programs used
internally at Microsoft due to a general lack of benchmarks
at the time, on a single-core Pentium 4 with 1GB RAM. For
these programs, the technique saw a 17% average improve-
ment of execution time prompting the authors to argue that
garbage collection should be viewed �rst as an opportunity
to improve the layout and second to reclaimmemory. LR sim-
ilarly overlays layout optimisation on-top of GC balancing
improved locality with additional fragmentation.

7 Conclusion

We proposed LR, a design that can automatically improve
the cache locality of Java programs by using mutators to
moving hot objects in access order. Our design addresses
the inherent tradeo� in previous work [33] between trying
to ensure mutators move as many hot objects as possible
and avoiding unnecessary movement of cold objects. We
accomplish this by permitting mutators to move hot objects
without requiring the remaining cold objects on the page to
be moved. This design avoids extra GC movement of cold
objects, allowing LR to achieve both goals simultaneously.
To do so e�ciently, LR stores hot object forwarding infor-
mation on the heap, which avoids increasing the amount of
forwarding storage needed for the moved hot objects.

Our implementation on-top ZGC outperforms ZGC in 18
con�gurations by 5–158%. Performance regression occurs
in 7 con�gurations in the range of 3–17% and 12 is on-par.
Compared to HCSGC, LR-ZGC outperforms its performance
in 18 con�gurations by 1–50%, have 3 regressions (OOM,
3%, 9%) and 17 con�gurations where they are on par. These
results show that LR solves the fundamental tradeo� in HC-
SGC’s design and allows us to obtain the locality-improving
properties without the need of full heap compaction on each
cycle. Although, in one case this design permitted HCSGC
to run with a smaller heap than both ZGC and LR-ZGC.
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Abstract
Interactive execution environments are suitable for trial-
and-error basis programming for microcontrollers. However,
they are mostly implemented as interpreters to meet micro-
controllers’ limited memory size and demands for portabil-
ity. Hence, their execution performance is not sufficiently
high. In this paper, we propose offloading dynamic incremen-
tal compilation and linking to a host computer connected
to a microcontroller. Since the computing resources of the
host computer are sufficient to execute incremental dynamic
compilation, they are used to enhance the relatively poor
computing resources of the microcontroller. To show the fea-
sibility of this idea, we design a small programming language
named BlueScript and implement its interactive execution
environment. Our experiment reveals that BlueScript exe-
cutes a program one to two orders of magnitude faster than
MicroPython, while its interactivity is comparable to that of
MicroPython despite using dynamic incremental compila-
tion.

CCS Concepts: • Software and its engineering → Dy-
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tems organization → Embedded software.
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1 Introduction
An interactive execution environment of programming lan-
guage, or a REPL (Read-eval-print loop), is known as being
suitable for trial-and-error basis programming. For artificial
intelligence and data science, Jupyter [22] is widely used as
such an interactive environment in Python. For program-
ming education, Scratch [17] is a popular interactive lan-
guage and environment. A web browser such as Google
Chrome provides an interactive environment in JavaScript
for debugging.

In contrast, in the field of microcontroller programming, a
non-interactive development environment has been mainly
adopted. A program is written in the C or C++ language,
statically compiled, and linked on a host machine/computer.
Then, the compiled binary is written to a flash memory of
a target microcontroller connected through a serial cable,
and the microcontroller is rebooted to execute the program.
When the behavior of the program is not satisfactory, pro-
grammers or developers repeat this linear process from the
beginning. This traditional development process is still dom-
inant, but interactive environments are becoming popular
even for programming a microcontroller. Interpreter-based
environments, such as MicroPython [3] and Espruino [23],
have been actively developed and used. They provide a REPL,
and their users can enjoy their interactivity from a host ma-
chine connected to a microcontroller.
However, such interactive environments for microcon-

trollers are often slow since they are interpreters. An in-
terpreter is suitable for interactive programming. It can be
implemented to run with a small amount of memory and
keep portability independent of CPU architecture. This is an
advantage but implies low execution performance. Dynamic
incremental compilation, or dynamic compilation, would be
a solution but it damages the size of an interpreter’s memory
footprint and portability. It would also increase response
time and worsen interactivity due to the limited computing
power of microcontrollers.
To address this problem, we propose to exploit the com-

puting resources of a host machine connected to a micro-
controller particularly through a wireless network such as
Bluetooth. Usually, a microcontroller is connected to a host
machine or computer during software development. We of-
fload dynamic incremental compilation and linking to this
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host machine. To investigate our idea in a practical inter-
active environment for microcontrollers, we design a small
programming language named BlueScript and implement
its interactive execution environment for Espressif Systems’
ESP32 microcontroller. Although we use an off-the-shelf
C compiler for ESP32 as a backend native-code generator
to reduce development costs, our execution environment
achieves smooth interactivity. The execution of BlueScript
programs is only up to 10 times slower than C programs and
one to two orders of magnitude faster than MicroPython’s
ones. Our contributions are twofold. One is to illustrate that
offloading dynamic incremental compilation and linking still
enables interactive programming for microcontrollers while
significantly improving execution performance. The other is
to implement a prototype of the interactive execution envi-
ronment for BlueScript and design experiments to assess its
interactivity.

2 Interactive Programming for
Microcontrollers

Even when programming a microcontroller, a trial-and-error
basis development is effective and useful, and it is enabled
by interactive execution environments of programming lan-
guages. Suppose that we are programming a microcontroller
for controlling a toy car. We first use the C language and
its traditional non-interactive environment. This toy car is
equipped with two motors and a front camera. Since the two
motors are separately controlled and connected to two rear
wheels, the car can move forward and backward and change
its direction of travel. We write a program so that the car
will periodically take a photo and turn to the right when it
finds a red object in front of it, for example, a red plastic ball.
Listing 1 is an example of this program. It is written in the
C language. The main function registers an event handler
periodic_task, which is invoked every 500msec. The event
handler takes a front photo by calling take_picture, and
calls find_red_object to count the number of red pixels
and determine whether a red object is found in the given
photo image. If a red object is found, the car turns to the right
to avoid collision. Otherwise, the car keeps going straight
ahead.
The calls to set_speed in line 14, 18, and 19 change the

motor speed. The second argument specifies the speed. Pro-
grammers have to carefully choose an appropriate value for
the second argument so that the car will run smoothly. To
choose it, programmers might want to take a trial-and-error
approach. They might write a program with some initial val-
ues for that second argument, compile it, and run it to move
the car. Then, they might observe the car moving and change
the second argument to new values. They might iterate these
steps until they find good values for the second argument
and the car runs nicely. Iterating these steps is, however,
time-consuming and tedious. For example, these steps take

1 bool find_red_object(uint16_t* img) {
2 int red_count = 0;
3 for (int row = 0; row < HEIGHT; row++) {
4 for (int col = 0; col < WIDTH; col++) {
5 int hue = get_hue(img[row*col+col]);
6 if (hue > 45)
7 red_count++;
8 }
9 }
10 return red_count > RED_MINIMUM;
11 }
12
13 void go_straight() {
14 set_speed(BOTH, 80);
15 }
16
17 void go_right() {
18 set_speed(LEFT, 50);
19 set_speed(RIGHT, 10);
20 }
21
22 void periodic_task() {
23 uint16_t* img = take_picture();
24 if (find_red(img))
25 go_right();
26 else
27 go_straight();
28 }
29
30 void main() {
31 timer_t timer;
32 timer_create(&periodic_task, &timer);
33 timer_start_periodic(timer, 500);
34 }

Listing 1. Controlling a toy car

several seconds to a minute when we use ESP-IDF (Espressif
IoT Development Framework) [7], which is the standard de-
velopment environment provided by Espressif for the ESP32
microcontroller. It is slow to build executable binary code,
write it into the flash memory of the microcontroller, and
reboot the microcontroller for restarting a program.

An interactive execution environment mitigates this inef-
ficiency. For example, MicroPython is available on the ESP32
microcontroller. It provides a REPL accessible from a host
computer connected to the microcontroller through a serial
cable or Wi-Fi network. Through this REPL, programmers
can give code fragments after the prompt one by one to in-
teractively define functions, redefine them, and run them.
Listing 2 shows a log of programming a toy car through the
MicroPython REPL. >>> and ... in Listing 2 are prompts.
Program texts following them are sent to the REPL. A pro-
grammer first defines four functions one by one (Line 1-12)
and run them by registering periodic_task as a timer-event
handler (Line 14-15). Then the programmer observes the
move of the toy car. Since he/she thinks that the car moves
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1 >>> def find_red_object(img):
2 ... # omit
3 >>>
4 >>> def go_straight():
5 ... set_speed(BOTH, 80)
6 >>>
7 >>> def go_right():
8 ... set_speed(LEFT, 50)
9 ... set_speed(RIGHT, 10)
10 >>>
11 >>> def periodic_task():
12 ... # omit
13 >>>
14 >>> timer = Timer()
15 >>> timer.init(mode=Timer.PERIODIC, callback=

periodic_task, period=500)
16 >>> # Check behavior of toy car.
17 >>>
18 >>> def go_straight(): # Redefine the function.
19 ... set_speed(BOTH, 40)
20 >>> # Check behavior of toy car again.

Listing 2. Programming a toy car through the REPL in
MicroPython

too fast, he/she redefines the go_straight function to pass a
smaller value 40 to set_speed (Line 19-20). If go_straight
did not pass a numeric literal but the value of a global vari-
able such as SPEED, the programmer would not redefine a
function but simply change the value of that global variable.
This change is also easy through a REPL. This redefinition is
immediately reflected on the car’s move, and the program-
mer can observe its effect. If the car’s move is not satisfactory,
the programmer can redefine go_straight again. He/She
can iterate these steps until the move is satisfactory. This
iteration is not tedious or time-consuming.
A problem of interactive execution environments for mi-

crocontrollers is their execution speed. They often use a
simple interpreter since only a limited amount of memory
is equipped on a microcontroller. Their execution speed is
much slower than the native machine code compiled from a
program written in the C language. For example, the func-
tion find_red_object in the C language takes 0.45 seconds,
but a MicroPython function equivalent to find_red_object
takes 11.5 seconds on the ESP32 microcontroller, which op-
erates at 240 MHz. The MicroPython function would be too
slow to change the car’s direction of travel before it collides
with a red object in front of it. The travel speed of the toy
car must be significantly reduced.

Dynamic Incremental Compilation
A promising approach to accelerating the execution speed in
an interactive execution environment is dynamic incremen-
tal compilation, which can trace its origin back to the 1970s
[15]. Its idea is to incrementally compile only a new code

fragment interactively given by programmers and dynami-
cally link the compiled binary to the rest of the codebase that
already exists. This approach has been sophisticated [10, 25],
and it is nowwidely adopted by a number of language virtual
machines as dynamic compilation or just-in-time compila-
tion, where a code fragment is dynamically selected for com-
pilation not only when it is given by programmers but also
when it is recognized as frequently executed code, so called
hotspot, during runtime. Furthermore, modern dynamic com-
pilers adaptively change how aggressively they optimize
code to match a trade-off between compilation time and
resulting speedup.

However, dynamic incremental compilation is not widely
used by interactive execution environments for microcon-
trollers. Some execution environments like MicroPython [4]
support it, but its capability is limited since the environ-
ments must contain an optimizing compiler and a linker.
These components increase the memory footprint of the
environment, but this increase of memory footprint is not
accepted without careful consideration. A microcontroller is
equipped with only a limited amount of memory. The SRAM
size of the ESP32 microcontroller is 520 KB, and that of the
RP2040 microcontroller for Raspberry Pi Pico is only 264 KB.
These memories must be shared with application programs.
Note that, from the viewpoint of product design, the total
memory footprint should be reduced as much as possible to
minimize product cost.

This viewpoint is also applied to the code size of execution
environments. Although those microcontrollers support up
to 16 MB flash memory, where the executable binary code
is stored, it must be shared with applications, and hence, a
smaller footprint of the execution environment is also more
desirable. For example, the binary size of the V8 JavaScript
engine for macOS is 1.5 times bigger than the V8 engine with-
out dynamic compilation. Also, the Ruby virtual machine
supporting the YJIT dynamic compiler is 1.3 times bigger
than the original one for macOS.
Furthermore, some developers might be afraid that dy-

namic incremental compilation would degrade the interac-
tivity of execution environments for microcontrollers. Since
the clock speed of microcontrollers is an order of magnitude
slower than high-performance processors for smartphones
or server computers, it is challenging to dynamically compile
code during runtime to keep a short response time.

3 Offloading Dynamic Incremental
Compilation

To utilize incremental dynamic compilation in interactive
execution environments on microcontrollers, we propose
offloading it onto a host machine that is a computer used by
programmers as a console to access a microcontroller. The
host machine is connected to the microcontroller through a
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wireless network or a serial cable, and it has larger comput-
ing resources than the microcontroller. Since these comput-
ing resources are sufficient to execute incremental dynamic
compilation, they are used for enhancing relatively poor
computing resources of the microcontroller.
We offload not only compilation but also linking on a

host machine. This differs from a traditional approach where
source code is compiled into a shared object or a dynamic
library on a host machine and is dynamically loaded and
linked on a target machine by dlopen. We offload all the
steps except writing executable code on the memory of a
microcontroller and reduce the memory footprint of an exe-
cution environment on a microcontroller as much as possible.

3.1 Overview
An interactive execution environment that offloads incre-
mental dynamic compilation consists of two components.
One component runs on a host machine and provides a REPL
and a compiler. The other one runs on a microcontroller, and
it is a collection of runtime routines that are needed for
receiving compiled native code from the host machine and
executing it. These two components are connected through a
network, which is a Bluetooth wireless network in the case of
our prototype mentioned later. Before rebooting the compo-
nent on a microcontroller, its runtime routines are compiled,
built, and written onto the flash memory of the microcon-
troller. The compiled runtime routines are sent from the
host machine through a serial cable to the microcontroller.
After rebooting, the serial cable is not necessary if the two
components are connected through a wireless network.
When a programmer gives a new source-code fragment

through a REPL on a host machine, a compiler on the host
machine compiles it into native code for a microcontroller.
We call this native code a loading unit. The compiler per-
forms incremental compilation. If necessary, it refers to code
fragments previously given by the programmer. To reduce
engineering efforts, we use an existing compiler tool-chain
for cross-compilation to the target microcontroller. Our pro-
totype mentioned later uses an existing C compiler as a
backend. Our compiler translates source code into a C pro-
gram, and a C compiler compiles it into native code in the
ELF (Executable and Linkable Format). Using an existing
off-the-shelf compiler indirectly improves the portability for
different microcontrollers.

Then, the compiled native code, or a loading unit, is mod-
ified on the host machine to be linked to the rest of the code.
After being linked, this loading unit is sent as it is to the
microcontroller, and it is written to memory on the micro-
controller. Finally, a runtime routine calls the entry point
of that loading unit to execute it. After finishing the execu-
tion, the runtime routine waits until another loading unit is
sent from the host computer. The REPL also waits until the
programmer gives a new code fragment.

Host machine Microcontroller

Shadow memory Actual memory

Loading unit

Loading unit

Unused area

Loading unit
Runtime
Routines

Unused area

Loading unit
Loading unit

Symbol information

Symbol information

Symbol information

Figure 1. Shadow memory

3.2 Shadow Memory
To execute linking on a host machine, we maintain an ab-
stract memory image, which we call shadow memory, on a
host machine (Figure 1). It is an abstract copy of the memory
image on a microcontroller, and it also holds symbol infor-
mation needed for linking compiled native code to the rest of
the native code that is already running on a microcontroller.
The shadow memory consists of several regions, which

correspond to memory regions on a microcontroller. The
shadow memory initially consists of regions that represent
unused free areas on a microcontroller’s memory. Later,
those unused areas will be gradually converted into regions
containing compiled native code that we call a loading unit.
The shadow memory also initially includes a region that
corresponds to the memory region containing the runtime
routines of the execution environment on a microcontroller.
It may be a memory region on the flash memory of a micro-
controller, where executable code is written before rebooting.
This region in the shadow memory holds a symbol table that
indicates the addresses of the entry points of the runtime
routines.

A loading unit, which is native code obtained by compiling
a source-code fragment interactively given by a programmer
through a REPL, is linked on the shadow memory. First, a
new region is allocated for this loading unit from an unused
free area. A new memory region is allocated on a microcon-
troller, and a corresponding region is created in the shadow
memory on a host machine. The loading unit is copied into
this new region in the shadow memory on a host machine.
The symbol information of the loading unit is attached to
the region. Because a loading unit in our prototype system
is executable binary in the ELF, a symbol table stored in
the ELF section .symtab and a relocation table in the ELF
section starting with .rela are attached to the region. A
symbol table is a map that associates a symbol name with
its address, which consists of a section name and an offset
from the beginning of the section. A relocation table lists the
locations of unresolved addresses in a section, for example,
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1 let led: GPIO = new GPIO(23);
2 let isLit: boolean = false;
3
4 function toggleLED() {
5 led.set(isLit ? 0 : 1);
6 isLit = !isLit;
7 }
8
9 setInterval(toggleLED, 500);

Listing 3. A program in BlueScript for blinking an LED

the text section for the relocation table in the .rela.text
section. Its entries are an offset, a symbol name, how a value
is computed, and so on.

Then, the loading unit is modified in the shadow memory
to be linked. All the entries in the relocation tables are re-
solved, and computed values are stored at their addresses in
the region in the shadow memory on a host machine. During
this symbol resolution, symbol information for other loading
units in their regions are referred to. After this symbol reso-
lution, the resulting machine code in the shadow memory
is sent to a microcontroller, and it is written in the corre-
sponding memory region on the microcontroller. When the
machine code in other regions is updated, those new val-
ues are also sent to a microcontroller, and they overwrite
previous values.

Note that the symbol information is never sent to a micro-
controller. It is just kept in the shadow memory on a host
machine so that it will be reused later when a new loading
unit comes in to be linked or when an existing loading unit
is modified for further optimization.

3.3 The BlueScript Language
As a prototype for exploring our idea of offloading, we

have developed a new small language named BlueScript. We
use this language for exploring our idea in a practical inter-
active environment for microcontrollers. The design goal
of BlueScript is to balance sufficient flexibility for interac-
tive programming and adequate execution performance on
performance-poor microcontrollers. BlueScript borrows syn-
tax from TypeScript, although it only uses a subset of Type-
Script’s syntax. Listing 3 is an example of a BlueScript pro-
gram. It can be read mostly as a normal TypeScript program,
but the semantics of BlueScript are more static than Type-
Script. Most of the dynamic features available in TypeScript
are not supported in BlueScript. For example, BlueScript
does not support eval, apply, prototype-based inheritance,
or structural typing. BlueScript adopts nominal typing and
supports classes with simple single inheritance as well as
function redefinition, but forbids redefining existing classes.
The language adopts simple gradual typing [24]. It sup-

ports primitive types such as 32-bit signed integer, 32-bit
floating-point number, boolean, and a character string. Their

Table 1. Built-in classes and functions

GPIO class Control general-purpose input/output ports.
PWM class Access a pulse width modulation controller.
Display class control a display (M5Stack only).
Timer functions setInterval, clearInterval, setTimeout,

and clearTimeout.
Button function buttonOnPressed.

type names are integer (or number), float, boolean, and
string, respectively. Unlike TypeScript, an integer and a
floating-point number are distinguished and treated as dif-
ferent primitive types. The language also supports an array
and an instance of a class. The current class system of Blue-
Script is static and provides minimal functionality. It only
supports single inheritance, and an interface is not supported.
A class type is nominally treated, and subtype relations are
determined by considering only type names. Adding a new
method or field is currently not supported.

Since simple gradual typing is adopted, the language also
supports any type. A value of any can be any type of value.
The type checker of BlueScript performs type inference, and
it infers any type when no other types are determined be-
cause, for example, a type annotation is not given by a pro-
grammer. If necessary, the type checker may treat an expres-
sion (or a variable) of any type as being compatible with any
other type of expression, and vice versa. Since this implies
implicit type conversion at runtime, this may raise a runtime
type error.
When an element type is not explicitly given, an array

object is created as an array of any type; its element type is
any. The index of an array element must be integer type.
When an array element is accessed, it is checked at runtime
whether a given index is inside the boundaries of the array.
Hence, an array access may raise a runtime error. BlueScript
also provides arrays of primitive types, such as an array of
integer or float. All the elements have the same type.
A function is declared by a function declaration start-

ing with function or by the arrow notation => as in Type-
Script. Currently, however, a function expression cannot
capture a local variable. It cannot form a closure. The state-
ments currently supported by BlueScript are expression state-
ments, block statements, and const, let, if, while, for, and
return statements. They also include non-labeled break and
continue. for...in or for...of statements are not sup-
ported. try...catch statements or async functions are not
supported either.

Unlike TypeScript, BlueScript currently does not provide
a module system. Neither import nor require is available.
BlueScript provides only a single global name scope where
several built-in library functions and classes, such as GPIO
and PWM, are available for accessing hardware components
as listed in Table 1.
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Figure 2. A notebook-style REPL for BlueScript

BlueScript
runtimeWeb browser
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Host machine Microcontroller

① BlueScript code ② Executable binary

③ Executable binary

④ Result

Programmer

Figure 3. The interactive execution environment for Blue-
Script.

3.4 Implementation
We have implemented an interactive execution environment
for the BlueScript language. The target microcontroller is
ESP32, a 32bit microcontroller by Espressif Systems. This ex-
ecution environment provides a notebook-style REPL similar
to the Jupyter notebook 1. As shown in Figure 2, a program-
mer can write a source-code fragment in a rectangular cell
in a web page in a web browser on a host machine. Then,
when the programmer clicks on the run button to the left of
the cell, the code written in the cell is executed on an ESP32
microcontroller connected to the host machine through Blue-
tooth. The output of the execution is sent back to the web
browser, and it is displayed on the right side of the web page.
If the output is an error message, it is displayed under the
cell. The wireless communication by Bluetooth between a
host machine and a microcontroller may make it easy to
program a microcontroller that controls the driving of a toy
car, the flight of a drone, or the motion of a robot since we do
not have to connect it to a host machine by a limited length
of wire.
As already mentioned in Section 3.1, the execution envi-

ronment consists of two components: one on a host machine
and the other on a microcontroller. See Figure 3. The compo-
nent on a host machine runs on Node.js and works as a web
1https://jupyter.org

server that serves a web page for a notebook-style REPL. The
web browser is responsible for the communication between
a host machine and a microcontroller. Since it uses the Web
Bluetooth API, a programmer must use a web browser sup-
porting this API such as Google Chrome. The component for
a microcontroller runs on FreeRTOS with libraries provided
by ESP-IDF (Espressif IoT Development Framework).

Compilation. The BlueScript compiler is included in the
host-machine component of the execution environment. It
is implemented in TypeScript and runs on Node.js. It uses
the Babel parser2 for parsing a BlueScript program. A non-
supported statement or expression is accepted by Babel but
it is treated as an error after parsing. Since a BlueScript
program is incrementally given to the compiler, the compiler
receives a source-code fragment one by one and translates it
into a program in the C language. The compiler maintains
a global name table so that functions and global variables
can be accessed from other code fragments given later. Then,
that C program is compiled with the -O2 option by a cross-
compiler provided by ESP-IDF, which is based on the GNU
C compiler. The compiler generates executable binary code
in the ELF. After being linked, it is sent to ESP32 and written
in an executable RAM area of the device. The data section
generated by the compiler is written in a non-executable
RAM area. Note that ESP32 partly uses the Harvard memory
architecture.
A function in BlueScript is translated into a function in

the C language. Currently, this function in the C language
is indirectly invoked so that redefinitions of a function in
BlueScript can be easily implemented. Only the calls to a
function bound to a const variable are compiled into direct
function calls in the C language. The top-level statements
included in a given source-code fragment are collected and
translated into the body of one function in the C language.
This function is the entry point of the loading unit generated
from the given fragment. It is invoked when the loading unit
is written to the memory on a microcontroller.
The integer type and the boolean type in BlueScript

are translated into the int32_t type in the C language. The
float type in BlueScript is translated into the float type.
A string, an array, and an instance of a class are objects in
BlueScript. They are translated into a heap array in the C
language. The first 32 bits of this heap array are the header.
The upper 30 bits in the header are used as a pointer to the
type (or class) information of that object. 2 bits in the header
are used as mark bits during garbage collection. The rest of
the elements of the heap array are used to store a property
or an array element in BlueScript. The memory layout in the
heap array is statically determined for its type or class in
BlueScript.

The type system of BlueScript guarantees that a statically
typed expression (or variable) results in a value of (a subtype
2https://github.com/babel/babel
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of) that type when that expression is evaluated at runtime
if no type error is reported during compilation. Thus, the
C program that BlueScript code is translated into does not
include runtime type checking except an expression of the
any type. It runs without runtime penalties for type checking.

Gradual Typing. The any type is compatible with any type.
An expression statically typed as the any type can be used
where an expression of any other type is expected, and vice
versa. For example, it can be used where an integer expres-
sion is expected. On the other hand, an integer expression
can be used where an any expression is expected. Thus, when
an expression of the any type is translated where an expres-
sion of other types 𝑡 is expected, a runtime type check is
inserted to assure that the value is of that type 𝑡 . When the
type of an expression is not any and it is translated where
an expression of the any type is expected, that expression
is wrapped in type conversion into any. For example, this
BlueScript code:

const a: any = 3
const b: integer = a + 4

is translated into C code equivalent to the following pseudo
code:

lvars[0] = int_to_any(3)
int32_t b = any_to_int(add_any(lvars[0],

int_to_any(4)))

where lvars is an array holding the values of local vari-
ables that are pointers or any-type values. int_to_any and
any_to_int are functions to convert an integer value into
an any value and vice versa. add_any is a function to add
two any values. Since the left operand of + is statically typed
as any, the right operand is converted into any.
A value of the any type is implemented by a classic tech-

nique called pointer tagging. It is a 32bit pointer to a heap
array, but the lower 2 bits are used as a tag. An integer value
and a float value are packed into the upper 30 bits with a
tag for identifying their types. Thus, when integer is con-
verted into any, its value is cast from 32 bits to 30 bits. When
float is converted into any, its precision is reduced from 32
bits to 30 bits. The exponent loses 2 bits and becomes 6 bits
after the conversion. Furthermore, when a value is stored
in an array or an instance of a class, the value is converted
into an any-type value. Only when a value is stored in an
integer, float, or byte array, the value is stored as it is.
No runtime overhead for type conversion implies.

Garbage Collection. The current execution environment
for BlueScript provides a mark-and-sweep garbage collector.
It runs on a microcontroller. 2 bits in an object header are
used as mark bits for garbage collection. The garbage collec-
tion root is implemented by a technique called shadow stack
[13]. During the marking phase, an object is colored black,
white, or gray. A gray object is an object that is reachable
from the root but not yet scanned. The reachability from this

gray object is not examined. A black object is an object that
is reachable from the root and scanned. The other objects
are white. The collector first performs depth-first-traversal
to first color objects gray and then black. If a stack overflows,
the collector stops the traversal. It scans the whole heap
memory from the top to the bottom, and whenever it finds
a gray object, it restarts the depth-first-traversal from that
gray object until no gray object is found [16].
The garbage collection for BlueScript can be interrupted.

When a hardware interrupt occurs during the marking phase,
the tri-color marker is interrupted, and an interrupt handler
is invoked. While the interrupt handler is running, when
a pointer to a white object is stored in a black object, that
white object is changed to gray and pushed into the marker’s
stack. This is performed by a write barrier inserted before
every store operation.
The garbage collector currently reclaims only the mem-

ory occupied by an object. It does not reclaim the memory
occupied by executable native code. Extending the garbage
collector to reclaim the memory occupied by executable na-
tive code is our future work.

Libraries. BlueScript provides a built-in library. To con-
trol hardware, programmers can use classes and functions
listed in Table 1. The setInterval function repeatedly calls
a given function at specified intervals. It adds the given
function to a table, and the functions in the table are peri-
odically called by a separate thread of FreeRTOS. Since this
thread is bound to the same core as the main application
thread, when that thread is executing the function passed
to setInterval, the main application thread is suspended.
The functions passed to setInterval and the main program
are mutually exclusive in BlueScript.

4 Experiments
We use our prototype implementation of BlueScript language
to conduct experiments. We compare the execution speed,
the response time, and the code size of the language’s execu-
tion environment on a microcontroller, between BlueScript,
MicroPython, Espruino, and the C language. Espruino is a
JavaScript virtual machine for microcontrollers. Our research
question is whether or not our idea of offloading incremental
dynamic compilation achieves both smooth interaction and
fast execution speed on modern personal computers and
microcontrollers. We use MicroPython V1.19.1 and Espruino
2V20 for experiments. The C compiler is xtensa-esp32-elf-gcc
(crosstool-NG esp-2022r1) 11.2.0. As a target microcontroller,
we use M5Stack Fire. It is an IoT development kit based on
the ESP32-D0WDQ6 microcontroller with 520 KB of RAM,
16 MB of Flash memory, and 8 MB of PSRAM. As a host ma-
chine, we use MacBook Pro, which is equipped with Apple
M1 Pro, 16 GB of memory, and 512 GB of storage.
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Table 2. Benchmarks programs for execution times (the upper programs are from “Are we fast yet?” and the lower ones are
from ProgLangComp)

Name LOC Description
Bounce 93 Simulates a ball bouncing within a box.
List 79 Recursively creates and traverses lists.
Mandelbrot 83 Calculates the classic fractal.
NBody 185 Simulates the movement of planets in the solar system.
Permute 42 Generates permutations of an array.
Queens 61 Solves the eight queens problem.
Sieve 38 Finds prime numbers based on the sieve of Eratosthenes.
Storage 57 Creates and verifies a tree of arrays to stress the garbage collector.
Towers 83 Solves the Towers of Hanoi game.
Biquad 43 Converts waveform (floating point) by a digital biquad filter.
FIR 55 Converts waveform (floating point) by an FIR filter.
CRC 113 Computes CRC32-IEEE checksums using a precomputed table.
FFT 97 Computes FFT (fixed point, complex pair of int16).
SHA256 175 Computes SHA256 hashes.
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Figure 4. Execution time of the “Arewe fast yet?” benchmark
suite
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Figure 5. Execution time of the ProgLangComp benchmark
suite

4.1 Execution Time
A BlueScript function equivalent to find_red_object in
Listing 1 runs in 0.57 seconds, while the original function
in the C language runs in 0.45 seconds, and the MicroPy-
thon equivalent runs in 11.5 seconds. We also measure the
execution time of programs taken from two benchmark

suites listed in Table 2, and compare the times among Blue-
Script, MicroPython, Espruino, and C. One benchmark suite
is the “Are we fast yet?” benchmark suite [19]3. This bench-
mark suite was developed to compare execution performance
among various languages. We use its micro benchmark pro-
grams in Python and JavaScript and write equivalent Blue-
Script and C versions. The other is the ProgLangComp bench-
mark suite [21]4. It is a collection of programs written for
evaluating the performance of the ESP32 microcontroller.
They perform signal processing and hash functions, which
are regarded as typical computation by microcontrollers. We
use MicroPython programs from this suite and write equiva-
lent C and BlueScript programs. We fully type-annotate all
the BlueScript programs used for the experiment.
For BlueScript, we compile and link a whole BlueScript

program and runtime routines all at once on a host machine.
The resulting executable binary is written on flash memory
before a microcontroller is booted to run. For MicroPython
and Espruino, we run benchmark programs according to
the documents on their official pages. We download their
virtual machines from the official page and install them on
the microcontroller before rebooting. Then, we write each
benchmark program on the host machine and send and ex-
ecute it to the microcontroller. For the C language, we use
the ESP-IDF build tool to compile and execute benchmark
programs. We give the -O2 option to the compiler.
Figure 4 shows the execution times of the “Are we fast

yet?” benchmark suite. We compare C, BlueScript, MicroPy-
thon, and Espruino. The execution of Nbody by Espruino is
timeout. Figure 5 shows the execution times of the ProgLang-
Comp benchmark suite. For this, we compare C, BlueScript,
and MicroPython. All the execution times are the means of
five runs. Note that the Y axes are log scales.
3https://github.com/smarr/are-we-fast-yet
4https://github.com/ignasp/ProgLangComp_onESP32
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1 // Code fragment #1
2 let dspl = new Display();
3 let colorWhite = dspl.color(255, 255, 255);
4 let colorRed = dspl.color(255, 0, 0);
5 dspl.showIcon(dspl.ICON_HEART, colorRed,colorWhite

);
6 print("$$");
7
8 // Code fragment #2
9 dspl.showIcon(dspl.ICON_HEART, colorRed,colorWhite

);
10 dspl.fill(colorWhite);
11 print("$$");
12
13 // Code fragment #3
14 let isSmall = false;
15 setInterval(() => {
16 if (isSmall) {
17 dspl.showIcon(dspl.ICON_SMALL_HEART, colorRed,

colorWhite);
18 } else {
19 dspl.showIcon(dspl.ICON_HEART, colorRed,

colorWhite);
20 }
21 isSmall = !isSmall;
22 }, 500);
23 print("$$");

Listing 4. The Flashing Heart program in BlueScript

The figures show that BlueScript is one to two orders of
magnitude faster than MicroPython and three to four mag-
nitudes faster than Espruino. The performance difference
is much larger when a program involves a large number
of arithmetic operations on primitive types. Such programs
are Bounce, FIR, CRC, and SHA256. This result is because
the BlueScript programs are type-annotated and thus they
less frequently perform runtime type checks and boxing/un-
boxing. Compared to the C language, BlueScript is up to 10
times slower. The slowdown is significant when a program
involves a large number of function calls since they are indi-
rectly invoked in BlueScript. Such programs are Towers and
List.

4.2 Interactivity
We evaluate the interactivity of BlueScript by comparing

it to MicroPython and the C language. We incrementally
write a program step by step according to a given scenario,
and measure the response time for every step.

Benchmark Programs. We develop a new benchmark suite
for our experiment. We take five scenarios from a tutorial
course on the website of MakeCode5, which provides pro-
gramming lessons using the micro:bit [8] microcontroller
for beginners. We develop three versions of programs for
5See https://makecode.com. It is open source under MIT license, see https:
//github.com/microsoft/pxt

each scenario in BlueScript, MicroPython, and the C lan-
guage. Table 3 lists the benchmark programs we develop. In
each scenario, a programmer writes a code fragment, and
runs it to test its behavior step by step. Each scenario consists
of three or four code fragments. The goal of each scenario is
to display an icon and text on the screen. The target micro-
controller is M5Stack Fire for all the scenarios.We implement
a library in the C language to manipulate the screen and the
buttons ofM5Stack Fire.Wemake this library accessible from
BlueScript and MicroPython through a similar interface as
well as the C language. The microcontroller is connected to
a host machine through Bluetooth for BlueScript, WiFi for
MicroPython, and a serial cable for the C language.
Listing 4 shows code fragments in BlueScript for the sce-

nario Flashing Heart. This scenario consists of three code
fragments. A programmer types and runs each code frag-
ment step by step to finally build a small application program
that shows a heart icon on the screen. The code fragment #1
initializes the display and shows a heart icon on the screen.
The code fragment #2 shows a small heart icon and erase it.
The code fragment #3 calls setInterval so that the given
function will be repeatedly called and the size of the icon
will change every 500 msec. Every code finally prints a text
to notify the end of the execution to a host machine.

For MicroPython, the code in each code fragment is trans-
formed into a single line since the REPL of MicroPython
receives only a single line at once. We combine all the state-
ments in the code fragment into a single line where state-
ments are separated by a semicolon. Since the execution
environment ESP-IDF for the C language, does not directly
support interactive programming, we execute the previous
code fragment again whenever we execute the new code
fragment. For example, when we execute the code in the
third fragment, we combine the first, second and third frag-
ments into a single program, compile it, and execute it. This
is because we must reboot M5Stack Fire to start a new pro-
gram, and hence, all the devices must be initialized again
after rebooting.

Results. We execute the code fragments of each scenario
three times and measure the response time. It is the elapsed
time since we press the button to start executing a code
fragment till a string $$ is printed as an execution result
on the screen. Every code fragment prints $$ at the end as
shown in Listing 4. We also measure the execution time,
excluding compilation time and communication time from
the response time. For BlueScript and the C language, the
times shown in figures are the means of the three runs of
each scenario. For MicroPython, those are the shortest ones
because of their instability and large distribution.

Figure 6 shows the execution time of every code fragment.
Since every code fragment is very short and it just calls a
few library functions only, the majority of the execution
time is the time for executing library functions. Thus, we
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Table 3. Benchmark programs for interactivity

Scenario Fragment LOC Description

Dice

1 3 Bind an empty function to button B by using buttonOnPressed built-in function.
2 8 Initializes the display module and bind a function for displaying 0 to button B.
3 5 Bind a function for displaying a random integer from 0 to 10 to button B.
4 5 Bind a function for displaying a random integer from 0 to 6 to button B.

Flashing Heart
1 5 Initialize the display module, set global variables to color code, and then display a heart icon.
2 3 Display the same heart icon again, and then erase it. Reuse the display module and color code.
3 10 Use setInterval function to display a large heart and a small heart alternately.

Love Meter
1 9 Initialize the display module and bind a function for displaying a random integer 0-10 to button B.
2 5 Bind a function for displaying a random integer from 0 to 100 to button B.
3 6 Display “Love meter” and bind a function for displaying a random integer from 0 to 100.

Name Tag

1 6 Initialize the display module, set global variables to color code, and then display “My name is:”.
2 2 Display “Sara!.”.
3 2 Display “My age is:”.
4 2 Display an integer 9.

Smiley Button
1 3 Bind an empty function to button B by using buttonOnPressed built-in function.
2 7 Initialize the display module and bind a function for displaying a happy face icon to button B.
3 5 Bind a function for displaying a sad face icon to button C.
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Figure 7. The time of compilation and others for every code fragment in BlueScript, MicroPython and C

do not observe notable differences between the three lan-
guages. The execution times of fragment #3 and #4 in the
C language are significantly slow. This is because we exe-
cute the fragment #1 and #2 (and #3) again when we execute
the fragment #3 (or #4). The readers might think that this
is odd and unfair, but this is typical software development
by using a non-interactive environment for the C language.

Whenever we change a program and test it, we must re-
boot a microcontroller and run the program again from the
beginning.
Figure 7 shows the times for compilation and others ex-

cluding execution. The times include communication be-
tween a host machine and a microcontroller. They are cal-
culated by subtracting the net execution time from the total
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Table 4. The size of runtime routines on a microcontroller

Environment Bluetooth WiFi Size (MB)

BlueScript ✓ - 0.86
- - 0.27

MicroPython

✓ ✓ 1.64
- ✓ 1.40
✓ - 1.26
- - 0.97

response time. The time of fragment #2 for the scenario
Flashing Heart in MicroPython is extremely long for an un-
known reason, which we are still investigating. The time
is 1584 ms, which is significantly longer than the time for
BlueScript. In other cases, BlueScript is up to 3.2 times (the
mean is 1.6) slower than MicroPython since BlueScript per-
forms incremental dynamic compilation. However, the times
in BlueScript are approximately less than 300 msec. despite
the use of a relatively slow off-the-shelf C compiler as a
backend native-code generator. It would be slower than a
dedicated highly-tuned dynamic compiler. Those times are
still acceptable for interactive programming. According to
the literature [20], the users feel that a response is immediate
when it takes 0.5 to 1 seconds. The times for compilation and
others in the C language are an order of magnitude longer
than the times in the other two languages. Those times are
approximately 6 seconds. They include compilation, link-
age of all object code including libraries and an operating
system, and writing the resulting executable binary code to
flash memory of a target microcontroller. The C language is
not acceptable for interactive programming.

4.3 Runtime Size
Table 4 lists the memory size of runtime routines on a micro-
controller. For BlueScript, it is 0.86 MB but is 0.27 MB if the
Bluetooth library is excluded. For MicroPython, the size of
its virtual machine is 1.64 MB but is 1.40 MB if the Bluetooth
library is excluded. It is 1.26 MB if the Bluetooth library is
included but the WiFi library is excluded. The size of the
virtual machine without Bluetooth or Wifi libraries is 0.97
MB. However, that virtual machine still includes a number
of libraries for accessing hardware. Note that these runtime
routines and the code of the virtual machine are stored in
flash memory but not in a limited size of SRAM.

5 Related Work
Espruino’s "compiled" tag [11] is most relevant to our work.
The source code of a function with this tag is sent to a re-
mote web service. It is compiled there into native code and
sent back to a target microcontroller. Since this dynamic
incremental compilation is supported only for official Espru-
ino boards, it is not used for the experiment in Section 4.1.
A difference from our work is that Espruino’s compilation

has only limited capability to link compiled native code. A
global variable is not linked, and hence Espruino searches
the symbol table when it accesses a global variable.
MicroPython provides two dynamic incremental compil-

ers: the Native code emitter and the Viper code emitter [4].
They run on microcontrollers. If a MicroPython function is
decorated with native or viper, it is compiled into native
code when its declaration is evaluated. Since those compil-
ers run on microcontrollers, their compilation capability is
limited. They support only a subset of the language, and
the compiled native code must be compatible with the byte-
code interpreter for passing and returning a value beyond
function boundaries. Thus, the performance improvement is
limited. According to our experiment using the benchmark
programs in Section 4.1, the Viper code emitter improves the
execution performance of the benchmark programs only by
a factor of up to 4.6. Recall that BlueScript runs one or two
orders of magnitude faster than MicroPython.
LuaRTOS [14] provides an interactive shell and dynamic

incremental compilation similar to the Native code emitter
of MicroPython. uLisp [5] also provides an interactive shell
for microcontrollers. Although it does not provide dynamic
incremental compilation, it supports an inline assembler.
There have been several research activities [9, 18, 26],

where the techniques for dynamic compilers are applied to
virtual machines running on microcontrollers, but the design
and implementation of such compilers is still a challenging
topic. Our work proposes a different design of dynamic com-
piler targeting interactive environments for microcontrollers,
rather than simply porting a dynamic compiler designed for
high-performance processors to microcontrollers.

Warduino [12] is a WebAssembly (Wasm) virtual machine
for microcontrollers. Like our work, Warduino utilizes the
computing resources of a host machine to compensate the
poor resources of microcontrollers. It offloads debugging
capability to a host machine although ours offloads dynamic
incremental compilation.
StaticTypeScript [2] is a subset of TypeScript, and its de-

sign is similar to our BlueScript. To achieve good execution
performance on a micro:bit microcontroller, StaticTypeScript
provides an offline compiler running in a web browser on a
host machine. Unlike BlueScript, StaticTypeScript does not
provide an interactive shell.
Contiki [6] uses a dynamic linker for reprogramming a

wireless sensor node, which is run by a low-power micro-
controller for energy efficiency. Contiki allows a memory-
constrained sensor node to dynamically load and link native
code modules. Unlike Contiki, BlueScript allows dynamic
loading without dynamic linking on a microcontroller since
linking is offloaded.
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JTAG [1] and SWD6 are debugging protocols for microcon-
trollers. They enable breakpoints, step execution, and read-
ing/writing microcontrollers’ memory. Compared to such
debugging protocols, our shadowmemory can be regarded as
a software implementation of debugging protocol although it
currently allows only reading and writing microcontroller’s
memory. Our shadow memory is, however, not only for de-
bugging but also for interactive programming. Conversely, it
would also be possible to implement shadow memory using
JTAG.

6 Conclusion
We presented an interactive execution environment for our
programming language BlueScript. To run on a microcon-
troller with a small amount of SRAM, this execution en-
vironment offloads dynamic incremental compilation and
linking to a host machine that is a computer connected
to that microcontroller and used by programmers to ac-
cess it for programming. We illustrated that BlueScript pro-
grams run only up to 10 times slower than C programs
and one to two orders of magnitude faster than MicroPy-
thon’s ones. Our experiments showed that our execution
environment responded within approximately less than 300
msec. excluding the execution time of a given BlueScript
program, although it reuses an off-the-shelf C compiler to
reduce its development costs and improve its portability.
The source code of BlueScript is available on our website
https://github.com/csg-tokyo/bluescript.
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Abstract
As IoT devices advance, their microcontroller systems-on-
a-chip (SoCs) demand higher speeds, more memory, and
advanced peripherals, leading to increased power consump-
tion. Integrating low-power (LP) coprocessors in SoCs can
reduce power usage while maintaining responsiveness. How-
ever, switching application execution to and from the copro-
cessors generally involves complex and platform-specific
procedures. We propose a JIT compilation method for man-
aged programming languages to streamline LP coprocessor
use. Our prototype for the programming language mruby
includes a JIT compiler and a seamless processor-switching
mechanism, enabling rapid development of IoT applications
leveraging LP coprocessors. This work-in-progress paper
describes the design and implementation of the extended
mruby interpreter and presents preliminary evaluations of its
power consumption and latency on ESP32-S3 and ESP32-C6.

CCS Concepts: • Software and its engineering→ Inter-
preters; Just-in-time compilers; • Computer systems
organization → Embedded software.

Keywords: managed languages, embedded systems, micro-
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1 Introduction
Recent microcontroller systems-on-a-chip (SoCs) accommo-
date rich peripherals and large enough memory resources to
meet the requirements for various Internet-of-Things (IoT)
applications. For example, an ESP32-S3 SoC module incor-
porates WiFi, 512 KiB Static RAM, and 4 MiB or more Flash
memory [7]. Despite the growing demands of complex tasks
(e.g., communication via MQTT, HTTPS with JSON) per-
formed in such devices, C, C++, and assembly language are
still used as the primary implementation languages. So, mem-
ory errors and the difficulty of debugging optimized compiled
binaries have plagued developers.
To help the rapid development of IoT applications, high-

level programming languages with rich programming envi-
ronments have been proposed for embedded devices [14, 16–
18, 23, 25, 28]. Language features, such as dynamic typing
and garbage collection (GC), can facilitate the development of
complicated but memory-safe IoT devices. For the languages
listed above, bytecode VMs running on the target devices are
often used instead of native code compilers running on the
development host machines. These provide rapid, interac-
tive development. In addition, they make live code updates,
such as Over-The-Air updates, much easier than with C/C++.
While these are not suitable for real-time systems due to a
(naïve) GC, there are many applications suitable for these
languages, such as agriculture, meteorological observation,
etc.

However, while low power consumption and responsive-
ness are essential for IoT devices, execution by a VM con-
sumes more power than native code. Putting the processor
in sleep mode reduces power consumption but at the ex-
pense of responsiveness. To solve this problem, SoCs with
low-power coprocessors (LP coprocessors) that operate while
the main processor is sleeping are gaining popularity. For
this purpose, LP coprocessors operate with limited resources.
The amount of available memory and accessible peripherals
should be limited. Moreover, the address space and processor
architecture may also differ from those of the main proces-
sors. Thus, developing applications that take advantage of LP
coprocessors usually requires writing complex procedures
in C/C++ that directly access the hardware.
This work aims to facilitate the development of applica-

tions that utilize LP coprocessors using a dynamically typed
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Table 1. The Specifications of the Targets

ESP32-S3 ESP32-C6
Main Processor ISA Xtensa LX7 RV32IMAC
LP Coprocessor ISA RV32IMC RV32IMAC
Main SRAM [KiB] 512 512

RTC Slow Memory [KiB] 8 16

managed language. Toward this goal, we introduce a JIT com-
piler and an execution migration mechanism into mruby/c1
to execute code on LP coprocessors. These mechanisms al-
low, within an mruby script, seamless switching between
the main processor and coprocessor execution in a SoC. Our
current contributions are implementations and preliminary
evaluation of the mechanisms.
We target two microcontroller SoCs, ESP32-S3 [6] and

ESP32-C6 [8]. The main processor and the LP coprocessor
are connected via the interconnect. They interact via the
RTC Slow Memory, a memory for the LP coprocessor. Dur-
ing the light-sleep state, the LP coprocessor can access only
the RTC Slow Memory. This memory can be accessed via
the interconnect and is memory-mapped. In ARM-based mi-
crocontrollers, a coprocessor, processors, and memories are
connected via the AXI interconnect bus [12, 21, 22].We guess
that ESP SoCs are implemented like ARM-based microcon-
trollers. Table 1 shows the specifications of these targets. The
LP coprocessor has limited accessible memory space, accessi-
ble peripherals, and processor performance, compared to the
main processor. Thanks to these limitations, the LP coproces-
sor of ESP32-S3 consumes 200 µA, while the main processor
consumes 13.2mA at the lowest frequency (40MHz) [6].
The rest of this work-in-progress paper is organized as

follows. The next section describes related works. Section 3
provides two simple examples to illustrate how to switch ex-
ecution between the main processor and the LP co-processor.
Section 4 describes our proposed method for JIT compilation.
Then, Section 5 presents the preliminary evaluation results.
Finally, Section 6 discusses the future work and Section 7
concludes the paper.

2 Related Work
2.1 Ahead-of-Time Compilation
Static TypeScript [1] is a subset of TypeScript with an Ahead-
of-Time (AoT) compiler. It targets small-scale embedded de-
vices, which have only 256–512 KiB ROM and 16–256 KiB
RAM. Although AoT compilation gives better performance,
it can result in larger compiled binaries occasionally. Our

1mruby [20, 29] is a lightweight implementation of Ruby, andmruby/c [23] is
an implementation of the mruby runtime that runs on resource-constrained
devices. We chose mruby for this study because information on RiteVM (the
mruby VM) is relatively easy for us to obtain compared to MicroPython [25]
or other languages.

target can communicate over WiFi and potentially manip-
ulate JSON data (an example of the highly dynamic data
structures). Thus, conservative type checking may generate
larger codes. However, AoT compilation can generate better
codes for well-typed programs and is suitable for real-time
systems. Depending on the application, it is important to
employ AoT or JIT compilation properly.

2.2 Tiny Interpreters
The Ribbit system [30] is a compact Scheme interpreter with
a footprint of 4 KiB, and the following work [24] implements
the R4RS standard in 7 KiB by using LZ compression for
bytecodes. Without compression, it exceeds 8 KiB. This sug-
gests that compiling or transferring functions on demand is
necessary. Even though bytecodes tend to be smaller than
machine code [3], the small memory of the LP coproces-
sor cannot accommodate all of the standard libraries. We
must declare functions used in LP coprocessors, or func-
tions must be compiled/transferred on demand. Moreover,
while Scheme is simple, popular high-level programming
languages in embedded systems such as Ruby and Python
are more complicated. Hence, we think that it is difficult to
implement an interpreter for such languages within 8 KiB.

2.3 Just-in-Time Compilation
2.3.1 On Embedded Devices. Some works [10, 19, 27] de-
veloped just-in-time (JIT) compilers for resource-constrained
devices. These works imply that ESP32 can do JIT compi-
lation. With the fact that programs on LP coprocessors are
usually small, it is possible to run a JIT compiler on main
processors to generate programs for LP coprocessors. The
conventional main purpose of JIT compilers is the code speed,
but our purpose is a small memory resource. An efficient
code is not always minimum, for example, excessive code
duplication (code specialization) should be avoided.

2.3.2 For Dynamic Languages. Lazy basic block version-
ing [4] is a JIT compilation technique suitable for dynamic
programming languages and is used in the Ruby compiler
YJIT [5]. The compiler incrementally compiles one basic
block at a time. Compiled basic blocks have branch stubs
for branches to uncompiled basic blocks. When execution
reaches such stubs, the compiler resumes the code genera-
tion. The header of each basic block has a typing context for
local variables, and basic blocks are specialized according
to the typing context. The destination of compiled code of
branches is determined not only by the program location
but also by the typing context. This technique avoids heavy
and complex implementations such as type analysis. How-
ever, it still requires its own partial evaluator for compiler
optimizations such as constant folding and devirtualization.
Trace-based JIT [10] is also a JIT compilation technique

to detect and compile frequently executed program paths. It
gathers constant-foldable values and types of local variables
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by executing programs by the interpreter. It reduces the
code size of the compiler, which is suitable for resource-
constrained systems. However, generated codes by trace-
based JIT may occur too many code duplications. As a result,
the generated code may exceed the memory resource of the
LP coprocessor.

2.4 Execution Migration
Execution migration is to migrate a running program across
heterogeneous-ISA (Instruction Set Architecture). One of
the purposes of execution migration is to run programs on
suitable processors for performance or power consumption.
Some works [2, 11] compile statically and generate bare
binaries, unlike our approach. In embedded systems, a big
issue of execution migration is code size overheads for state
transformation (transforming stack frames and the heap) at
migration points. It is possible that the compiled binary is
twice as big. UNIFICO [15] solves this problem by adjusting
the stack and limiting the number of registers. These works
allow execution migrations at any call site. We believe that
a carefully designed migration granularity can reduce such
overheads in applications of LP coprocessors.
Emerald [13] is a managed programming language de-

signed for distributed computing. Objects in Emerald can
freely move within the distributed system, and developers
can explicitly move objects. Unlike Emerald, in our work,
the LP coprocessor and the main processor work exclusively.
Thus, developers do not need to think about the concurrency
so we will not provide primitives such as monitor. Moreover,
we try to move objects automatically on demand without
modifying the object system in Ruby.

3 Motivating Example
Mainly, (general purpose) coprocessors of microcontrollers
have two purposes: for lower power consumption and for
real-time tasks. Our approach is not suitable for real-time
systems because we employ JIT compilation that results in
a long pause time when execution reaches uncompiled pro-
gram locations. Therefore, we focus on the lower power con-
sumption purpose. In this section, we show two motivating
examples. The former is used in the preliminary evaluation.

3.1 LED Blinking
LED blinking is a popular test case of embedded systems.
Listing 1 is an example using the LP coprocessor, written in
Ruby. In this example, the GPIO4 and GPIO5 pins are con-
nected to an LED and a tactile switch, respectively. When the
Copro#run method is called, the JIT compiler starts to com-
pile the given block. Eventually, the LP coprocessor executes
the compiled code and the main processor sleeps (explained
in Section 4.1). When the given block is finished (i.e., after
the tactile switch is pressed), the main processor wakes up
and executes the following program.

Listing 1. LED blinking in Ruby
1 Copro.run do
2 prevPress = false
3 press = false
4 # While the tactile switch is not pushed.
5 while (!prevPress ||
6 press) do # Negative Edge
7 Copro.gpio(4, true) # Turn on the LED.
8 Copro.delayMs(30) # Sleep for 30 ms.
9 Copro.gpio(4, false) # Turn off the LED.
10 Copro.delayMs(30)
11 prevPress = press
12 press = Copro.gpio?(5) # Check the switch.
13 end
14 end
15 # LP coprocessor never executes here.

Listing 2. IoT Sensor in Ruby
1 sensor = SHT3xSensor.new(I2C.new(5,4))
2 # May be set by the JSON config.
3 buffer = Array.new(60)
4 Copro.run do
5 (0...60).each do |i|
6 Copro.delayMs(1000*60) # Sleep for 1 min.
7 buffer[i] = sensor.read() # Read from sensor.
8 end
9 end
10 Network.send(buffer) # Send buffered data.

In this way, we can save the number of migration points
discussed in Section 2.4, if we use a static compilation ap-
proach. Migration points are only before/after the call sites
of Copro#run. Stack frame transformations are unnecessary;
it only transfers the closure (Proc object in Ruby) to the
LP coprocessor because the LP coprocessor never executes
outside the Copro#run.

3.2 IoT Sensor
IoT sensors are popular applications to sense humidity, mo-
tion, pressure, etc. They gather environmental information
from sensors and send gathered information over the net-
work to a central server. Some sensors consume lower cur-
rent than the main processor, e.g., a humidity and tempera-
ture sensor consumes 600 µA typically [26]. The LP coproces-
sors of our targets can interact with sensors connected over
communication methods such as I2C, 1-Wire, and analog-
to-digital converters. If the IoT sensor sends to the server
infrequently, waking the main processor for measurements
affects the battery life.
Listing 2 is an example of an IoT sensor in Ruby. Ruby’s

subtyping mechanism allows the creation of interfaces that
are independent of specific sensors or communication meth-
ods. In our implementation, this mechanism can also be used
on the LP coprocessors. Thus, if the production of compo-
nents, such as sensors, becomes discontinued, we can pre-
pare a new code for the replacement components with small
changes.
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Figure 1. An Overview of Just-in-Time Compilation

4 Summary of Proposed Method
However, the LP coprocessors of our targets do not have
enough memory to run the VM, so we introduce a JIT com-
piler running on the main processor to generate code for the
coprocessor dynamically. This section briefly describes our
JIT compiler and discusses object management between the
main processor and coprocessor.

4.1 Just-in-Time Compilation
Our method is based on lazy basic block versioning [4]. It
avoids traditional type analyses. Type analyses can be com-
plex and heavy to support richer type representations. The
generated programs for the LP coprocessor also may become
inefficient and large due to the conservative type checking.
We consider that gathering types by running the program is a
cheap way for the footprint and the computation complexity.
However, we use the interpreter for the first execution

like trace-based JIT [10] to reduce the processor wake-ups
and the execution migrations. Unlike trace-based JIT, the
generated codes are divided into basic block versions. This al-
lows compiled basic blocks (including functions) to be reused
in the different code paths. Similar to trace-based JIT, our
method reuses the originalmruby/c interpreter. It reduces the
runtime footprint2. In addition, if an executing basic block
is not appropriate to compile and execute on the LP copro-
cessor (e.g., low frequently executed, or using not supported
features (e.g., too dynamic features) on the LP coprocessor),
it allows to run on the main processor seamlessly.
Figure 1 shows the control flow graph corresponding to

Listing 1. Each node is a basic block split by method callings
2Currently, we copied the original one.

and branches, whose label represents the line number on
Listing 1. First, uncompiled basic blocks are executed and
traced on the main processor (1). The traced basic blocks
are compiled while applying optimizations such as type spe-
cialization. Then, when it reaches a compiled basic block,
the LP coprocessor executes the compiled basic blocks (1 →
2). During execution on the LP coprocessor, the main pro-
cessor sleeps. After that, when the LP coprocessor reaches
the uncompiled basic block, the main processor wakes up
and executes and compiles the uncompiled basic block (3). In
the LED blinking example, this is happened when the tactile
switch is pushed. Like lazy basic block versioning, new basic
block versions may be generated (4). If the Copro#gpio? (l.12)
does not return a boolean value at the second time, a new
basic block version for l.6 is created.

4.2 Objects
During execution on the LP coprocessor, shapes of objects
are fixed. Unlike Python, Ruby does not allow to access in-
stance variables outside instance methods. We assume that
programs on the LP coprocessor do not use too dynamic
features. On the LP coprocessor, too dynamic features such
as Object#extend and class definitions are disallowed. As a
result, objects can be realized without hash tables. We note
that dynamic features still can be used on the main processor
(outside Copro#run).

A Method object on the main processor can contain a
pointer to a C function on the LP coprocessor, in addition
to a C function on the main processor. When it is called, it
executes the C function on the main processor; instead, the
compiled code calls the C function on the LP coprocessor.
Copro#gpio and Copro#delayMs use this to execute on both
processors.

5 Preliminary Evaluation
5.1 Evaluation Detail
We evaluate the code size and the wake-up/compile over-
heads by the LED blinking example (described in Listing 1)
with the initial implementation. Currently, it supports:

• Integers, Booleans and nil

• Arithmetic operators
• A single call frame migration
• Calling methods defined in C
• Garbage Collection (however, not used)

and does not support:

• Objects including Arrays, Strings and Hashes
• Calling methods defined in Ruby
• Global variables
• Closures

Table 2 shows the evaluation environment. We evaluated
under following configurations:
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Figure 2. Current Consumption Results

Table 2. The Evaluation Environment

Role Name and Revision

Evaluation boards
ESP32-S3-DevKitC-1 N8, v1.0
ESP32-C6-DevKitC-1 N8, v1.3

(Main processors freq. : 160 [MHz])
SDK ESP-IDF v5.2.1

Ammeter Nordic Power Profiler Kit 2 (PPK2)
Signal Generator Nodemcu ESP8266 Ver 0.1

• The signal generator simulates the tactile switch in-
put. It makes GPIO5 (tactile switch) high for 160 [ms],
120 [ms] after GPIO4 (LED) is high at the first time.

• The sample rate of PPK2 is 100 [kHz]. It delivers the
3.3 [V] power to the targets and captures GPIO signals.

• On the ESP32-C6-DevkitC-1, the jumper is removed
to disconnect the power-on indicator LED and the
UART/USB controller [9]. However, on the ESP32-S3-
DevkitC-1, there is no jumper so they are connected.

• The commit hash of mruby/c that we use is 73c1324f93.
• The watchdog timers are disabled.
• We used the light-sleep state because the deep-sleep
state cannot retain the main memory.

We measured the code size of the mruby runtime by
$ idf.py size-components provided by ESP-IDF SDK. We
also measured the wake-up time of the processors. GPIO1
becomes high before the running processor wakes the other
processor and becomes low after the other processor is ready.

5.2 Result and Discussion
Table 3 shows the code size of themruby runtime. The code of
the LP coprocessor contains the garbage collector, the imple-
mentations of Copro#delayMs, Copro#gpio, and the bootstrap.
The code size changes are about 20 [KiB]. Since we currently
copy the original interpreter and modify it, these changes

Table 3. The Runtime Code Size [B]

Main Processor
Target .data+.bss .text .rodata Copro.

ESP32-S3 Orig. 2582 48928 6511 0
Ours 2614 68411 6864 1336

ESP32-C6 Orig. 2574 57456 6615 0
Ours 2614 80822 6968 3072

are not small compared to the interpreter code size (about
55 or 65 [KiB]). This suggests that the code should be shared
between the interpreter and the JIT compiler when the ROM
size is limited.

The memory overheads on both targets are:
• Profiling data on the main processor: 776 [B]
• Generated codes on the LP coprocessor: 220 [B]

Profiling datamanages the register allocation and the typings.
The generated code has many move instructions for constant
values. This can be reduced if the copy-on-write register
allocation is implemented (discussed in Section 6.1).
Figure 2 shows the current consumptions. In the figures,

the horizontal dashed lines represent approximate values un-
der steady-states. 30.5 [mA] and 33.5 [mA] are the power con-
sumption of the main processor, and 2.5 [mA] and 1.9 [mA]
are the power consumption of the LP coprocessor. By using
the LP coprocessors, we can see that the power consumption
is reduced by about 10 times. The vertical dashed lines in the
figures represent when the main processors wake up or enter
the sleep state. At the first vertical dashed line, the main pro-
cessors enter the sleep state. At the second vertical dashed
line, the main processors wake up and compile the follow-
ing program for the LP coprocessors, then enter the sleep
states. Since The tactile switch input changes its value, the
taken branch is changed, and the uncompiled basic block is
compiled. After the third dashed line, execution of Copro#run
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Table 4. Wake-Up Time Overheads [ms]

ESP32-S3 ESP32-C6
The Main Processor 0.51 0.58
The LP Coprocessor 0.18 0.02

finishes, and the main processors continue to work. Com-
paring before/after the first dashed line, we observed that
the power consumption is reduced by the LP coprocessor. In
this example, ten basic block versions are generated, but the
main processor has only woken up twice. This is due to the
tracing of the first execution by our method.
Table 4 shows the elapsed time of processor wake-ups.

These overheads are inevitable when a processor wakes up,
and are expected to be a problem for some applications.
For example, I2C standard mode operates at 100 [kHz] (i.e.
1-bit per 0.01 [ms]). If the processor wakes up during the
I2C communication by software, the timing is not met. We
believe that entering the sleep state with a delay can alleviate
this problem.

6 Future Work
6.1 Code Generation
Because the mruby bytecode is a register machine, the reg-
ister allocation is simply done with one-pass algorithms.
However, the instruction format is represented as (R_i is the
𝑖th register.):

1 ADD i # R_i = R_i + R_(i+1)

This frequently introduces move instructions despite the
three-address code of RISC-V, the target (as follows).

1 add i, j, k # R_i = R_j + R_k

To reduce the code size, we should implement a copy-on-
write register allocation algorithm. However, using a sim-
ple one-pass algorithm, each basic block version must have
allocated register numbers for local variables because the
allocated registers may be different with the code path. Using
a two-pass algorithm, the generated code is minimal, but
the code size of the compiler and the compilation time will
be larger (The instruction format of the mruby bytecode is
variable-sized). We must design the register allocation while
considering the trade-off between the generated code size
and the compilation overhead.

6.2 Object Management
Because objects are transferred on demand, read barriers are
required, e.g., before reading an instance variable. Before a
pointer outside the memory region available for the LP co-
processor is copied into a register, the object pointed at must
be transferred and the pointer must be translated. Instead
of barriers, we consider that the hardware interrupts can

be used. The handler for the bus error interrupts3 searches
an Least-Recently-Used (LRU) table. The table has combina-
tions of addresses translated from and to. If the pointer is not
found in that table, it may not have been transferred. The
main processor wakes up to transfer the object. The main
processor also has a complete (non-LRU) table. If the pointer
is found in that table, the main processor tells the LP copro-
cessor the translated address. If it is not found, the object
is transferred and then is told to the LP coprocessor. For-
tunately, popular microcontrollers do not overlap memory
regions among the LP and main processors.

6.3 I/O
In modern microcontrollers, the control registers of peripher-
als are memory-mapped. The problem is how to implement
I/O functions. When the developer implements I/O functions
in C language, additional machine codes have to be placed on
the LP coprocessor. Even when the I/O functions are actually
not used, these codes still have to be placed beforehand. It
is a problem if live code updates happen. To avoid this, a
relocation infrastructure for C functions is required.

To implement I/O functions in Ruby, we consider the dif-
ferences in the memory-mapped addresses of the control
registers between the processors. To solve this, we need to
define an address translation function in C language, sepa-
rately. Another solution is to perform the address translation
on the bus error interrupts. However, guarding in the Ruby
program cannot solve this problem because programs exe-
cuted on the LP coprocessor must be executed on the main
processor during compilation.

7 Concluding Remark
In this work-in-progress paper, we propose a method for
utilizing low-power (LP) coprocessors in microcontroller
SoCs using a dynamically typed managed language. The pro-
posal introduces a JIT compiler for LP coprocessors that do
not have sufficient memory and an inter-processor object
management method. Our proposal enables seamless use of
LP coprocessors in mruby scripts. We implemented a pro-
totype based on mruby/c running on two microcontroller
SoCs ESP32-S3 and ESP32-C6. The evaluation of their power
consumption and the wake-up time of each processor shows
that the proposed method has sufficient practical use.
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Abstract
Programs in embedded domain-specific languages are real-
ized as graphs of objects of the host language rather than
as static input texts. This property enables dynamic meta-
programming, but also makes it harder to attach location
information to diagnostic messages that arise at a later stage,
after the program graph construction. Thus, EDSL-generating
expressions and algorithms can be difficult to debug. Here,
we present a technique for transparently capturing and re-
playing location information about the origin of EDSL pro-
gram objects. It has been implemented in the context of the
LLJava-live EDSL-to-bytecode compiler framework on the
JVM. The basic idea can be generalized to other contexts,
and to any managed runtime environment with reified stack
traces.

CCS Concepts: • Software and its engineering → Do-
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1 Introduction
Embedded domain-specific languages (EDSLs) are a conve-
nient way to enhance the expressive power of a general-
purpose programming language [4, 6]. Instead of defining
a syntax of their own, and a toolchain for the processing of
dedicated source files, they manifest as an API in the host
language [10]. The embedding is called flat if calls to the
API cause the intended domain-specific behavior directly, or
deep otherwise [5]. In the remainder of this paper, only deep
embedding will be considered. Popular deeply embedded
DSLs include the streams framework for data processing
hosted in Java, LINQ for queries hosted on .NET, and dask
for parallel computing hosted in Python.

Deeply embedded DSLs work in two, or more, stages [9]:
In the first stage, a graph of program objects (POs) is con-
structed. These provide a distinct API that is able to cause
the intended behavior in a second stage. Hence the actual
EDSL program, i.e., the PO graph, is not explicit in the host-
language source code. Thus, if a second-stage error is de-
tected, a location where the offending fragment is written
down may not exist, and hence cannot take the blame; rather,
blame must be assigned to a location where the PO graph
has been constructed by the hosting meta-program.

There are several levels of implicit expression:
1. PO constructor expressions can be used as a canonical

notation for EDSL syntax trees, in a static and homo-
morphic way. This also functions as a foundation for
the higher levels:

2. Factory functions can implement idioms and syntactic
sugar. These may be shipped as an additional API of
the EDSL, or even as the only public one, for reasons
of data abstraction.

3. Meta-programming can involve arbitrarily complex
host-language algorithms that dynamically construct
an EDSL graph. These can be an integral part of the
EDSL, provided by third-party meta-programmers, or
devised as proprietary abstractions by the EDSL user.

For instance, in an EDSL with a multiplication operator, the
squaring of some data x could be expressed on the three
levels as newMult(x, x), or as square(x), or as pow(x, 2), re-
spectively, where the latter more generally implements fast
exponentiation by recursive squaring.

As a toy example, consider a Java-hosted EDSL that real-
izes a process algebra of “multi-media” application behavior.
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flash (). andAlso(beep().later()).orElse(flash (). later ())
// Problem here: −−−−−−−−−−−−−−−−^^^^

Figure 1. Statically embedded example program

The implementing classes and their constructors are pri-
vate, such that the canonical expression level is not available.
Instead, program construction is based on a factory API:
There are two distinct primitive events, flash() and beep().
The binary operators andAlso() and orElse() denote parallel
composition and nondeterministic choice, respectively. The
unary operator later () defers a behavior for some amount
of time. See Figure 1 for an example.
Furthermore, the language shall define some semantic

restrictions:

1. No two beeps may occur at the same time.
2. Any flash must be followed by a beep later.

These properties should of course be checked, and diag-
nostic measures taken if a violation is detected. Contrary to
optimistic intuition, however, the subtly different temporal-
logical nature of the two properties makes a big difference
in practice:
Property 1 is a safety property [1] that can be enforced

locally and bottom-up, since a valid program may only have
valid subprograms. Violations need to be checked only, and
can be reported immediately, for andAlso operators. The
obvious countermeasure is to throw an exception instead of
returning the constructed illegal program. Thus, errors are
detected early, and the blame is located precisely by means
of call-stack information.

By contrast, Property 2 is a liveness property [1] that can
only be enforced globally, since for any invalid subprogram
there is a context that restores validity. Violations must be
reported only when the construction is known to be com-
plete, at which point the call sites into the EDSL API are
necessarily no longer on the stack.
For simple static EDSL program expressions, it is quite

feasible to locate errors by code inspection. For instance, in
the example given above, the second occurrence of flash is
easily spotted as the offender. Unfortunately, this debugging
technique does not scale well to more complex, let alone
dynamic program construction. In the worst case, when
the meta-program is a full-fledged compiler that targets the
EDSL, we have found unaided debugging utterly infeasible
in practice.

This paper discusses a novel solution to the problem that

• captures and replays diagnostic location information
for EDSL POs,

• works automatically and transparently without ex-
plicit effort on behalf of the EDSL user, and

• can be realized with standard facilities of managed
runtime environments, including but not limited to
the JVM.

It appears that this particular set of requirements has not
been addressed before. The situation is different where an
actual source text and compiler are involved: Intermediate
representations used for hosting compiled DSLs on general-
purpose platforms, such as the Java or .NET language models
or LLVM of course do support location information that a
DSL compiler may collect. However, the two-stage nature of
EDSLs, with the first stage being potentially both dynamic
and light-weight, poses the additional challenges that we
investigate and solve in the present work.

2 Design
The proposed technique requires that the hosting runtime
environment provides reified caller information, i.e., there
is an operation that can capture the source code location of
pending calls, at any point of the execution of some applica-
tion thread, as data objects. Additionally, EDSL POs must be
able to store (a relevant excerpt of) such data.
Finally, it is required that the EDSL-using application

is stratified, i.e., there is an objectively decidable criterion
whether any given method in the running application be-
longs to either

1. the EDSL service, namely
a. the public API of the EDSL,
b. the private implementation of the EDSL,
c. some other library that is (transitively) used by the

EDSL, independently of the application, and makes
dynamic callbacks to the EDSL,

or otherwise
2. the client application,

and that the application may only call the private implemen-
tation of the EDSL through its public API. The recognition
of the former three categories can be settled once and for all
by the EDSL provider. If application code respects the public
API as an abstraction barrier, it is safe to lump all other code
under the last one.
A call to the EDSL API is called a client call if the caller

belongs to the application, or otherwise an internal call.
Every client call provides a source of information about

the location of its caller, the most specific data that is di-
rectly relevant to the client application programmer. The
constructors of EDSL POs act as the sinks for such infor-
mation, storing the data for some checks to be performed
later.

There are important reasons not to collect location infor-
mation greedily on each public API call:

• The public API may be reentrant, leading to redundant
copies of location data.
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• Explicitly passing location data down the call tree to
the constructor sinks is inconvenient, and clutters both
method signatures and code.

A more elegant technique relies on the fact that the client
call remains (somewhere) on the stack until concerned con-
structors are finished. Hence the collection of call stack data
can be deferred until requested in a constructor, and the
client identified by scanning down the stack, skipping all
intervening internal calls. Thus, location data is properly
encapsulated, and clutter greatly reduced.

3 Implementation
The implementation of a technique for capturing diag-

nostic location information for later replay splits into three
modular tasks: Call stack data needs to be supplied by the
runtime environment, selected by a generic library, and stored
by the EDSL.

3.1 Suppliers of Reified Stack Data
The JVM has, for historical reasons, not one but two mech-
anisms for stack reification with overlapping but distinct
features [3].

The older mechanism, present in all Java versions, powers
the stack trace information stored in exceptions, and is avail-
able publicly via constructing and querying an exception, or
since Java 5 via themethod java.lang.Thread.getStackTrace().
In either case, an array of StackTraceElement objects is re-
turned, which has been eagerly populated with information
about all pending callers. This approach has two downsides
[3]:

1. The overhead increases at least linearly with the depth
of the call stack, much of which may be irrelevant for
the present purpose.

2. The available information is purely symbolic; the caller
class is specified only by name (and the class name of
its class loader), whichmay be hard to resolve correctly,
or even actually ambiguous, in the presence of multiple
class loaders.

The newer and more sophisticated mechanism, introduced
in Java 9, uses the API of the class java.lang.StackWalker.
The call stack can be accessed via a stream of StackFrame
objects. This approach remedies both problems discussed
above:

1. The stream of stack frames is constructed lazily; thus
the overhead depends only on the depth of the actually
observed part of the call stack.

2. Stack walkers can (optionally) specify the identity of
the calling class directly as a Class object; no manual
class name resolution is required.

We have found the differences in the technical capabilities
to be of modest practical importance, in particular since
location information is often boiled down to a pathless file

name and a line number; hence both choices are generally
feasible.

3.2 Selection of Client Calls
In order to keep the choice between supplier mechanisms

transparent, we introduce a simple EDSL for predicates on
stack frames that expresses the logics abstractly, and can be
compiled to either back-end supplier; see Figure 2.
We have found that purely string-based predicates are

often cumbersome and of poor expressive power in prac-
tice. For instance, consider that an EDSL X exposes an API
class XProvider, and allows clients to inject “trusted” code by
overriding methods in a subclass. Thus the internal classes
comprise all classes in the same package as XProvider, and its
subclasses in other packages, as well as inner classes of such
classes. This semantic predicate can be expressed concisely;
see Figure 3.

3.3 Storage of Location Information
Caller information is stored as an abstract datatype of

location information, which can be collected by means of a
static factory; see Figure 4 for a minimal API. The walker-
based approach allows for a particularly elegant, declarative
implementation; see Figure 5.

The actual location datatype that we have used in the im-
plementation is richer. In particular, it supports parameter-
ized semantic document identifier types rather than simple
strings, column numbers, and robust interval logics that can
deal with partial information and “include” directives.
Location data storage functionality must be provided ex-

plicitly by the EDSL program classes. The strategy specified
above for querying the call stack ensures that it can be im-
plemented as a private side effect in constructors. Hence, if
there is a single common base class for all EDSL POs, only a
self-contained code injection into that class is necessary; see
Figure 6. Public APIs and the rest of the EDSL implementa-
tion are not affected; client code does not have to cooperate,
nor even be aware that location data are collected.

4 Case Study
A worked-out didactical case study can be found in the sup-
plementary appendix.

5 Real-World Evaluation
The use of replay diagnostic location information, captured
by the technique described above, has been implemented
and validated in practice in the context of LLJava(-live).
LLJava [12] is a low-level JVM programming language.

In its standalone, textual form it serves similar purposes
as “JVM assembly” representations such as javap or Jas-
min, only at a somewhat higher level of abstraction. The
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public interface StackFilter {

<S> Predicate<S> compile(StackFilterCompiler<S>);

static StackFilter any();
static StackFilter none();
StackFilter and(StackFilter);
StackFilter or(StackFilter );
StackFilter negate();

static StackFilter classIs (Predicate<Class<?>>);
static StackFilter classNameIs(Predicate<String>);
static StackFilter methodNameIs(Predicate<String>);

static Predicate<Class<?>> inToplevel(Predicate<Class<?>>);
static Predicate<Class<?>> inPackageOf(Predicate<Class<?>>);
static Predicate<Class<?>> subclassOf(Predicate<Class<?>>);

}

class TracingStackFilterCompiler implements StackFilterCompiler<StackTraceElement> {. . . }

class WalkingStackFilterCompiler implements StackFilterCompiler<StackWalker.StackFrame> {. . . }

Figure 2. Stack Filter EDSL

Class<?> api = XProvider.class;
StackFilter internal =

classIs (inToplevel(inPackageOf(api)
.or(subclassOf(api))));

Figure 3. Example Filter Predicate

public interface Location {
String getDocumentId();
int getLineNumber();
static Optional<Location> live(StackFilter);

}

Figure 4. Location Data API

Predicate<StackWalker.StackFrame> dropping =
internal.compile(getWalkingCompiler());

return walker.walk(stream → stream.skip(overhead)
.dropWhile(dropping)
.map(frame2location)
. findFirst ());

Figure 5. Body of Method Location.live (simplified)

public abstract class MyAbstractSyntax {
// . . .

private static final StackFilter MY_INTERNAL =
/∗ recognize category 1(a−c) ∗/;

private final Optional<Location> location =
Location.live(MY_INTERNAL);

public Optional<Location> getLocation() {
return location;

}
}

Figure 6. Location Data Injection

LLJava toolchain, comprising a parser, an intermediate rep-
resentation, and a compiler and a decompiler back-end, is
implemented in Java.

LLJava-live [11] is a front-end builder API for the LLJava
intermediate representation. Together, they form expression
levels 1 and 2, respectively, of an EDSL for JVM bytecode
generation. The design of LLJava-live is geared particularly
towards staged meta-programming, i.e., the dynamic genera-
tion of code for subsequent direct use in the same application.
This capability is particularly useful for accelerating other
EDSLs, by just-in-time-compiling their loose PO graphs to
compact specialized bytecode.

51



Imagine There’s No Source Code MPLR ’24, September 19, 2024, Vienna, Austria

class IntAdd extends IntBinaryOperator {

/∗∗ Evaluate the expression right away. ∗/
@Override
public int evaluate(Environment env) {
return getLeftOperand().evaluate(env)

+ getRightOperand().evaluate(env);
}

/∗∗ Emit JVM code to evaluate the expression,
∗ pushing the result on the operand stack. ∗/
@Override
public void compile(CompilationContext cc) {
getLeftOperand().compile(cc);
getRightOperand().compile(cc);
cc.add();

}

}

Figure 7. Example LLJava-Compilable PO Class

Since LLJava POs put the full complexity of JVM bytecode
at the disposal of the client application, numerous complex
checks have to be performed in order to ensure that verifiable
code is emitted. Some of these are liveness-like and global in
nature, e.g., the integrity (types and bounds) check for the
JVM operand stack, or the requirement that no control path
may fall off the end of a method body. The LLJava back-end
performs the analysis as described in the JVM specification
[7, §4.10], as a whole-method check.

By contrast, interpreters for EDSLs tend to be highly mod-
ular; every PO class can bring their own means of execution.
This approach yields a clean and extensible design. However,
it implies that a compiler for such a language must also be
modular. Thus, a typical client of LLJava-live comes with
a distributed code generator: Small fragments of bytecode
are constructed in various places, brought together by ag-
gressive inlining, and connected by implicit data flow via the
JVM operand stack. The correctness of each code generator
fragment is heavily context-dependent because of implicit
cross-boundary data flow.
See Figure 7 for an example, namely a PO class that de-

fines a binary integer addition operation. The first method
implements the interpreter fragment for this language con-
struct, the second the compiler. Whereas the former can be
checked statically to a high degree of certainty by the Java
compiler, the latter relies on a lot of implicit information: It
is assumed that compiling the left and right operands will
each emit code to the effect that exactly one value of type
int is pushed onto the operand stack, such that the finally
emitted “iadd” instruction meets with the correct context.

Hence the compliance of all POs is required to ensure overall
consistency.
We have found this kind of fragility to interact with live-

ness-like global constraints in complex ways, and to be a
likely source of subtle errors. For debugging such a code
generator, it is crucial to have precise blame assignment;
the alternative outcome without replay diagnostic location
information, namely a post-mortem JVM VerifyError, would
not be helpful.

The practical use of replay diagnostic information concern-
ing modular code generators has been tried with Whilst, a
didactic Pascal-like toy EDSL specifically designed for show-
casing LLJava-live [11]. In particular,Whilst is by design
compilable, modular and open for extension. All language
constructs with operational semantics, namely statements
and expressions, are endowed with their own interpreter
and compiler. A new language construct can be added at
any time, just by loading a new subclass of Statement or
Expression.
The qualitative benefit from having accurate diagnostic

location information is significant; the task of debugging
a code generator fragment is reduced in complexity from
“daunting” to “routine”.

5.1 Time and Space Overhead
Although no code changes to the client are required in order
to reap the benefits of replay location information, there
is a dynamic price to pay; the processing of call stack data
increases the running time of the compiler. As discussed
above, the simple, robust default strategy is to store location
data eagerly for every PO. In this case, we have measured an
overhead of 30–60% for code generation with LLJava-live,
using the stack walker implementation. Mileage for other
EDSLs and usage contexts may vary significantly, for various
reasons:

• In particular, the relative overhead for EDSLs with
trivial semantics and hence very fast interpreters is
expected to be much bigger, whereas for EDSLs that
execute on a larger timescale, e.g., remote database
queries or intensive numerical calculations, it is likely
negligible.

• The cost of creating and scavenging stack traces varies
greatly both with the choice of supplier, and the dy-
namic nesting depth of EDSL generators in the appli-
cation. In our experiments, where EDSL generators
run on rather shallow call stacks, we have found stack
trace costs roughly on par with the allocation and ini-
tialization costs for location data. We would expect the
former to dominate in large real-world applications
with deeper call stacks.

This work-in-progress report does not provide conclusive
experimental results; in the future a more thorough investi-
gation of different realistic scenarios is required.
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The assessment of space costs for storing captured location
information likewise needs to take the complexity of the
EDSL POs into account. A useful Location object stores at
least a reference to a shareable file name string and a line
number. Thus, for very simple PO classes, the space overhead
can rise to about 100%. However, we have found that EDSL
programs tend to be fairly small in terms of the PO graph
size; hence this might not be too much of an issue.

5.2 Tactical Considerations
To mitigate both time and space costs, location data can be
associated only with certain types of POs, or restricted by
some other criteria, e.g. the semantic categories selected for
checkpointing.
Location information capture behaves rather analogous

to assertions: On the one hand, the costs vary wildly with
the usage profile. On the other hand, for production configu-
rations of the software, they may be switched off, per code
unit or wholesale. Even the mechanisms used by the Java
platform for controlling assertions can be re-used for this
purpose, and hence the same negligible runtime overhead ap-
plies when the feature is not used. Only the space overhead of
POs carrying a null reference as location (non-)information
remains.
Note that virtually all costs are incurred during the first

stage when the EDSL POs are constructed, the only exception
being increased cache pressure in the execution stage due to
extra attributes. Hence they are naturally amortized by both
long-running and often-reused EDSL programs.

5.3 Spatial Resolution
The technique discussed here, while requiring little effort
from the EDSL designer, and hardly any from the user, inher-
its the resolution of location data from the host execution
platform, in this case the JVM. As usual for traditional im-
perative languages, statements and sequences of lines are
the basic structures, and thus a source file name and a single
line number are the coordinates.

This paradigm may or may not be adequate for EDSLs: In
particular, declarative languages tend to put more complexity
into expressions that are inherently tree-shaped, and thus
require at least column numbers, and ideally intervals, to
specify a location with useful precision.
For “non-linear” EDSLs, the same precautions apply for

captured location information as they would for execution-
time exception stack traces: Where the distinction between
two contructs is of interest, they should be placed on dif-
ferent lines. This has the ironic implication that EDSL code
generators written in imperative style are easier to equip
with precise location information than highly declarative
ones.

6 Conclusion
Deep embedding of DSLs works in stages, where the client
application first constructs a graph of program objects that
define some domain-specific behavior, which can be checked,
transformed and executed later. The PO graph functions as
the intermediate representation of a DSL program that need
not have any directly corresponding source code. Error re-
ports from the later stages need to point to the meta-program
that constructs the POs instead. This location information
can be captured from the call stack at PO construction time,
requiring strictly no effort on behalf of the DSL user for
single-point diagnostics. Debugging of recursive or context-
sensitive bits of code generators may be aided by user inter-
vention, which can be supported with checkpointing facili-
ties.

We have discussed strategies for capturing location infor-
mation, as well as for filtering the stack trace to account for
complex stratified EDSL implementations.
Note that the approach presented in this paper is only

concerned with the location part of EDSL error messages,
not their content; see [8] for a survey of the state of the
art of domain-specific errors, and [2] for compiler errors in
general.
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Abstract
Type classes have been well-established as a powerful tool to
write generic algorithms and data structures while escaping
vexing limitations of subtyping with respect to extensibility,
binary methods, and partial abstractions. Unfortunately, type
classes are typically inadequate to express run-time poly-
morphism and dynamic dispatch, two features considered
central to object-oriented systems. This paper explains how
to alleviate this problem in Scala. We present existential con-
tainers, a form of existential types bounded by type classes
rather than types, and explain how to implement them using
Scala’s existing features.
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morphism; Inheritance; Abstract data types; Object ori-
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1 Introduction
Generic programming consists of lifting general abstractions
from their concrete implementations [11]. This process re-
quires a mechanism to write polymorphic functions and data
structures, that is to write code capable of operating on dif-
ferent types of values. In a statically typed setting, it further
requires a way of describing a common interface to these
values so that a type checker may guarantee that a partic-
ular operation is sensible, regardless of the run-time type
of its operands. Subtype polymorphism is one of the most
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popular approaches to that goal, especially in the context of
object-oriented languages.
In a system with subtyping, a type 𝜏 can be defined to

be a subtype of type 𝜎—typically written 𝜏 <: 𝜎—so that an
instance of 𝜏 may be used in all places where values of type
𝜎 are expected. The validity of the substitution hinges on
the fact that 𝜏 is known to implement at least the interface
of 𝜎 . This concept lays down solid foundations for generic
programming: abstract data structures are expressed as in-
terfaces meant to be extended by more specific definitions.
For example, one may write a type Shape representing the
concept of a polygon and have a subtype Triangle represent
those composed of three edges. Presumably, any operation
that accepts arbitrary shapes also accepts triangles.
Despite its significance for object-orientation and near

ubiquitousness in contemporary programming languages,
subtyping suffers from well-known limitations that hinder
one’s ability to write modular yet extensible abstractions [13,
18]. Borrowing a page from functional programming, most
of these shortcomings are addressed by type classes, such
as those found in Haskell [16]. A type class describes the
interface of a general concept, say a polygon, as a set of top-
level functions rather than methods bound to a particular
receiver. These top-level functions may be overloaded for
a specific type 𝜏 , effectively specifying how 𝜏 models the
abstract concept. Alas, while type classes elegantly fulfill the
essential requirements of generic programming [15], they of-
fer limited support for type erasure—the eliding of some type
information at compile-time. Hence, it is difficult to manipu-
late heterogeneous collections or write procedures returning
arbitrary values known to model a particular concept. Doing
the same with subtyping is routine.
Existential types have been used to hide data representa-

tions since at least the 80s [7, 10] and play a pivotal role in the
support of modular programs in languages like OCaml [5].
More recently, both Swift and Rust have described the signa-
ture of existential types and their implementations relying on
type classes. Intuitively, given a type class instance 𝑝 defining
an operation 𝑓 : 𝜎 → 𝜏 for a value 𝑣 of type 𝜎 , one can form
an existential pair ⟨𝜎, {𝑣, 𝑝.𝑓 }⟩ of type ⟨∃𝑋, {𝑋,𝑋 → 𝜏}⟩.
This paper leverages this intuition in the context of Scala.
We implement existential containers, a form of existentials
bounded by a type class. It turns out that Scala’s type sys-
tem supports all the ingredients necessary for implementing
this extension efficiently. In particular, we rely on extension
methods, path dependent types [14], and implicit scopes.
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Neither type classes nor existential containers are new
ideas. Our contribution is to equip Scala with an ergonomic
way to use dynamic dispatch in settings relying on type
classes rather than inheritance hierarchies. Section 2 mo-
tivates this goal. Section 3 introduces key features of the
Scala language that are used to express type classes and can
be re-used to implement existential containers, as then de-
scribed in Section 4. Section 5 discusses the expressiveness
of our encoding and examines its performance on different
benchmarks. Section 6 positions our work in the state of the
art and Section 7 concludes.

2 Dynamic Dispatch and Type Classes
Subtyping is a popular approach to support polymorphism in
object-oriented programming languages. Details vary from
one language to the next but in general, one defines classes to
denote abstractions that are extended to model refinements,
either by adding properties and operations or by specializing
them. A class is abstract if it declares operations without
an implementation and concrete otherwise. Abstract classes
hide details irrelevant to generic algorithms.
The left-hand side of Figure 1 shows an example. Line 3

declares an abstract class Shape denoting arbitrary polygons
with two operations. The first returns the surface area of a
shape and has no implementation. Concrete types extend-
ing Shape must provide one. The second compares shapes
and has an implementation referring to their areas. Line
9 declares a concrete subclass of Shape denoting squares—
i.e., quadrilaterals having edges of equal lengths and equal
angles—and provides an implementation for computing their
area.1 Likewise, line 14 declares a concrete subclass denoting
rhombuses—i.e., quadrilaterals having edges of equal lengths
with no constraint on their angles–whose implementation
is omitted for conciseness. Notice that the infix operator <
of Shape is a generic algorithm. It can be applied to any pair
of shapes, irrespective of their representations, as demon-
strated by the main function. Line 21 asserts that a square
whose edges have a length of 2 is smaller than a rhombus
whose diagonals have lengths of 3 and 4, respectively.

2.1 Shortcomings of Subtyping
Considering only simple examples such as the one we just
discussed, we may convince ourselves that subtype polymor-
phism is a panacea. Abstract classes define general concepts
like Shape, methods of such classes define generic algorithms
such as <, and concrete subclasses model concepts such as
SquareShape. Unfortunately, more complex situations re-
veal crippling limitations of this approach. While universal
bounded quantification [7]—i.e., generic parameters with
type bounds—solve many of them, two flaws remain.

1We elaborate on the reason to represent the dimensions of the square as a
separate object later in this section.

2.1.1 Retroactive Modeling. Looking at Figure 1, one
may wonder why we defined a SquareShape as a class wrap-
ping another data structure specifying the dimensions of
a square. Why did we not define Square as a subclass of
Shape directly? On closer inspection, note that we imported
Square from a package. If we imagine that we are not the
authors of that package—we may not even have access to its
sources—then our choice of representation makes sense.

There is no way to retroactively add supertypes to a type.
In other words, once a class like Square has been declared,
its set of supertypes cannot change without also modify-
ing the original declaration. This limitation is frustrating
here because the authors of the quadrilaterals package
have omitted the definition of an operation computing areas.
While we can write it ourselves, we must use the adapter
pattern to make Square notionally extend Shape.
This workaround is not ideal because it involves tedious

boilerplate. Not only must we declare an additional class for
each type we want to extend, we must also wrap and un-
wrap the contents of these classes to use methods from the
original package, as line 21 demonstrates. We could improve
the situation by writing a scale method for RhombusShape
that forwards calls to the wrapped instance, but that would
generate even more boilerplate. In a real setting, we would
also have to duplicate documentation and test suites. This
problem grows with the number of types we import and the
number of new concepts we define. For example, we may im-
port a Drawable concept from a package and a Serializable
concept from another. Unless all shapes are drawable and se-
rializable, we would eventually find ourselves implementing
a DrawableSerializableRhombusShape!

2.1.2 BinaryMethods. Figure 1 suggests that shapes have
a total order. It may be tempting, therefore, to capture that
observation in another concept that applies to shapes:

1 abstract class Comparable:
2 def <(s: Comparable): Boolean

Unfortunately, Comparable is a poor abstraction. To un-
derstand why, let us examine the signature of its unique
operation. The operator requires that the second parame-
ter be another instance of Comparable, meaning any value
whose type is subtype of Comparable will do. However, it
might not necessarily make sense to compare a shape to
a character string. While there exist perfectly sensible or-
derings for these data types, meaning that both model a
comparable concept, they do not imply the existence of a
relation between a shape and a character string.
This issue is known as the binary method problem [6]. It

states that subtyping struggles to safely express concepts
having an operation of the form 𝜎 × 𝜎 → 𝜏 . In a system
where operations are written as methods of a single receiver,
that means abstract concepts should avoid referring to them-
selves in contravariant positions. One solution is to check
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1 import quadrilaterals.{Square, Rhombus}
2

3 abstract class Shape:
4 def area: Double
5 def <(s: Shape): Boolean =
6 area < s.area
7

8

9 final case class SquareShape(
10 dimensions: Square
11 ) extends Shape:
12 def area: Double = dimensions.side.squared
13

14 final case class RhombusShape(
15 dim: Rhombus
16 ) extends Shape: ...
17

18 @main def Main =
19 val s = SquareShape(Square(2))
20 val r = RhombusShape(Rhombus(1.5, 2))
21 assert(s < RhombusShape(r.dim.scale(2)))

1 import quadrilaterals.{Square, Rhombus}
2

3 trait Shape extends TypeClass:
4 extension (self: Self)
5 def area: Double
6 def <[S](s: S)(using S is Shape): Boolean =
7 area < s.area
8

9 given Square is Shape as SquareIsShape:
10 extension (self: Square)
11 def area: Double = self.side.squared
12

13

14 given Rhombus is Shape as RhombusIsShape: ...
15

16

17

18 @main def Main =
19 val s = Square(2)
20 val r = Rhombus(3, 4)
21 assert(s < r.scale(2))

Figure 1. Definitions of shapes using subtype polymorphism (left) and type classes (right) in Scala.

at run-time that the type of the method’s argument is com-
patible with that of its receiver. However, that comes at the
expense of static type safety as some invalid applications of
the operator may no longer be caught at compile-time. An-
other approach consists of defining an auxiliary Comparator

class parameterized by the type of the elements:
1 abstract class Comparator[T]:
2 def inIncreasingOrder(l: T, r: T): Boolean

2.2 Type Classes
Type classes can be understood as a generalization of the
trick we have just discussed. A type class describes the set
of operations necessary to establish for any particular type
to model a concept, thereby forming that concept’s interface.
For instance, Comparator describes types having a strict total
order. Unlike a regular abstract base type, however, a type
class defines its interface using free functions rather than
members of the conforming type. In our example, that means
Comparator declares a method operating on two instances
of T rather than assuming the receiver is one of the two
operands. The receiver of that method is merely a witness of
the conformance of T to the concept.
In Scala, a type class is written as a trait defining the

interface of another type, similar to Comparator. The latter
is represented by a type member—i.e., a type that depends
on instances of the trait [3]—named Self.
1 trait TypeClass:
2 type Self

The right-hand side of figure 1 shows an example involv-
ing type classes. The trait at line 3 is a type class describing

the same concept as the abstract class on the left-hand side
using method extensions. Line 9 declares an instance of the
type class for Square. Being defined as a given2, this instance
is made implicitly available to name lookup when a method
is selected on an instance of Square. The details of this pro-
cess are discussed in the following section. For now, simply
observe that the compiler considers the extensions when it
resolves the entity referred to by the infix operator < at line
21. Line 14 similarly declares another instance for Rhombus.

The main function evidences the advantage of having de-
fined the concept of shapes as a type class. We can now ma-
nipulate instances of types imported from quadrilaterals

directly, without wrapping or unwrapping them. Further,
Scala offers a pleasingly familiar programming style that
supports infix application and dot notation.

2.3 Dynamic Dispatch
Our example so far has painted a rather unfavorable pic-
ture of subtype polymorphism. There is nothing, it would
appear, that type classes cannot express better than inheri-
tance. We have, however, overlooked a key feature of most
object-oriented systems: dynamic dispatch.
Dynamic dispatch delays the selection of the definition

implementing a particular generic operation until run-time,
when the operation is applied. Unlike static dispatch, which
makes this choice at compile-time, this technique supports
type erasure and lets variables hold different types of values
at run-time. For example, one can write the following using
the definitions on the left-hand side of Figure 1:

2givens were known as implicits in previous versions of Scala.
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1 def smallest(xs: List[Shape]): Option[Shape] =
2 xs match
3 case Nil => None
4 case a :: ys =>
5 smallest(ys) match
6 case None => Some(a)
7 case Some(b) =>
8 Some(if b < a then b else a)
9 val s = smallest(List(
10 SquareShape(Square(2)),
11 RhombusShape(Rhombus(1.5, 2))
12 ))

This program defines an algorithm operating on a hetero-
geneous list of shapes, returning the smallest of its elements.
Writing such a function is natural and unsurprising with
subtyping. We use Shape to abstract over the specific types
of the shapes populating the list and rely on dynamic dis-
patch to figure out at run-time which implementation of
area must be called to compare instances. Writing the same
function with type classes is not obvious, however, due to
the lack of dynamic dispatch support. A close translation
uses a generic parameter to abstract over the type of the
list’s contents but this approach does not accept heteroge-
neous lists. The fundamental issue is that we now need a
witness of each element’s conformance to the shape concept
and a way to associate each element to the right witness
statically. Returning an arbitrary shape is also problematic
for the same reason. Not only must we return an element of
the list—unless it is empty—we must also return the appro-
priate witness of its conformance to Shape. In summary, the
solution conceptually looks like the following sketch:

1 def smallest(xs: List[(Any, AnyShapeWitness)])
2 : Option[(Any, AnyShapeWitness)] =
3 xs match
4 case Nil => None
5 case (va, wa) :: ys =>
6 smallest(ys) match
7 case None => Some((va, wa))
8 case Some((vb, wb)) =>
9 Some(
10 if wb.<(vb)(va) then (vb, wb)
11 else (va, wa)
12 )
13 val s = smallest(List(
14 (Square(2), SquareIsShape),
15 (Rhombus(1.5, 2), RhombusIsShape)
16 ))

The pair (Any, AnyShapeWitness) represents an arbitrary
value along with a witness of a conformance to the shape
concept. Together, these two elements let us perform dy-
namic dispatch, as line 10 illustrates. We call such a pair an
existential container and spend the remainder of the paper
discussing a safe and ergonomic implementation in Scala.

3 Contextual Abstractions in Scala
We ought to introduce a few features of Scala before we can
delve into our implementation of existential containers, start-
ing with context parameters. Code written with a functional
flavor tends to require certain values to be passed around
from one function to the next. These values represent the
“context” in which a function runs, whichmay capture config-
uration settings or additional properties of other parameters.
For example, consider the following:

1 class Tree(
2 val id: String,
3 val children: List[Tree]
4 ):
5 def depth(
6 using parent: ParentRelationships
7 ): Int =
8 parent.get(this) match
9 case None => 0
10 case Some(p) => 1 + parent.depth
11

12 given ParentRelationships =
13 computeBackwardLinks(root)
14

15 println(someChild.depth)

The class represents a directed tree: we can go from a
node to its children but not to its parent. The method takes a
context parameter denoting a table mapping each node of the
tree to its innermost parent. We can use this parameter like
any other but, additionally, notice it gets passed implicitly
in recursive calls to depth, thus improving legibility. The
value of parent is merely context in depth; it would be just
a regular local binding if we had written the method with an
imperative loop rather than a tail recursive call. Repeating
this argument would therefore only introduce noise.
The compiler goes through a process called implicit reso-

lution to identify which argument to pass to context param-
eters. A detailed description of this process is beyond the
scope of this paper but in a nutshell, expressions live in an
implicit scope populated by various constructs of the lan-
guage. Those notably include context parameters and given
instances as the one declared at line 12. Both may include
extension methods.

Extensionmethods are another interesting feature, serving
to retroactively “add” methods to a class without modifying
its definition. They are not really members of the extended
class, though. Rather, they are free functions, allowing selec-
tion with dot syntax and infix application. In the following,
for instance, encode is added to the local scope of Tree so
that it can be applied like any other method, as line 3 shows.

1 extension (t: Tree) def encode(): String =
2 val s = t.children
3 .map(_.encode()).mkString(" ")
4 s"${t.id} ${s}"
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Moreover, extensionmethods can bemade available through
the implicit scope. By using a contextual parameter con-
taining a member which is an extension method, the latter
becomes implicitly accessible within the body of the defini-
tion. Having combined contextual abstractions and extension
methods, we can now better explain the right-hand side of
Figure 1, discussed in Section 2.2. Recall the definition of the
type class instance for Square, repeated below.
1 trait Shape extends TypeClass:
2 extension (self: Self)
3 def area: Double
4 def <[S](s: S)(using S is Shape)
5 : Boolean =
6 area < s.area
7

8 given Square is Shape:
9 extension (self: Square)
10 def area: Double = self.side.squared
11

12 assert(Square(1) < Square(2))

In this example, the type alias “Square is Shape” ex-
pands to “Shape { type Self = Square }”3, which denotes
a refinement of the type class restricting the type of Self,
the conforming type. The given declaration introduces an
instance of this refinement into the implicit scope as a wit-
ness of Square’s conformance to Shape, meaning that the
compiler can now use the extension methods in Shape as
long as the given instance is part of the implicit scope. This
witness is passed implicitly as an argument to the operator’s
context parameter at line 12, allowing the compiler to resolve
s.area at line 6.

4 Implementation
An existential container is a pair containing a value and a
witness of its conformance to some type class. Expressing
such a value in Scala is easy: just write “(Square(1): Any,

summon[Square is Shape] : Any)”, using summon to obtain
a value of the given type from the implicit scope. This simple
encoding, however, only gets us so far. Indeed, the erasure
of the pair’s elements—notice the widening to Any—makes it
impossible to select any method. Even if we could, we would
still have to convince the type checker that the first element
is a valid argument for these methods. One workaround
could be to widen the pair’s elements to a tighter bound
but this approach would rely heavily on subtyping and thus
be subject to the limitations we discussed in Section 2.1.
Fortunately, Scala has other tools to address these issues.

The key idea is to store the wrapped value as an instance
of some path dependent type [14], which is already well-
established as a way to implement existential types in Scala.4

3The is infix type operator is merely a standard library definition providing
syntax sugaring.
4Note that this approach differs from Scala 2’s Existential Types, which
were dropped in Scala 3[1].

1 /** A value together with an evidence of its
2 * type conforming to some type class. */
3 trait Container[Concept <: TypeClass]:
4 /** The type of the contained value. */
5 type Value : Concept as witness
6 /** The contained value. */
7 val value: Value
8

9 object Container:
10 /** Wraps a value of type `V` into a
11 * `Container[C]` provided a witness that
12 * `V is C`. */
13 def apply[C <: TypeClass](v: Any)
14 [V >: v.type](using V is C) =
15 new Container[C]:
16 type Value >: V <: V
17 val value: Value = v

Figure 2. Encoding of an existential container in Scala.

For example, the following trait notionally represents the
type ⟨∃𝑋, {}⟩—i.e., a an existential type with no interface:
1 trait Existential:
2 type X
3 val value: X
4 val e: Existential = new Existential:
5 type X = Int
6 val value = 1

As the ascription on the declaration at line 4 suggests, e is
an instance of Existential. Since X is a type member of that
trait, we know that there exists a type e.X and that it is the
type of e.value. We know nothing more. Even so, we can
extract the existential value with “val v: e.X =e.value”
and retain its type simultaneously. Crucially, we know the
type of v depends on e, meaning that the compiler can use
information stored in e to conclude facts about e.X. The last
piece of the puzzle is to store a witness of e.X’s conformance
to a type class.

4.1 Encoding
Our encoding is shown in Figure 2. The trait essentially
composes two types and two values: a type Value with a
corresponding term value of that type, and a type Concept
with a witness of the conformance to that concept for the
contained value. Concept is a simple parameter of the trait
and is associated only to the type of the container being
defined. Value, on the other end, is a type member since it
depends on each container instance, similar to Existential

.X in our previous example. Additionally, Value is context-
bounded by Concept, meaning that instances of Container
must provide a term of type “Value is Concept” named
witness—i.e. an evidence of the conformance.

Suppose we have a value c of type Container[Shape]. We
could access its parts using explicit selections and combine
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the two to obtain the area of the wrapped value. Since the
witness is declared as a context bound, however, it is in the
implicit scope of the container’s value and its selection can be
elided. In effect, a selection of an extension method defined
by the interface of the container—e.g., c.value.area—is re-
solved by the compiler to use the witness given within c

implicitly. The selection of value can also be elided with a
modest change in the compiler. Calls of the form c.m are
transformed to c.value.m when c is a container and the
selection does not type-check without being adapted. This
fallback mechanism ensures that explicit selections of a con-
tainer’s members are still possible.

Building a container comes down to the following:
1 new Container[Shape]:
2 type Value = Square
3 val value = Square(2)
4 val witness = SquareIsShape

Here too, the witness definition can be omitted since it
is declared as a context bound and SquareIsShape is in
the context. The remaining boilerplate can be replaced by
“Container[Shape](Square(2))” or, if Shape can be inferred
from the expected type, “Container(Square(2))”. These ex-
pressions call the apply method of Container’s companion
object and are equivalent to the “wrap” or “pack” primitive
featured in formal definitions of existential types. This expan-
sion is enabled by the design of the method’s signature. The
first type parameter list is [C <: TypeClass] for consistency
with the trait declaration. The witness is not in the first term
parameter list so that its Self can be constrained by the value
being wrapped before looking for it in the context, thereby
avoiding ambiguities. Putting everything together, we can
write a well-typed version of the program we sketched at
the end of Section 2:
1 def smallest(xs: List[Container[Shape]])
2 : Option[Container[Shape]] =
3 xs match
4 case Nil => None
5 case a :: ys =>
6 smallest(ys) match
7 case None => Some(a)
8 case Some(b) =>
9 Some(if b < a.value then b else a)
10 val s = smallest(List(
11 Container(Square(2)),
12 Container(Rhombus(1.5, 2))
13 ))

The method accepts a heterogeneous list of shapes rep-
resented and returns the smallest unless the list is empty.
It is called at line 10, where its argument is constructed by
wrapping different shapes along with their respective con-
formances to Shape. The body of the method reads almost
the same as if we had used subtyping with one difference.
We must write a.value rather than just a for the argument
of the operator < at line 9. The next section explains why.

4.2 Opening Containers
Perhaps unintuitively, Container[C] is not itself a type con-
forming to C since an existential container does not conform
to its own bound. Recall the binary method problem to un-
derstand why. Imagine we define a type class C modeling
comparable values and consider two values of types Int and
String, respectively, each conforming to C. We could then
create two different existential containers wrapping 42 and
"forty-two", respectively. Although both instances would
have type Container[C], they should not be comparable,
and therefore Container[C] cannot conform to C.
Coming back to the above example, we can now observe

that a call of the form b < a would not type check. Indeed,
the operator requires the witness of a conformance to Shape

for its right operand (see Figure 1) but such a witness does
not exist for Container[C]. By passing a.value however,
we pass an argument of type a.Value, of which the implicit
scope includes the witness given in a. More formally, ac-
cessing a.value opens the existential while retaining the
type a.Value, effectively keeping an anchor—the path to the
scope of the witness—to the interface of the type class. This
example showcases the power of path dependent types. The
ability to use an opened existential without escaping static
type safety—i.e., without unchecked type coercions—does
not require any amendment to the type system.

4.3 Using Containers over Generic Parameters
While the ability to open an existential grants us enough ex-
pressiveness to call a generic function with a context bound,
we could instead define a non-parametric version of our op-
erator, using existential containers, to apply b < a without
any explicit opening. Taking another look at the signature,
we notice that we actually care neither about which specific
type of shape we receive nor about the accompanying type
class instance, as long as get to call area on an object rep-
resenting a shape. An existential container gives the same
guarantees with a shorter spelling:

1 // Existential version
2 def <(s: Container[Shape]): Boolean =
3 area < s.area
4 // Parameteric version
5 def <[S](s: S)(using S is Shape): Boolean =
6 area < s.area

This existential definition is arguably simpler than its
parametric counterpart. The ascription on s in the former
completely defines the type of the arguments that themethod
expects. In contrast, the type of s in the latter is the composi-
tion of three elements: the generic parameter declaration, the
context parameter, and the ascription itself. While a generic
parameter may be sometimes required, e.g., to address bi-
nary methods, an existential container is more appropriate
when a method simply expects a value of some type with a
compatible type class instance.
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5 Evaluation
This section discusses the applicability of our implementa-
tion. We start by studying the expressiveness of existential
containers in a use case more sophisticated than the exam-
ples we have seen so far. We then measure the performance
of our implementation in a realistic setup and compare it
with subtyping before discussing some limitations.

5.1 Expressiveness
So far we have only examined type classes with a single
parameter: the conforming type. It is likely, however, to
encounter type classes having more than one parameter. We
call those associated types, following the steps of Järvi et.
al on generic programming [9]. To illustrate, consider the
following example.
1 trait Archivable extends TypeClass:
2 type Encoder
3 type Decoder
4 extension (self: Self)
5 def encode()(using encoder: Encoder): Unit
6 def decode()(using decoder: Decoder): Self

Archivable defines an interface for serializable objects by
means of two methods; one for serialization and the other
for deserialization. The signature of these methods refers to
Encoder and Decoder, which are associated types declared
as path dependent types.

We can certainly create a heterogeneous list of archivable
objects, as we have already demonstrated. To write a func-
tion serializing the contents of this list, however, we need
a more precise type since each element could conform to
Archivable for a different type of encoder. In other words,
we must constrain each element’s witness to have the same
associated type without constraining the type of their value.
Fortunately, a simple refinement suffices:
1 def encodeAll[E](
2 xs: List[
3 Container[Archivable { type Encoder = E }]
4 ]
5 )(using E): Unit =
6 xs.forEach((x) => x.encode())

Two important observations can be made on this example.
First, it shows that our encoding of implementation con-
tainers fits perfectly into Scala’s existing support for type
refinements, letting us attach equality and/or conformance
constraints to associated types. That is an essential require-
ment for generic programming [15]. Second, notice that the
signature of encodeAll does not have to mention anything
about the decoder of its arguments. Only the relevant pa-
rameters of the interface need to be specified; the others can
remain abstract. That is in contrast with approaches based
on universal bounded quantification which typically require
all parameters to appear in type constructors, along with a
sensible bound. In some instances, finding such a bound is,

in fact, impossible and one must resort to Java-like wildcards,
which come with well-known soundness issues [4].

5.2 Performance
The main question concerning the performance of our im-
plementation is whether calling methods on existential con-
tainers incurs significant overhead compared to traditional
dynamic dispatch. We ran two benchmarks to test this over-
head. The first is a micro benchmark focusing only on the
dispatch time of an operation. The second is a macro bench-
mark aiming atmeasuring the overhead in a realistic scenario.
We implemented two versions of each benchmark: one uses
traditional subtyping and the other uses existential contain-
ers. We also implemented similar benchmarks in Swift to
provide an inter-language perspective. The source code for
these programs is available as a companion artifact. Here-
after, we present and discuss measures from 10,000 iterations
across 4 runs for each version5.

5.2.1 Micro Benchmark. The results of the micro bench-
mark are presented in Figure 3. We observe that dispatching
an operation through existential containers in Scala is about
twice as slow as traditional virtual method dispatch. This can
be explained by the extra pointer indirection. On the JVM,
the runtime increases with the number of classes. For the
Existential version, it ranges from approximately 5 ms for
2 classes to around 8 ms for 10 classes, and stays stable for
a higher number of classes. For the Inheritance version, we
observe similar curves, ranging from about 2.5 ms to 5 ms.
The Swift measures are stable across the number of distinct
classes, which is expected due to the lack of just-in-time
compilation. Using inheritance in Swift is especially slow
due to the reference counting overhead for classes.

5.2.2 Macro Benchmark. To test the performance of ex-
istential containers in a real-world scenario, we have imple-
mented a small (≈1500 lines of code) 3D collision engine,
which we use to detect object occlusion from a particu-
lar point of view. The shapes of different 3D objects are
approximated by idealized mathematical volumes, such as
spheres and cuboids, positioned randomly within an imagi-
nary bounding box. Occlusion is then detected by shooting a
ray in the direction of each object and checking whether an-
other object lies in the way. Each collision shape has its own
data representation—e.g., a sphere is merely a radius—and
implements its own collision detection algorithm. To select

5We ran both the micro benchmark and the macro benchmark 4 times, alter-
nating versions. Each run comprised 2,500 warm-up iterations and 2,500
measurement iterations, totaling 10,000 measurements. The benchmarks
were executed on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 pro-
cessor, using Swift 5.10.0.13, Swift Benchmark 1.23.1, a nightly version of
Scala 3.5.0 and JMH 1.37 through sbt-jmh 0.4. The "openjdk" JVM is Adop-
tium 1.21.0.3, and "graal" is GraalVM 21.0.2. The benchmark results were
processed and visualized using the Seaborn, Matplotlib, and Pandas Python
libraries.
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Figure 3.Micro benchmark results. This benchmark measures the time to apply a simple operation (adding the value of a
class field to a constant) to 10 million objects in a contiguous array. The operation is modeled using a type class and existential
containers in the Existential versions, while it is modeled using a virtual method in the Inheritance version. The graph shows
the runtime in milliseconds for the 10 million operations, as a function of the number of different object types present in the
array. The error bars show the 99th percentile, while the markers represent the measurement means. Lower is better.

the right implementation at run-time for each element of
the heterogeneous collection of shapes, we use existential
containers in one version and classes with inheritance in the
other. The program terminates after a ray has been shot at
every object. Looking at the results, we observe that the over-
head of the existential version in Scala is 6% for OpenJDK
and 2% for GraalVM.

5.3 Limitations
An important limitation of our encoding is that an existential
container can only have exactly one bound; that is, it can
only wrap a single evidence. As a consequence, one cannot
easily express a type representing, for instance, any shape
that is also archivable. One workaround is to define a new
type class that extends both concepts, which in Scala can
be done with an intersection type. This approach has one
problem, however. It induces significant boilerplate to pro-
vide and manipulate witnesses, as it is not obvious that a
type conforming to both 𝑇 and𝑈 automatically conforms to
a type class 𝑇&𝑈 without manually aggregating witnesses.
Further, that has to be done for all different pairs of type
classes for which an aggregate is needed.

6 Related Work
JavaGI [17] is an extension of Java that supports interface
types, a generalization of Java’s interface supporting retroac-
tive modeling, type-safe binary methods, implementation
inheritance, and dynamic dispatch. These features closely

match the use cases of type classes in Scala.6 A significant
difference is that, unlike a type class, an interface type de-
fines its operations in terms of a receiver—i.e., the “this”
parameter in Java-family languages—rather than methods of
an ad-hoc object. This approach is more in line with classical
interfaces: whereas a type class instancewitnesses the confor-
mance of a type to some concept, an interface type instance
is a model of some concept. Hence, interface type can be
used naturally to express polymorphic functions and data
structures, whereas one must use existential containers to
achieve the same with type classes. In contrast to existential
containers, however, JavaGI’s interfaces cannot be used as
types if they define associated types.
Similar efforts include Genus [19], another extension of

Java that borrows from early designs of C++ concepts [8, 15]
to express type classes as sets of type constraints. Unlike Jav-
aGI, Genus supports non-uniquely witnessed conformances
along with languagemechanisms to resolve ambiguities. Sim-
ilar expressiveness can be achieved naturally with our en-
coding in Scala by passing arguments to context parameters
explicitly.

As we have already mentioned, Swift advocates for a type
class oriented programming style and uses existential con-
tainers for dynamic polymorphism. While our approach re-
quires minimal change to the Scala language and its compiler,
Swift’s built-in support for existential types offers advan-
tages with respect to ergonomics. Specifically, the subtyping

6The intersection between Scala’s type classes and JavaGI’s interfaces is
even larger and covers features we have not discussed in this paper, notably
including static methods and conditional conformance.
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Figure 4. Graph of the macro benchmark results. This benchmark measures the time to shoot a ray at every shape in a
contiguous array of 1000 shapes. As in the micro benchmark, operations are modeled using a type class and existential
containers in the Existential versions, while they are modeled using a virtual method in the Inheritance version. The graph
uses a violin plot to compare the distributions of the runtimes (in milliseconds) for each version. Closer to the left is better.

relationship can be extended so that a type T can be consid-
ered subtype of any P, where P is a type class to which T

conforms. As a result, the wrapping/unwrapping of values
into/from existential containers interacts more organically
with the language’s syntax. Further, Swift can express com-
positions of type classes, therefore providing built-in sup-
port for existential containers bound by more than one type
class. This system is formally described by Racordon and
Buchs [12], though their work does not consider constraints
on associated types.

Rust also supports existential containers as a built-in fea-
ture, where dyn P is similar to Swift’s any P. However, it
imposes heavy restrictions on the definition of the traits that
can be used with dyn. In particular, these cannot contain
static or generic methods [2]. Our approach does not suffer
from any of these limitations.

7 Conclusion
We have presented an extension of the Scala programming
language to support existential containers, a form of exis-
tential types bounded by type classes rather than types.
These containers are represented as a dependent pair ⟨𝑣,𝑤⟩
where 𝑤 is an instance witnessing the conformance of 𝑣 ’s
type to some type class. Our approach exploits Scala’s ex-
isting features to not only express such a dependent pair
but also use the operations defined by the type class in a
natural way, which has two advantages. First, the soundness
of the theoretical foundations upon which these features are
built [4] extends to our work, which requires no change in
the metatheory of the language. Second, the fact that our
encoding only involves a modest desugaring transformation
in the compiler gives us confidence that extending Scala
with existential containers does not introduce bugs due to
unforeseen interactions with other features.

The two essential features we have used, namely path
dependent types and context parameters, are not exclusive
to Scala. Hence, our approach could apply to a number of
other programming languages.

We have motivated the need for existential containers, dis-
cussed their practicality, and studied their efficiency. While
our examples demonstrate the gain in expressiveness, perfor-
mance results reveal that dynamic dispatch through existen-
tial containers incurs noticeable overhead over traditional
virtual dispatch. Our experiments show that such an over-
head might be affordable in applications not bottlenecked
by method dispatch. Nonetheless, these results suggest that
more engineering effort should be spent on optimizing calls
to extension methods. Other future works include an exten-
sion of our encoding to support existential containers bound
by more than a single type class. We believe that existen-
tial containers open the door to alternative ways to design
libraries that may suffer less from the extensibility limita-
tions of subtyping and plan on proposing our encoding and
compiler changes to be included in future versions of Scala.
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Abstract

Current strategies for quantum software development still
exhibit complexity on top of the already-intricate nature
of quantum mechanics. Quantum programming languages
are either restricted to low-level, gate-based operations ap-
pended to classical objects for circuit generation, or require
modelling of quantum state transformations in Hilbert space
through algebraic representation.
This paper presents the Qu� language which is a high-

level, dynamically typed quantum-classical programming
language. The Qu� compiler and runtime system facilitates
quantum software development with high-level expression
abstracted across the quantum-classical paradigms. Qu� is
constructed on top of the Tru�e framework which aids the
implementation and e�ciency of the stack, while reusing
the JVM infrastructure. The presented comparisons display
that Qu� lends itself as an e�ective, easy-to-use solution
for the development of executable quantum programs with
automatic circuit generation and e�cient computation.

CCS Concepts: • Computer systems organization →
Quantum computing; • Software and its engineering

→ Formal language de�nitions; Domain speci�c lan-

guages; Compilers; Runtime environments; Object ori-
ented frameworks.
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1 Introduction

Quantum computing o�ers theoretical improvements over
classical systems in a multitude of areas [21, 28, 29, 36, 40,
42, 43, 60]. Leveraging the principles of quantum mechanics
to process and store information, the �eld fundamentally
di�ers from classical computing - posing novel challenges
on current mainstays of software development practices
[1, 12, 15, 32, 50].

Describing intricate high-level quantum algorithms with
primitive quantum operations does not lend itself to e�ec-
tive software development practices [65], yet such a strategy
remains the focal point of many quantum software devel-
opment practises [4, 22, 27, 31, 34, 39, 70]. Various attempts
have been made to alleviate this quandary with some form
of abstraction. For example, through raising low-level opera-
tions to perform over larger data constructs [22, 31, 56], or
enabling speci�c algorithmic calls via API functions [5, 72].
Others have tried to elaborate type systems for compile-time
quantum safety [8, 65, 80].
The contemporary quantum computing can be charac-

terised as being in a Noisy Intermediate-Scale Quantum
(NISQ) era, exempli�ed by quantum devices that have highly
limited, error-prone qubits and imperfect gates [41, 45, 61,
69]. This leaves computations which are strictly quantum,
such as Shor’s Factoring algorithm [20, 68], out of the picture.
Thus, most present-day quantum applications are hybrid in
nature by bringing together classical systems with quantum
devices as small-scale accelerators [26, 40, 46, 58, 71, 74]. As
a result, there is a need for hybrid programming languages
that seamlessly merge the classical and quantum realms, en-
suring e�cient data exchange and task distribution between

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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the two, while being able to harness quantum accelerators
[59, 66].
This paper describes Qu� (“cu�” ); a high-level dynami-

cally typed programming language and runtime system for
hybrid quantum-classical software development. Using a
novel form of abstraction over the classical and quantum
paradigm, Qu� provides a reliable bridge between the two.
Allowing a developer to focus on algorithmic logic and pro-
gram correctness, rather than remaining perplexed by the
underlying quantum mechanics and convoluted syntax of
current quantum programming. This paper delves deep into
the philosophy and design of Qu� for furthering the adoption
of hybrid quantum software development.
The main contributions of Qu� can be summarised as:

• An intuitive high-level, dynamically-typed, quantum-
classical programming language enabling the descrip-
tion of all quantum computations with only a single
extra quantum keyword, using a syntax familiar to
most classical programmers;
• Novel strictly-quantum subset of language denotional
semantics and run-time type inference rules which
dictate the �ow of quantum states through a Qu� pro-
gram;
• A novel compiler and runtime system which leverages
the Qu� language to provide quantum abstraction,
enabling more succinct expression of quantum com-
putations to improve software development; and
• An expressive quantum intermediate representation
for high-level computations written in Qu�, allowing
swift automatic uncomputation (de�nition in Section
2) and decomposition to low-level quantum circuits.

Section 2 gives a brief introduction to quantum comput-
ing and quantum programming, along with the GraalVM
[53, 54] and the Tru�e framework [55] used for language
creation, execution and optimization. Section 3 details the
Qu� the language design, syntax, semantics & quantum-
speci�c typing rules in 3. Section 4 describes the compiler
& runtime system. Here, the novel internal quantum inter-
mediate representation enables new lazy evaluations with
optimizations for uncomputation, as well as the simulation
process, is described. Due to space limitations we do not
present the full language syntax and semantics, only the
parts speci�c to quantum computations, and the dynamic
transition between classical and quantum data. Section 5 uses
the quantum Grover’s algorithm to illustrate Qu�. Section 6
then provides a side-by-side analysis between Qu� and two
quantum languages; the most popular quantum development
toolkit by IBM, Qiskit [5], and a recent type-safe quantum
language Silq [8]. As an example, Figure 9 illustrates for a
well-known quantum computation the succinctness of Qu�
(one single line of code), and compares it against Qiskit A.1.1
(more than 20 lines of code). Section 7 then explores related
work, and �nally the summary in section 8.
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Figure 1. The Bloch Sphere: a 3D representation of a qubit,
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in |k ⟩ = U |0⟩ + V |1⟩.

2 Background

2.1 Quantum Fundamentals

2.1.1 Qubits. As the quantum counterpart to the classical
bit, qubits form the fundamental basis of quantum computing
and are the reason for the distinct contrast between the two
paradigms. Instead of taking the exact state 0 or 1, its state is
instead represented by a linear combination over two states,
|0⟩ and |1⟩;

|k ⟩ = U |0⟩ + V |1⟩ U, V ∈ C |0⟩ =
(

1

0

)

|1⟩ =
(

0

1

)

The complex nature of the coe�cients leads to a further
degree of freedom as the global phase, which is typically
normalized for a real U and a complex V . Thus lending to
a graphical representation of the state known as the Bloch
sphere, as seen in Figure 1.

2.1.2 Measurement. One can then assess the state of a
qubit along any planewithin this sphere, but is typically done
along the z-basis - commonly known as the computational
basis. Since in the classical realm we may only have a state 0
or 1, measurement is said to collapse the qubit, resulting in
one of the two states, with a probability given by the square
magnitude of the corresponding coe�cient. This leads to the
constraint |U |2 + |V |2 = ?I (0) + ?I (1) = 1.

2.1.3 Operations. Following this, single qubit gates corre-
spond to rotations around any of the three axes, leading to
the common X, Y and Z Pauli gates, which are 180° rotations
around the corresponding axis. The H gate (known as the
Hadamard gate) consists of a 90° rotation about the x-axis,
followed by another 90° rotation about the z-axis - thus tak-
ing a qubit in the state |0⟩ into a state halfway between |0⟩
and |1⟩ in the positive (right) direction;

� |0⟩ = 1√
2
( |0⟩ + |1⟩) = |+⟩

Furthermore, gates may be applied to some qubit, con-
ditional to the state of another (typically when it is in the
state |1⟩). This does not result in measurement of the control
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qubit, but may be seen as being executed in the realm where
the qubit is in the necessary state. Further understanding
of this can be gained through through the use of Feynman
diagrams [16].
These two qubits are then said to be entangled, meaning

the state of each cannot be described independent to the
other. Therefore, when one of these qubits is measured, we
instantly know the state of the other; the state of both qubits
will have collapsed according to the path the computation
took.

2.1.4 Cli�ord+TGate Set. This gate set is a universal sub-
set of quantum gates with which all quantum computation
can be described [81]. It is typically used for decomposition
down to an abstract circuit which has no detail about the
speci�c quantum hardware to be used - a circumstance dealt
with typically by a later, hardware-speci�c quantum com-
piler. The set consists of the gates -,., /,�-,) ,) †, (, (†.

2.1.5 Circuits. The composition of gates over a variety
of qubits is a circuit, which describes the steps involved in
a quantum computation at a fundamental level. These are
diagrammatically represented with an x-axis representing
time, qubit lines as rows, and gate operations placed on the
rows at discrete points. Such computations often consist of
three main basic stages: state preparation, in which a qubit
system’s state is pushed from |0 . . . 0⟩ to some required initial
state |k ⟩; state driving, in which the state is then operated
on to produce some desired solution state; and measurement,
in which speci�c qubits are measured to reveal the required
solution to the problem with some probability.

2.2 Constraints

No-cloning theorem The no-cloning theorem states that
the state of a qubit may not be duplicated exactly, creating a
direct contrast to the classical paradigm. However, one can
perform weak quantum copying; |k ⟩ ⊗ |0⟩⊗= ↦→ |k ⟩ ⊗ |k ′⟩,
where |k ′⟩ is in the same computational state as |k ⟩, but
with a di�erent phase.
Reversibility Due to the nature of quantum systems, quan-
tum computations must be reversible, and so operations
consist of unitary matrices with a one-to-one relation be-
tween inputs and outputs. As such, ancillary qubits are often
required to performed some operations, for example a logical
AND gate.
Uncomputation Due to the phenomenon of entanglement,
quantum variables can not simply be reset back to 0, nor can
they be measured and set, as both would a�ect any other
entangled quantum systems. They must instead be uncom-
puted, a process in which a set of operations is performed
which corresponds to the inverse of its previous operations,
taking its state back to |0⟩.

2.3 Further Information

Further information on the fundamentals of quantum compu-
tation, such as quantum information theory, Hilbert spaces,
quantum hardware etc. are out of the scope of this paper,
and so the reader is kindly directed to resources such as
[7, 35, 52].

2.4 Quantum-Classical Computation

2.4.1 HybridCircuits. Computationswhich perform quan-
tum operations based on classical conditions are known as
hybrid circuits. Such circuits pose a further challenge in both
high- and low-level program representation, as they require
close control and compatibility with both the classical com-
puter and quantum system, leading to a paradigm known as
classical control, quantum data [65]. This may be expanded
further to involve conditions based on measurement results,
known as measurement-based quantum computation.

2.4.2 Hybrid Programs. At a higher level, hybrid quantum-
classical programs consist of some quantum circuit and a
parenting classical program. The classical program utilises
the circuit in part of its computation, and may repeat such
circuit, often changing parameters each time, as much as
it requires. This process is one of the main applications for
current-day NISQ systems, as it typically requires smaller
circuits - both in terms of depth (number of operations) and
width (number of qubits required).

2.5 Quantum Software Engineering

2.5.1 Key Features. Current quantum programming lan-
guages can be split into two categories [19, 27, 44]: circuit-
based or state-based. The former typically consists of build-
ing up circuit representations consisting of numerous quan-
tum gates over multiple qubits, often performed using an
API for circuit objects, gate functions and simulation. On
the other hand, state-based languages require mathemati-
cal modelling of state transformations through a system’s
Hilbert space to perform computation, often using a func-
tional paradigm.

2.5.2 Program Correctness. Ensuring quantum program
correctness is an in-depth and complicated task [18, 47, 48,
62, 63, 79]. Even with understanding of the quantum algo-
rithm to implement, a programmer requires knowledge on
low-level gates, quantum states, API usage, optimisation
strategies and platform capabilities to develop programs [6].
Furthermore, debugging large, complex circuits quickly gets
out of hand due to the enormous amount of low-level opera-
tions needed when using current quantum development plat-
forms, with additional complication when viewed through
the lens of e�cient quantum resource usage [3, 49].
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2.6 GraalVM, Tru�le & TornadoQSim

GraalVM [53, 54, 77] is a virtual machine and compiler infras-
tructure providing a shared platform for language implemen-
tations. It allows for dynamic optimizations where nodes in
an AST structure may rewrite themselves during interpreta-
tion, alongside speculative optimization and deoptimization
[78].
Tru�e [55] is the language implementation framework

which lies on top of GraalVM and is implemented in Java.
Utilization of this framework provides a high-performance
interpreter alongside a DSL annotation processor [30] for ef-
�cient language creation, with a focus on dynamically-typed,
imperative programming languages. Its shared structure al-
lows guest languages to inter-operate with one another, al-
lowing for multi-faceted program design [23].

TornadoQSim [38] allows for the description and simula-
tion of quantum circuits with GPU acceleration; simulation
of quantum computations is performed using complex ma-
trix multiplication, and so naturally lends itself to speedup
using GPUs.

3 Qu� Design

3.1 Philosophy

In order to aid the adoption of quantum programming and
ease the learning curve required to jump from classical soft-
ware engineering to quantum, e�orts need to be made in
the creation of user-friendly modalities for the expression
of quantum computation, while not compromising on the
power of the topic. Furthermore, due to the highly con-
strained nature of present NISQ devices, quantum programs
must focus on minimal usage of quantum resources, and
preferably utilise a hybrid programming approach to solving
some problem. This leads to the main governing philoso-
phy of the Qu� language: simplistic abstraction alongside
complete functionality.

3.2 Structure

The layout of a program written in Qu� is similar to that
of current, common classical programming languages, such
as Python [17], JavaScript [10] and Kotlin [2], where pro-
grams de�ne classes and functions, each containing high-
level statements and expressions in an object-oriented, im-
perative structure. Program execution then starts from a
de�ned main() method. The language revolves around a
dynamic type system and the principle of duck typing (cross-
hierarchy polymorphism) akin to Python.

For readability sake, code written in the Qu� language in
this paper uses colors to highlight language constructs:

• Blue represents keywords, e.g. fun and if;
• Green represents types, e.g. UInt and QReg;
• Teal represents built-in classical functions, e.g. main
and println;
• Red represents the quantum keywords q: and H:;

• Violet represents built-in quantum functions repre-
senting low-level operations, e.g. Z and CX.

3.3 Syntax

The language’s syntax resembles common classical dynamic
languages. Statements may consist of typical constructs,
such as constant and variable declaration with val and var

; assignment; function application with f(a); conditional
branching with if-else and when (i.e. switch-case) state-
ments; looping with for and while loops; and try-catch
-finally statements. Functions can be declared with fun

name(args) – where arguments are laid out identical to in
Python –while classes can be declaredwith class name(args)
– where arguments create primary constructors in a manner
identical to in Kotlin.
As a brief aside, due to the frequent necessity for the

creation of explicitly sized quantum registers for representa-
tion as binary states in quantum computation, Qu� provides
syntactic sugar for the creation of unsigned integers. + u#

produces an unsigned integer with value+ and size # , while
+ u{e} produces an unsigned integer with value + and size
equal to the expression e.

3.4 Quantum Semantics

The distinct di�erence regarding language constructs be-
tween Qu� and classical languages with a similar syntax and
classical semantics, is that the language’s dynamic nature in-
volves conversion to and from all types, including quantum
types.
This section de�nes the quantum-related semantics of

Qu�, namely the denotational semantics of quantum variable
creation, followed by the typing rules for quantum expres-
sion to showcase the propagation of quantum types through
high-level expression. The evaluation of quantum expres-
sions is performed in a lazy manner; upon execution of a
quantum expression at run time, pertinent information of
the corresponding quantum operation is stored in a quantum
intermediate representation (shortened to IR throughout this
paper). This IR is later optimised, decomposed and simulated
when measurement/simulation is called for. More detail on
this can be found in section 4.

In denotational semantics, semantics functions are used to
represent the evaluation of certain types of statements, such
as expressions with E or declarations with D. Such functions
are applied to sections of code within J K and a program state
f , which results in some change of program state.

We describe the symbols used in Figure 2. At run time, the
program state f contains a set IRwhich captures all quantum
operations performed. For readability sake, we include the
de�nition of an additional semantic function Q which wraps
the result of an expression within a new QReg – e�ectively
setting it to be of a quantum type (2). Furthermore, we use
short-hand notation to represent multiple elements from
the same set, such as ®4 to denote 40, . . . , 4= . Multiple lines
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Syntactic Element Symbol Semantic Function Notation Description

Identi�er G - IR Stateful Quantum IR
Declaration 3 D IR← { ®op} Appending {op0, . . . , op=} to IR
Expression 4 E IR→ IR®4 Changing to a controlled state on ®4
Statement B S IR→ IR

† Changing to an inverted state
Function - F

Figure 2. Notation detail

DJ var G = 4 Kf = DJ3Kf = f [G ↦→ EJ4Kf] (1)

QJ4Kf ≡ FJ QReg(E) Kf, where E = EJ4Kf (2)

FJ H(G) Kf = f [IR← {gateG H }] (3)

D@J var G = 4 Kf@ = f [G ↦→ QJ4Kf, IR← {initG , assignG 4 }] (4)

SJ q:{ ®3 ; ®B }Kf = SJ ®B Kf ◦ D@J ®3 Kf@ (5)

SJ H:{ ®3 ; ®B } Kf = FJ H( ®G ) Kf ◦ SJ ®B Kf ◦ FJ H( ®G ) Kf ◦ D@J ®3 Kf@, (6)

where ®G represents all symbols used in ®3 .
SJ H:( ®3 ; ®4){ ®B } Kf = FJ H( ®G ) Kf ◦ SJ ®B Kf ◦ FJ H( ®G ) Kf ◦ QJ ®4 Kf ◦ D@J ®3 Kf@, (7)

where ®G represents all symbols used in ®3 and ®4 .

Figure 3. Quantum keyword semantics.

of code are written with a semi-colon as a delimiter, while
◦ represents the composition of semantics, i.e. SJB0; B1Kf =

SJB1Kf ◦ SJB0Kf .

3.5 Quantum Keywords

As eluded to earlier, the language provides two quantum key-
words – namely q: and H:. These keywords allow for quick
creation of – and conversion to – quantum variables, either
in a basis (q:) or superpositional (H:) quantum state. Figure 3
denotes the semantics of this explicit quantum declaration.
When placed within a block preceeded by q: or H:, the use of
var or val declares quantum variables. This is implemented
by wrapping a classical value within a QReg type (2), and
adding init and assign operations to the IR. This can be
seen by the semantic function D@ (4) which uses a program
state f@ . Here, f@ only demonstrates that execution of a dec-
laration is within the boundary of q: or H:, showcasing the
contextual di�erence between equations (1) & (4).

Equations 5 & 6 detail the full usage of q: and H: to change
how declarations are evaluated. Equation 5 can be seen as
�rst creating quantum variables for each declaration within
®3 , and then executing all the statements ®B within the block

given by {}. Equation 6 shows that H: does the same, how-
ever also puts these variables into a superpostitional state,
by adding H gates before and after the execution of the state-
ments ®B . Finally, equation 7 shows the other manner of H:
usage, which allows for the passing in of arguments to this
keyword. These arguments may take the form of declarations
for quantum variable creation, or expressions for conversion
from classical to quantum variables. These quantum vari-
ables are put into a superpositional state in a similar manner
to before, i.e. via H gates.

3.6 Quantum Expressions

The evaluation of an expression is governed by the type of
the sub-expressions within; child expressions which are of
a quantum type, cause the parenting expression to also be
of a quantum type. In the following, we use typing rules to
showcase this e�ect at run time. Here, the typing context Γ
represents the mapping of all expressions to either a classical
set of types � – such as Int or Bool – or a quantum set of
types & – such as QReg or Operation.
This can be seen in Figure 4. Rule Unary_E shows that

when an expression 4 has a type that belongs to the set of
quantum types& , then any unary operation it is used in also
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Γ ⊢ 4 : &
Unary_E

Γ ⊢ !4 : &

(Γ ⊢ 40 : &) ∨ (Γ ⊢ 41 : &)
Binary_E

Γ ⊢ 40 + 41 : &

Γ ⊢ 40 : & Γ ⊢ 41 : &
L_And

Γ ⊢ 40 && 41 : &

Γ ⊢ 40 : & Γ ⊢ 41 : &
L_Or

Γ ⊢ 40 || 41 : &

Figure 4. Quantum expression typing rules.

Γ ⊢ 4 : &
If_Type

Γ ⊢ if(4){ B0 } else { B1 } : & Γ ⊢ B0 : & Γ ⊢ B1 : &
If_DSem

SJif(4){ B0 } else { B1 }Kf = f [IR...,!4 → IR...] ◦ SJB1Kf@ ◦ f [IR...,4 → IR...,!4 ] ◦ SJB0Kf@ ◦ f [IR... → IR...,4 ]

FJcontrol(4)Kf = f [IR... → IR...,4 ] (8)

FJuncontrol()Kf = f [IR...,4 → IR...] (9)

FJinvert()Kf = f [IR→ IR
†] (10)

FJinvertF(5 , 4)Kf = f [IR† → IR] ◦ FJ5 (4)Kf ◦ f [IR→ IR
†] (11)

SJinvert() ; B@,0 ; B@,1 ; B@,2 ; invert()Kf ≡ SJB†@,2 ; B
†
@,1 ; B

†
@,0Kf (12)

Figure 5. Quantum control �ow and IR inverting.

has a type that belongs to the set of quantum types & . This
extends in the same manner to binary operations as can be
seen in rule Binary_E, where if any sub-expression 40 or 41
has a type that belongs to the set of quantum types & , then
the overall expression 40 + 41 also has a type that belongs
to the set of quantum types & . Here, the operators ! and +
represent any unary or binary operations, except for logical
operators && and | |.
For logical operators consisting of classical and quan-

tum sub-expressions, the system evaluates classical sub-
expressions �rst. If all classical sub-expressions hold true

for &&, or false for | |, then quantum sub-expressions must
be evaluated. These are then concatenated together to pro-
duce a purely-quantum logical && or | | expression – as is
shown in rules L_And and L_Or.

3.7 Quantum Control & Inversion

Figure 5 details the typing rules and denotational semantics
for quantum control using an if statement in Qu�, as well
as the denotational semantics of the 4 built-in functions for
quantum IR manipulation at run time.

The typing rule and denotational semantics for an if state-
ment using a quantum conditional expression 4 are described
together. This can be read as when the expression 4 has a
type which belongs to the set of quantum types & , then
an if statement it is used in, is also of a type in & , along
with both B0 and B1 (If_Type). Therefore, both B0 and B1 must

be evaluated, where the statement(s) inside must now per-
form quantum operations, controlled and anti-controlled on
4 (If_DSem).

Controlling states within the IR are implemented as a
stack, where all the controlling states in this stack are used
to control quantum operations. This can be seen in equations
8 & 9, which e�ectively push and pop controlling operations
on/o� this stack.

Inversion of the IR can be done using the functions invert
() and invertF(5 , 4), as shown in 10 & 11. When in an in-
verted state, the IR collects all successive operations in a
separate set to normal. Later, when the IR is put back into
a normal state via another call to invert(), all operations
that have been collected in this separate set are inverted,
and added to the IR’s normal operation set in reverse order.
The IR is then set back to a non-inverted state; invert() is
involutive, in that it toggles the IR between a normal and
inverted state. As a clarifying example, we provide equation
12. Here, the application of quantum operations B@,0, B@,1 &
B@,2 in between two invert() statements, is equivalent to
just applying the inverse of the operations in reverse order,

i.e. B†@,2 ; B
†
@,1 ; B

†
@,0.

3.8 qfree Expressions

Expressions which do not strictly impose quantum e�ects
are known as being qfree, as they do not introduce or destroy
superposition. An example is the X gate. When applied to a
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qubit in a computational basis state, such as |0⟩ or |1⟩, the
application of this gate does not make the qubit unable to be
represented classically. In Qu�, such gates in this context do
not impose quantum operation – X(3u2) simply equals the
classical value 0u2.
Most high-level operations are not qfree, as if a subex-

pression is of a quantum type, then it typically leads to a
quantum operation. However, there is an exception to this:
bit-shifting. When bit-shifting a quantum variable by a clas-
sical amount, one can simply insert or remove qubits in the
relevant quantum variable.

3.9 Quantum Variables and Qubits

As shown in equation 2, quantum variables are implemented
as a QReg type which wraps around its classical value. How-
ever, these QReg types are also implemented as a subclass of
a List of Qubits, and so individual Qubits can be operated
on as elements within.

3.10 Quantum Variable Pointers

It is of note that there can be two separate reasons for assign-
ing one quantum variable to another;weak quantum copying
(subsection 2.2) or pointing a quantum variable at another.
By default, assignment of one quantum variable to another
works as the former, but Qu� allows the use of pointers on
quantum variables to enable the latter.

3.11 Quantum Low-level Operation

As eluded to in earlier sections, typical quantum gates com-
mon to quantum circuits are available in Qu� as simple built-
in functions. When executed at run time, these functions
correspond to adding the relevant gates to the IR as a gate
operation (3). Gate functions may operate over individual
Qubits, whole QRegs, or classical values, where the latter
converts the classical value to a temporary quantum variable
(except for qfree gates). Qu� also enables phase constructs,
which applies a given phase rotation across the quantum
system. When controlled, these constructs instead apply the
given phase rotation to the controlling state.

3.12 Measurement

Measurement is used to simulate the current quantum pro-
gram stored in the quantum IR, invoked at run time via the
measure(G) function. Subsections 4.6 – 4.8 detail the imple-
mentation of this process. All operations within the quantum
IR which act on G , as well as quantum variables entangled
with G , are simulated. The simulated quantum state of the IR
is then collapsed, resulting in a now-classical state for each
variable. These variables within the program state are then
updated to the classical values, and the evaluation of Qu�
code resumes.

4 Compilation, Runtime & IR Generation

4.1 Pipeline

Figure 6 portrays the �ow of compilation and execution of a
�le containing a Qu� program. After parsing and transform-
ing to Tru�e nodes (subsection 4.2), the Tru�e executor
is used to execute such Tru�e nodes. Here, quantum op-
erations re-specialise to call methods within an internal IR
generator, storing pertinent information regarding quan-
tum computation (subsection 4.3). Upon the execution of a
measure() or toQASM() function call, execution passes to
the Decomposer, which transforms the current quantum IR
into a low-level circuit representation (subsection 4.6), after
which simulation (subsection 4.8) or OpenQASM 3.0 transla-
tion occurs (subsection 4.9). Following the simulation path,
measured variables are updated within the Tru�e execution
frame, and execution of the Qu� code resumes.

Qu� code

Parser

Tru�e Node

Translator

Tru�e

Executor

Quantum

IR

Generator Decomposer

Simulator

OpenQASM

Translator

OpenQASM

3.0 code

Qu� Compiler

Qu� Runtime

1

2

3

Figure 6. The Qu� pipeline, showcasing how code �ows
through the system at compile time and run time. The edge
labelled 1 indicates repeated internal calls to the IR Genera-
tor; the edge labelled 2 indicates a measure() or toQASM()
call; and the edge labelled 3 indicates the passing back of
measured values. The dashed arrow represents passing
of the IR to the Decomposer when required.

4.2 Parsing and Tru�le Tree Compilation

Leveraging the dynamic structure of the language, the Qu�
compiler aims to produce abstract syntax tree (AST) repre-
sentations of programs consisting solely of classical nodes,
with quantum-classical data available inside of the corre-
sponding scope. The result is a detailed AST which will be
executed by the Tru�e runtime system [55].
Leveraging this system, nodes re-specialise based on the

data they execute over. This lends to a simple implementa-
tion for operating over classical data vs the generation of a
quantum IR when operating on quantum data.

4.3 Quantum Intermediate Representation

The wrapping of classical values within a quantum type is
implemented using two language objects: the QReg object
for individual quantum variables, and the Operation object
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for quantum operations across various quantum or classical
variables.

During evaluation at run time, assigning an Operation

to a variable corresponds to (a) potentially creating a new
QReg object for the variable to be stored as, and (b) adding
the Operation to the IR on said QReg.
The IR itself is made up of multiple sets of nodes. Each

set corresponds to an ordered list of Operations directly
a�ecting a speci�c QReg, termed a QReg’s critical path/chain.
Each node in this chain will represent the state of the QReg
at a speci�c point in time. Nodes may link between chains to
indicate usage of other quantum states, such as for controlled
application. This is demonstrated in Figure 7, showcasing
the critical path for each QReg, along with the control and
usage dependencies for any relevant operation.
Pointers to the start and end of each set in this IR are

stored for e�cient access and manipulation of the IR, imple-
mented using two Java HashMaps. Of important note in the
structure of this IR, is the fact that speci�c ordering of opera-
tions on time-steps is not captured, only the dependencies for
each operation. Therefore, it is ensured that resulting quan-
tum computation optimises for parallel operation whenever
possible, intrinsically reducing circuit depth.
This can be seen in Figure 7, which displays a short Qu�

program and the corresponding quantum IR created. Stan-
dard arrows denote a quantum variable’s critical path. Ar-
rowswith a circle / indicate a controlled/anti-controlled
operation. Dotted lines indicate that an operation uses
the value of another operation. Finally, the circles / repre-
sent the start and end HashMaps and corresponding pointers.

4.4 Feedback

The compiler and runtime system may produce basic mes-
sages to the user upon encountering quantum e�ects which
cannot be achieved. One example of this is a quantum-controlled
while loop; it is not possible to implement a termination con-
dition when repeatedly controlling operations on a quantum
system. Further feedback with respect to complex quantum
debugging practices and quantum correctness tooling is not
covered.

4.5 Automatic Uncomputation

Whenever a quantum variable goes out of scope at run time,
a call is sent to the IR generator to try and uncompute it auto-
matically. The algorithm for this – as seen in algorithm 1 – is
similar in nature to that of unqomp [57], with the di�erence
that it acts over high-level operations and quantum variables
with distinct control and usage dependencies. This may fail
in certain cases as highlighted by [57]. In this case, the rele-
vant qubits are kept in the system and a warning message
is produced. This does not a�ect program correctness, but
may lead to ine�cient qubit usage.

1 q: var one = 1u1, walk = 0u2

2 var coin = H(0u1)

3 if (coin) walk += one

4 else walk -= one

init>=4 initF0;: init2>8=

assign>=4 = 1u1 assignF0;: = 0u2 assign2>8= = 0u1

gate2>8= H+F0;: >=4

- F0;: >=4

>=4 2>8=

F0;:

>=4 2>8=

F0;:

Figure 7. An example Qu� program for one step of a quan-
tum random walk program [33], with the corresponding
quantum intermediate representation generated during run
time. In this example, nodes in the IR are colour-coded based
on the line of code which adds it to the IR.

4.6 Low-level Transformation

Upon the execution of a call to the built-in measure() or
toQASM() function, the transformation process begins. A
pass is applied over the generated quantum IR, gathering
all nodes which interact with the quantum variable(s) to
be measured (passed as arguments to the function), gen-
erating a sub-graph of the IR consisting solely of relevant
operations to the measurement. From there, nodes are vis-
ited from start-to-�nish, resolving dependencies for each
time-step, and transforming into a corresponding low-level
quantum circuit. This modular decomposition inductively
ensures correctness is achieved, as long as each operation is
individually transformed correctly.
The corresponding circuit for high-level operations is,

by default, the application of the relevant high-level arith-
metic, logical or bit-wise operation over signed or unsigned
quantum integers, and quantum booleans as single qubits.
Operations are decomposed to correct qubit-e�cient cir-
cuits, as simulator complexity scales exponentially on qubit
count. Arithmetic operations on both unsigned and signed
integers are decomposed to the circuits described in [82],
while unsigned integer division uses the circuit given in [73]
for variable preservation. Logical operations correspond to
controlled usage of applicable operations, potentially using
temporary qubits to store results, where comparisons are
performed using the circuits described in [82].
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Algorithm 1: Algorithm for automatic uncomputa-
tion

1 Function uncompute(qvar):
2 curr← last node on qvar

3 last← curr

// while there is a current node

4 while curr not null do
// skip if it doesn’t modify qvar

5 if op does not alter qvar then
6 curr← node on qvar before curr

7 continue

// check if uncomputable

8 if hasCycle(curr) then
9 return false

10 inv← inverse operation of curr

11 make last point to inv

12 last← inv

13 curr← node on qvar before curr

14 if curr is an init node then
15 free← create free node

16 make last point to free

17 store free in lasts map

18 return true // uncompute finished

19 return true // nothing to uncompute

// recursively check usages of nodes for

dependency cycles

20 Function hasCycle(curr):
21 usages← all variables that are used by curr

22 return recur(curr, usages)

23 Function recur(curr, usages):
24 for c in nodes which use curr do
25 if c.qvar is in usages then
26 return recur(c, usages) // dependency

cycle

27 return false

Bit-wise operations are implemented with qubit array ma-
nipulation when coupled with classical values (i.e. not requir-
ing quantum operation), or shifted application of quantum
operators controlled on their quantum operand.

4.7 Final Decomposition

A �nal decomposition pass then occurs on the circuit, con-
verting multi-controlled gates and operations down to the
Cli�ord+T universal gate set [81]. This is done via the ZYZ-
decomposition on single qubit gates [67], the optimised
Quantum Shannon Decomposition method for multi-qubit

operations [37], and the Gray code method described in [75]
for multi-controlled operations.

4.8 Simulation

Following decomposition, the circuit is transferred to Tor-
nadoQSim [38] for parallel simulation. Following successful
simulation, a State object is produced, containing pertinent
details regarding the current quantum state of the variables
measured. This state is then collapsed, updating all the rele-
vant quantum variables with their classical values; ensuring
these variables are used as classical going forward. Thus
allowing e�ective, abstracted measurement-based hybrid
quantum programming.

The section of the quantum IRwhichwas simulated is then
removed, and replaced with the State object. Thus recurring
executions of that IR section result in simple reading of the
relevant information from the object, instead of repeating
time-consuming quantum emulation.

4.9 Translation to OpenQASM 3.0

While the previous �ow has been concerning simulation
of quantum computation generated at run time, the Qu�
system does provide simple translation to OpenQASM 3.0

[11] – a universal quantum assembly language used by most
quantum compilers – so that the user may further optimise
or run their code on real-world quantum systems.

5 Qu� by Example — Grover’s algorithm

Grover’s algorithm [24] is widely known for being one of
the �rst algorithms for demonstrating the applicability of
quantum computation in the real world. The algorithm can
be reduced to �nding the solution(s) to a binary problem,
such as searching an unsorted database, requiring $ (√=)
time complexity as opposed to the classical $ (=). The de-
scription of this algorithm in Qu� lends itself to a succinct
portrayal of high-level oracle de�nition, quantum temporary
variables and automatic uncomputation.

The program code and a subsection of the generated quan-
tum IR is displayed in Figure 8. Execution starts on line 12
with the main() function, within which we declare a lambda
function f representing the oracle function to solve.
The generation of the quantum computation starts after

the invocation of the grover function, where on line 3 the
�rst quantum variable is created as a quantum register over
= (5) qubits, initially in the state |00000⟩, represented as
a quantum unsigned integer. It is then put into an equal
superposition, with both the init and gate H operations
appended into the quantum IR.
The usage of the now-quantum variable q as a function

argument on line 5 results in the lambda function being
evaluated as a quantum expression, expanding to a set of
nested quantum Operations, with the �nal one being an
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1 fun grover(f: Function, n: Int): UInt {

2 val iter = calculateIterations(n)

3 H:(var q = 0u{n}) {

4 for (i in iter){

5 if (f(q)) Phase(@pi)

6 invertF(f, q)

7 diffuse(q)

8 }

9 return measure(q)

10 }

11 }

12

13 fun main(){

14 val f = { x ->

15 x *= 3u

16 x += 5u

17 return x == 17u

18 }

19 print(grover(f, 5))

20 }

init@

assign@ = 0u5

gate@ H

*@ C0

+@ C1

cphase@ 17, c

initC0

assignC0 = 3u

(assignC0 = 3u)†

freeC0

initC1

assignC1 = 5u

(assignC1 = 5u)†

freeC1

@

C0 C1

@
C0 C1

Figure 8. A Qu� implementation for Grover’s algorithm (left) searching for solutions to the equation 3G + 5 == 17, 0 ≤ G < 25,
and a subsection of corresponding quantum IR (right) generated at run-time, representing the IR upto and including the
execution of line 5. Note the functions calculateIterations and diffuse are omitted for brevity sake.

equality comparison with the state |17⟩. All of these are
added to the quantum IR in order. The condition G == 17 is
then used to apply a controlled-phase operation to @ – apply-
ing a phase of −1 to the state |17⟩. The arithmetic operations
are then applied in inverse (but not the conditional statement
on line 17 as it is never assigned to anything), followed by
di�usion via. the diffuse function.

Note that temporary variables are used to represent 3D and
5D for the arithmetic operations, however the conditional
equality of the quantum variable compared to 17D can be
done with multiple controls and cphase.

6 Comparison of Qu�

This section serves as comparison of quantum program de�-
nition when using the Qu� language against two quantum
development toolkits, namely the Qiskit python library [5],
and the Silq language [8].
Qiskit was chosen due to it being the most commonly-

used system for quantum programming, centered around
API usage and circuit building. All quantum resources and
e�ects are Python objects which must be explicitly de�ned,
which rely on function calls to build up quantum circuits.

Silq was chosen as it is a high-level, type-safe, dedicated
quantum language revolving around high-level expression

and complex quantum annotation. Using a static type sys-
tem where a ! is used to denote classical types, quantum
programs are created using expression and quantum key-
words such as qfree and lifted. It is worth noting that Silq
programs can not produce low-level quantum circuits, and
relies on quantum simulation for compilation.

We feel these two languages give a broad scope over gate-
based quantum programming for evaluation against the Qu�
language. All three produce quantum programs using a dif-
ferent modality; Qiskit’s API usage & low-level gates, Silq’s
type-safety & quantum annotation, and Qu�’s dynamic typ-
ing & simplicity. Note that Qiskit may contain API functions
which perform whole parts of quantum computation, such
as the Shor function. However, due to the frequent nature of
API-centered bugs in quantum code [6] – especially when
high-level Qiskit API’s are constantly changing – these are
not used.

The sections of codewritten in each language details solely
the quantum part of execution in the spirit of fair evaluation;
for example, Qiskit typically requires 4 lines to cleanly send
a program o� for simulation, and 4 for the importing of nec-
essary Qiskit libraries. Comparison occurs across 4 metrics,
namely;

1. Lines of code;
2. Number of quantum high-level statements;
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3. Number of quantum primitives commands;
4. Number of quantum-related annotations.

All metrics represent evaluations on readibility & the abil-
ity to identify and �x bugs within code – the more of both,
the harder this can be, except for the number of quantum
high-level statements which works in reverse. The last 3 met-
rics further represent complexity imposed by the language,
leading to greater di�culty to learn, program and debug.

It is worth noting that the e�ciency of compilation, circuit
output & simulation is not evaluated, as it is not the main
focal points of the paper. However, Qu� does acheive similar
circuit compile-time, circuit e�ciency and simulation time
when compared with Qiskit. With regards to Silq, Qu� can be
much faster to compile due to Silq’s requirement for quantum
simulation, while having slightly slowly simulation times.
Furthermore, Silq cannot produce circuits as output.

All of the Qu� code is provided in the text, while code for
Silq and Qiskit can be seen in Appendix A.

6.1 ,= State Creation

One of the most well-known three qubit states is the ,
state, which is characterised by a superposition over three
distinct states, each of which corresponding to a single qubit
in the |1⟩ state, while the other two are |0⟩ – namely, =

1√
3
( |100⟩ + |010⟩ + |001⟩). Here, we give the reasoning of

the creation of the state with respect to the Qu� language,
followed by the comparison of creating the state in Qiskit
and Silq.

This state can then be generalised over = qubits, resulting
in the state

,= =

1√
=
( |10 . . . 0⟩ + |01 . . . 0⟩ + . . . + |00 . . . 1⟩)

From a computational state perspective, this can be seen as
the bit-shifting of an unsigned integer of length = initially in
the state 1, where the amount to bit-shift by is then given by
multiple amounts at the same time i.e. a combination of multi-
ple computational states corresponding to G ∈ {0, 1, ..., =−1}.
Note the direction of the shift does not matter – as the or-
dering of the linear composition of states is irrelevant due
to the equal positive phase of each term – however we use
left-shift for simplicity;

,= =

1√
=

(

| (0 . . . 1) << 0⟩ + . . . + |(0 . . . 1) << (= − 2)⟩

+ |(0 . . . 1) << (= − 1)⟩
)

=

1√
=

=−1
∑

8=0

| (0 . . . 1) << 8⟩

Due to Qu�’s dynamic nature and quantum abstraction,
this can be achieved in a single line (given = is already de-
clared within the program’s scope) as shown in Figure 9.

1 var W_n = 1u{n} << H(0)

initC

assignC = 0

gateC H

(gateC H)
†

(assignC = 0)†

freeC

init,=

assign,=
= 1u5

<<,=
, C

uncomputeC

C

,=

C
,=

Figure 9. The Qu� program excerpt for the creation of a,=

state (top), and the corresponding quantum IR when = = 5

(bottom).

Table 1.Comparison of metrics for programswhich generate
a,5 state. *Line count including whitespaces.

W State Creation

Lines Q. HL Stmnts Q. Primitives Q. Keywords

Qiskit 24 (26)* 0 13 0
Silq 13 (15)* 2 2 2

Qu� 1 1 1 0

6.2 Shor’s Algorithm

Shor’s algorithm [68] is a well-known algorithm which uses
the theory of period �nding to perform prime factorisation
of integers. It can do so in a time complexity polynomial
to $ (log# ), as opposed to the most-e�cient classical vari-
ant ‘the general number �eld sieve’, which works in sub-
exponential time $ (4 log log# ) [51]. The quantum computa-
tion part of the algorithm uses controlled modular expo-
nentiation and quantum phase estimation, alongside some
classical pre- and post-processing. The theory behind the
algorithm is out of the scope of this paper.
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Note that in the evaluated Qiskit code for Shor’s algorithm
(subsubsection A.2.1), the program attempts to factorise 15,
while the Qu� and Silq code factorise over a generalised # .
This is because the nature of SWAP gates used in the Qiskit
implementation relies on knowledge of # when writing the
program – i.e. cannot be generalised.

1 fun shor(a, n, N){

2 H:(var qs = 0u{2*n-1}){

3 q: var b = 1u{n}

4 var i = 0

5 for (q in qs)

6 if (q) b = a**(2**i++) % N

7 invertF(qft, [qs])

8 return measure(qs)

9 }

10 }

Figure 10. The Qu� program excerpt which performs the
quantum computation involved in Shor’s algorithm.

Table 2. Comparison of metrics for programs which imple-
ment the quantum computation involved in Shor’s algorithm.
* Line count including whitespaces.

Shor’s algorithm

Lines Q. HL Stmnts Q. Primitives Q. Keywords

Qiskit 38 (42)* 0 11 0
Silq 26 (31)* 4 3 8

Qu� 8 4 1 2

7 Related Work

Operational Quantum Abstraction High-level quantum
abstraction is a relatively new strategy, with the usage of
high-level classical control statements for quantum control
available in the Silq language [8], while high-level operators
are available in the isQ [25] & Qrisp languages [64], and
the QHLS framework [9]. However, no language besides
ours allows the combination of the two for complete high-
level, imperative quantum expression in a manner similar to
classical programs.
High-level Quantum IR To the best of our understanding,
the Qunity language [76] is currently the only system which
uses an IR of high-level operations, which is then decom-
posed to low-level circuits. However, the Qu� quantum IR
consists of arithmetic, logical and bit-wise operations akin
to those used in classical programs.
Quantum KeywordsMany quantum languages require the
usage of various keywords, such as Silq’s qfree and const

for compile-time quantum safety [8], or the Q# adjoint

for inverse expression [72]. These keywords allow for ex-
pressive program design while incurring additional develop-
ment complexity. In contrast, Qu� is the �rst which enables
all quantum computation without necessitating keywords,
while providing q: and H: for syntactic sugar.
Quantum Typing Nearly all quantum languages require
the explicit stating of quantum types, such as Silq’s ! symbol
[8]; Quipper’s QCData type [22]; Qiskit’s QuantumRegister
object [5]; or isQ’s qbit type [25]. Within our understanding,
only Qunity [76] does not require the explicit stating of
quantum types, where the context of data usage imposes
quantum e�ects – however, Qu� is the �rst to do so in an
object-oriented, imperative language with a dynamic type-
system.
Hybrid Nature The Qu� language and runtime system is
the only programming language which dynamically captures
data as being of a quantum type, representing data which
may only be represented as a quantum state. This dynamic
nature inherently reduces the usage of quantum resources
through lazy quantum evaluation.

8 Conclusions

In this era of early quantum software development, a focus
on simplistic modalities for computation design is paramount
for its early adoption. Throughout this paper we have demon-
strated that the Qu� language is suited for this purpose, as
the �rst dynamically-typed, high-level quantum language
with a syntax similar to that of current, highly-used classical
programming languages – enabling of complete quantum
program design without need for a single keyword. Our
comparisons indicate that the novel quantum abstraction
provided by Qu�may decrease program length and quantum
complexity compared to Qiskit and Silq.

The language leverages the idea of classical and quantum
e�ects – in contrast to explicit quantum constructs. Being
the �rst quantum programming language developed using
GraalVM and the Tru�e framework allows optimised run
time with the novel dynamic type system, providing intuitive
semantics for e�ective quantum software engineering. The
Qu� runtime system provides a powerful novel high-level
quantum IR, leading to the generation of e�cient circuits. It
is the �rst to use lazy evaluation to optimize high-level, quan-
tum computation, which may be simulated on a GPU accel-
erated quantum simulator, as well as conversion to quantum
assembly code (QASM) to interact with quantum devices.
While the runtime system does not currently focus on

optimisation of quantum programs, such as circuit and simu-
lation e�ciency, it leaves much room for this to be achieved
in our future works.

76



��: A Dynamically Typed Hybrid�antum-Classical Programming Language MPLR ’24, September 19, 2024, Vienna, Austria

Appendix A Qiskit & Silq Code

A.1 ,= State Creation

1 def F_gate(qc,q,i,j,n,k) :

2 theta = np.arccos(np.sqrt(1/(n-k+1)))

3 qc.ry(-theta,q[j])

4 qc.cz(q[i],q[j])

5 qc.ry(theta,q[j])

6 qc.barrier(q[i])

7

8 def cxrv(qc,q,i,j) :

9 qc.h(q[i])

10 qc.h(q[j])

11 qc.cx(q[j],q[i])

12 qc.h(q[i])

13 qc.h(q[j])

14 qc.barrier(q[i],q[j])

15

16 q = QuantumRegister(n)

17 qc = QuantumCircuit(q)

18 qc.x(q[4])

19 F_gate(qc, q, 4, 3, 5, 1)

20 F_gate(qc, q, 3, 2, 5, 2)

21 F_gate(qc, q, 2, 1, 5, 3)

22 F_gate(qc, q, 1, 0, 5, 4)

23 qc.cx(q[3], q[4])

24 cxrv(qc, q, 2, 3)

25 qc.cx(q[1], q[2])

26 qc.cx(q[0], q[1])

Listing 1. The Qiskit program excerpt for the creation of a
,5 state [13]

1 i:=0:uint[n];

2 for j in [0..n){ i[j]:=H(i[j]); }

3

4 qs:=vector(2^n,0:\B);

5 qs[i]=X(qs[i]);

6

7 forget(i=\(qs:\B^(2^n))lifted{

8 i:=0:uint[n];

9 for j in [0..2^n){

10 if qs[j]{

11 i=j as uint[n];

12 }

13 }

14 return i;

15 }(qs));

Listing 2. The Silq program excerpt for the creation of a,=

state, a total of 13 lines (not including whitespaces) [14].

A.2 Shor’s Algorithm

1 def init(qc, n, m):

2 qc.h(range(n))

3 qc.x(n+m-1)

4

5 def c_amod15(a, i):

6 if a not in [2,7,8,11,13]:

7 raise ValueError("'a' not valid.")

8 U = QuantumCircuit(4)

9 for iteration in range(i):

10 if a in [2,13]:

11 U.swap(0,1)

12 U.swap(1,2)

13 U.swap(2,3)

14 if a in [7,8]:

15 U.swap(2,3)

16 U.swap(1,2)

17 U.swap(0,1)

18 if a == 11:

19 U.swap(1,3)

20 U.swap(0,2)

21 if a in [7,11,13]:

22 for q in range(4):

23 U.x(q)

24 return U.to_gate().control()

25

26 def mod_exp(qc, n, m, a):

27 for i in range(n):

28 qc.append(c_amod15(a, 2**i), [i] + list(

range(n, n+m)))

29

30 def inverse_qft(qc, qs):

31 qc.append(QFT(len(qs), do_swaps=False).

inverse(), qs)

32

33 n = 4

34 m = 4

35 a = 7

36 qc = QuantumCircuit(n+m, n)

37 init(qc, n, m)

38 mod_exp(qc, n, m, a)

39 inverse_qft(qc, range(n))

40 qc.measure(range(n), range(n))

Listing 3. The Qiskit program excerpt which performs the
quantum computation involved in Shor’s algorithm.
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1 def factorise[n:!\N](a:!\N, N:!uint[n]):!\R[]

{

2 got_factors := array(2, 0:!\R);

3

4 while got_factors[0] == 0 && got_factors[1]

== 0 {

5 x := 0:uint[2*n-1];

6 w := 0:uint[n];

7

8 for i in [0..2*n] { x[i] := H(x[i]); }

9

10 for j in [0..2*n] {

11 if x[j] { w = (a^(2^j)) % N; }

12 }

13

14 x := invQFT(x);

15 got_factors = extract_factors(a as !\N, N

as !\N, measure(x) as !\N);

16 ...

17 }

18 return got_factors;

19 }

20

21 def invQFT[n:!\N](x:uint[n]):uint[n] {

22 for i in [0..n) {

23 for j in [n-i..n) {

24 r := x[n-i-1];

25 if r { x[j] := rotZ(-\pi/(2^(j-(n-i-1))

), x[j]); }

26 forget(r = x[n-i-1]);

27 }

28 x[n-i-1] := H(x[n-i-1]);

29 }

30 return x;

31 }

Listing 4. The Silq program excerpt which performs the
quantum computation involved in Shor’s algorithm.
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Abstract

Pro�lers are crucial tools for identifying and improving ap-
plication performance. However, for language implementa-
tions with just-in-time (JIT) compilation, e.g., for Java and
JavaScript, instrumentation-based pro�lers can have signi�-
cant overheads and report unrealistic results caused by the
instrumentation.

In this paper, we examine state-of-the-art instrumentation-
based pro�lers for Java to determine the realism of their
results. We assess their overhead, the e�ect on compilation
time, and the generated bytecode. We found that the pro-
�ler with the lowest overhead increased run time by 82×.
Additionally, we investigate the realism of results by test-
ing a pro�ler’s ability to detect whether inlining is enabled,
which is an important compiler optimization. Our results
document that instrumentation can alter program behavior
so that performance observations are unrealistic, i.e., they do
not re�ect the performance of the uninstrumented program.
As a solution, we sketch late-compiler-phase-based in-

strumentation for just-in-time compilers, which gives us the
precision of instrumentation-based pro�ling with an over-
head that is multiple magnitudes lower than that of standard
instrumentation-based pro�lers, with a median overhead
of 23.3% (min. 1.4%, max. 464%). By inserting probes late in
the compilation process, we avoid interfering with compiler
optimizations, which yields more realistic results.
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1 Introduction

Pro�lers are the go-to tool for developers to identify the
program part that takes up most time and may bene�t from
optimization. Instrumentation-based pro�lers insert probes
into the program, which then collect information about the
program’s behavior. In contrast, sampling periodically in-
terrupts the program to collect information, e.g., records
the program stack, to derive a probabilistic picture of the
program’s behavior. Both approaches are widely used for
ahead-of-time- as well as just-in-time-compiled language
implementations [8, 15, 19, 20].
Unfortunately, both sample- and instrumentation-based

pro�ling of just-in-time-compiled programs a�ect program
execution, reducing the accuracy of pro�ling results [3, 10,
14, 21], i.e., results may not represent the true performance
behavior. Instrumenting code at the source or bytecode level
changes how it is optimized [10]. Sampling su�ers from safe-
point bias, which means pro�lers do not sample all program
parts with equal probability. Safepoint bias can also lead to
misinterpreted samples, since the pro�ler only has a par-
tial understanding of how the compiler altered a program’s
structure to achieve better performance [3, 14].
The one bene�t of instrumentation is its high precision.

Results may not be accurate, but probes count or measure
reliably. Thus, wewant to better understand instrumentation-
based pro�lers on the Java Virtual Machine (JVM). To this
end, wemeasure their overhead, which is typically increasing
run time by one or two orders of magnitude. Furthermore,
we assess the impact of instrumentation on compilation, and
�nd that they can not detect whether inlining is enabled or
disabled, which means their results are unrealistic.
As a way forward, we propose a new approach to in-

strumentation-based pro�ling on top of JIT compilers that
improves the accuracy of pro�les compared to source- and
bytecode-level instrumentation by only instrumenting the
code late in the compilation process.

Inspired by Basso et al. [2], we insert our instrumentation
with a compiler phase of the Graal JIT compiler. This avoids
changing which methods are selected for compilation, which
methods are inlined, and it minimizes the impact from how
the compiler optimizes the code. This is similar to instru-
menting binaries of ahead-of-time-compiled programs [18],
but with a lower engineering e�ort and thus, we believe, a
suitable way forward for just-in-time compilers.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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2 Background

This section introduces pro�ling, our terminology, the Graal
compiler, and the challenges pro�lers have with inlining.

2.1 Pro�lers and Pro�ling Techniques

Pro�ling allows developers to observe a program’s execution.
A pro�ler may record, e.g., a program’s CPU, GPU, or mem-
ory utilization. Pro�lers help identify performance issues,
e.g., by pinpointing sections of code that consume the most
CPU time, and thus, they can guide optimization e�orts.
Instrumentation-based pro�lers insert probes into a pro-

gram to record the information. For example, a probe at
the beginning of each method can count how many times a
method is called. This �nds frequently called methods and
can enable developers to identify underlying performance
problems. Probes can be inserted at the source, bytecode, or
native code level. We will evaluate JPro�ler,1 VisualVM,2 and
YourKit3 as state-of-the-art instrumentation-based pro�lers.

CPU sampling interrupts the program to gather a snap-
shot of the current state of both hardware and software. This
includes recording the call stack, instruction pointer, mem-
ory usage, and thread state, which are used to construct a
pro�le. The interrupts occur at regular intervals, but could
be random [14]. Safepoints [1] are crucial for garbage col-
lection and to ensure that the VM is in a state where the
stack can be correctly read and the program counter can be
used to indentify the currently executing method. Thus, sam-
ples are typically interpreted based on the closest safepoints.
However, this can lead to inaccurate pro�les [14].

2.2 Accuracy, Precision, and Realism

Accuracy and precision are often used interchangably. How-
ever, in our work we use two distinct meanings.

Accuracy measures how close the reported pro�ler results
are to what happens during executions without a pro�ler,
i.e., how close the results are to the ground truth, which we
unfortunately cannot determine directly. Precision refers to
how close measurements are to each other between runs.
Thus, it measures how consistent a pro�ler gives the same,
but not necessarily correct answer.
As realism we understand a weaker notion of accuracy,

which measures how close the reported pro�lers results are
to an execution with a pro�ler that does not a�ect run-time
optimizations. This allows for the general impact and bias in-
troduced by using a pro�ler, but is meant to allow us to assess
how instrumentation in�uences optimization heuristics. For
instance, we would consider a pro�ler unrealistic when it sig-
ni�cantly changes the e�ectiveness of speci�c optimizations,
because the normal execution would not be subject to this
change, and would show di�erent performance properties.

1h�ps://www.ej-technologies.com/products/jprofiler/overview.html
2h�ps://visualvm.github.io/
3h�ps://www.yourkit.com/
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Figure 1. A GraalIR graph showing that nodes from inlined
methods can end up being intermixed in a compilation unit.

2.3 Graal Compiler

The Graal compiler is a just-in-time (JIT) compiler imple-
mented in Java. It compiles Java bytecode at run time to
machine code. For this, it uses GraalIR, a graph-based sea of

nodes [4] intermediate representation (IR) with explicit con-
trol �ow edges [5]. It enables optimizations such as dead code
elimination, loop transformation, and inlining by adding,
transforming, or removing graph nodes. Each optimization
is typically implemented in its own compiler phase.

2.4 Pro�lers and Inlining

Inlining replaces a method call with the body of the called
method. This is a vital optimization, because it enables op-
timizations on the combination of caller and callee. Graal
does inlining at the GraalIR level. After inlining the nodes
from a callee, optimizations such as loop peeling can move
and duplicate nodes and nodes from di�erent methods can
end up mixed together. Figure 1 illustrates this for the Tower
benchmark [13] with nodes from the buildTowerAt, size,
and pushDisk methods, each in a di�erent color, without
clear method boundaries between them. This makes it im-
possible to simply instrument the beginning and end of an
inlined method, since they no longer exist.

Inlining thus complicates determining where time is spent.
A sampler needs to know which method the currently exe-
cuted instruction belongs to. For instrumentation, it depends
onwhen probes are inserted. If they are inserted at the source
or bytecode level, probes may be duplicated with the rest of
the code, for instance during loop peeling, increase the over-
head, and likely prevents optimizations, e.g., inlining [10].

If probes are added after inlining, then it may requiremany
probes to isolate the di�erent parts, and correctly attribute
the execution time. This would be needed in our example in
Figure 1 to accurately distinguish the methods. A simple pro-
�ler may only instrument the root method and attribute the
time of the whole compilation unit to this method. However,
a major part of the time may be spent on inlined code.
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3 State of the Art in Instrumentation on
JIT-Compiling JVMs

We will now analyze instrumentation-based pro�lers by ex-
amining their overhead, assessing their impact on the com-
pilation process, and evaluating the realism of their results.

3.1 Experimental Setup

We ran our experiments with Graal on top of the HotSpot
JVM in OpenJDK 21.0.2.4 By using Graal’s libgraal variant,
we ensure that Graal itself is ahead-of-time compiled, which
ensures the best possible compilation times from the start.
All benchmarks were run on a machine with an AMD Ryzen
5 36000 6-core processor, which uses the Zen 2 architecture,
32 GB DDR4 RAM, and Rocky Linux 9.4 with a Linux kernel
version 5.14.0. We chose to use the AreWe Fast Yet bench-
marks [13], because they are well-understood and determin-
istic. The suite includes 5 macro-benchmarks and 9 micro-
benchmarks. We con�gured the benchmarks so that a single
iteration takes about 100ms and we run each benchmark for
300 iterations. In this con�guration, the benchmarks quickly
reach a stable state and it is a good trade-o� between overall
run time and the number of measurements collected. All
pro�lers pro�le immediately from the benchmark start. The
benchmarks are executed with ReBench [12], which adapts
the system’s settings to minimize interference and noise.

3.2 Assessing Run-time Overhead

To assess the overhead instrumentation-based pro�lers intro-
duce, we measure for each pro�ler its default settings using
full instrumentation, i.e., without excluding any packages.
This means for example that Java’s standard library is instru-
mented, too. As a consequence of full instrumentation, we
ran the benchmarks for only 10 iterations, because the high
overhead made running the benchmarks for longer impracti-
cal. We veri�ed that the relevant JIT compilation still occurs
within the �rst iteration of the benchmark run.

Unfortunately, VisualVM does not seem to be scriptable
and we could not execute our benchmarks automatically.
This made it impractical run all experiments. Though, we ran
the DeltaBlue benchmark, which is roughly in line with the
other pro�lers, and we report results for it where relevant.

1 10 100 1000
Factor Increase in Run Time

YourKit

JProfiler

Figure 2. Overhead of instrumentation-based pro�lers for
the AreWe Fast Yet benchmarks. The overhead is expressed
as a factor over the uninstrumented run time.

4We used a Graal from April 2024: h�ps://github.com/oracle/graal/commit/

249d3e4abd2f357461c5ceb682791e22b2c8a92f

Figure 2 reports the run-time overhead over the uninstru-
mented execution of all benchmarks. While fully instrument-
ing a program is expected to result in high overhead, the
extent of this overhead can be substantial enough to render
the use of a instrumentation-based pro�ler impractical. For
VisualVM, which is not in the �gure, pro�ling DeltaBlue
increases the run time by 485×. This overhead is similar to
the median overhead we found for YourKit and JPro�ler.

3.3 Assessing Impact on Compilation

To understand why these pro�lers incur such high overhead,
we assess the impact of instrumentation on the amount of
code generated, and how it a�ects inlining. We extracted
these details from Graal’s compilation log, which is enabled
with -Djdk.graal.PrintCompilation=true.

Impact onCode Size. For each pro�ler, we collect the time
spent in compilation, the total amount of bytecode, the size of
the generated native code, and the memory allocations that
occurred during compilation for each of our benchmarks.

The overhead we saw in Figure 2 is likely due to the added
instrumentation itself. The increased bytecode and native
code size seen in Figure 3 suggests that the probes cause the
additional code and that the compiler is unable to optimize
the instrumented code e�ectively.
When YourKit is attached, the added instrumentation

causes the native code size to increase by a median of 341%,

0 500 1000 1500 2000 2500 3000
Generated Bytecode Size (% increase)

YourKit
JProfiler

0 200 400 600 800
Native Code Size (% increase)

YourKit
JProfiler

0 200 400 600 800 1000
Memory Allocated (% increase)

YourKit
JProfiler

0 200 400 600 800 1000 1200
Compile Time (% increase)

YourKit
JProfiler

Figure 3. Increase of bytecodes, native code size, memory
allocation, and compile time for attached instrumentation-
based pro�lers on the AreWe Fast Yet benchmarks.
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which contributes to the overhead of 374×. The instrumenta-
tion likely also changes inlining and optimization decisions,
further contributing to the slowdown. For example, instru-
mentation can cause some methods to become too large to
be inlined, thus a�ecting the overall performance [10]. The
increased code size and the resulting changes to optimization
decision suggests that any results obtained from such pro�l-
ers are likely less realistic than for other types of pro�lers.

Impact of Instrumentation on Inlining. We have mea-
sured how inlining statistics change when instrumentation
pro�lers are attached. The data for Figure 4 was collected
from Graal’s inlining log. When running the benchmarks
without a pro�ler, the number of inlined methods is much
lower, indicating that the instrumentation requires many
more instrumentation-related methods to be inlined, which
explains the earlier seen increase in native code size.
These numbers also suggest that the instrumentation is

likely to dominate the execution of the benchmarks. For
instance, small methods will end up consisting of more in-
strumentation code than application behavior. At the same
time, the compiler is not able to remove the instrumentation,
because it is indistinguishable from normal application code.
As a result, the behavior of an instrumented program likely
correlates with method activation counts. This is a strong
indication that the pro�led behavior does likely not resem-
ble the normal program behavior, making pro�ling results
“unrealistic,” since optimizations do not give the same bene�t
anymore, but often change the performance behavior of a
program signi�cantly.

1 20 40 60 80 100
Factor Increase of Inlining with Instrumentation

YourKit

JProfiler

1 2 3 4 5 6 7
Factor Increase of Compiled Methods with Instrumentation

YourKit

JProfiler

Figure 4. The increase in compiled methods and inlin-
ing caused by attached instrumentation pro�lers for AWFY
benchmarks. The increase is expressed as a factor compared
to the results of uninstrumented executions.

To understand better how much instrumentation changes
the benchmark behavior, we ran the DeltaBlue benchmark
with each instrumentation pro�ler, once normally, and once
with inlining disabled.5 We would expect a drastic change
in behavior between inlining enabled and disabled.

5Inlining is disabled with the Graal compiler �ag -Dgraal.Inline=false

Table 1. Pro�ling results for Async and JPro�ler, with and
without inlining enabled.

Pro�ler Inline Method %

Async

yes

deltablue.Plan 23.3

Vector.forEach 17.7

ScaleConstraint.execute 4.9

Vector.append 3.7

ScaleConstraint.recalculate 3.5

no

EqualityConstraint.execute 19.9

ScaleConstraint.execute 8.2

DMH.newInvokeSpecial 4.5

Plan$$Lambda.apply 3.7

Variable.getValue 3.6

JPro�ler

yes

EqualityConstraint.execute 14.0

Plan.lambda$execute$0 10.0

Vector.forEach 9.0

Variable.getValue 6.0

ScaleConstraint.execute 5.0

no

EqualityConstraint.execute 14.5

Plan.lambda$execute$0 10.0

Vector.forEach 8.0

Variable.getValue 6.0

ScaleConstraint.execute 5.0

We ran this experiment alsowith theAsync-pro�ler, which
uses sampling instead of instrumentation. We assume that
sampling provides results closer to the ground truth, since it
does not alter program behavior as much as instrumentation.

Table 1 shows the results for Async and JPro�ler. The full
results are in the appendix in ??. These tables show that the
pro�les with and without inlining are close to identical for
the instrumentation-based pro�lers. For Async, the sampling
pro�ler, this is however not the case. Here enabling inlining
drastically changes the pro�le as we would expect.
JPro�ler reports the methods Plan.lambda$execute$0,

Vector.forEach, and EqualityConstraint.execute as the
ones taking most time, with and without inlining. With-
out inlining, Async reports EqualityConstraint.execute,
ScaleConstraint.execute, and newInvokeSpecial from
the JVM’s method handle system as most important. Though
with inlining, it reports deltablue.Plan, Vector.forEach
and ScaleConstraint.execute, which suggests that inlin-
ing and subsequent optimizations change the observable
behavior signi�cantly.
For VisualVM and YourKit, inlining has also no major

e�ect on the pro�les. To us, this means that the instrumen-
tation prevents us from seeing the impact of inlining, which
itself enables many subsequent optimizations.
With this, we conclude that the probes used in state-of-

the-art instrumentation approaches change the application
behavior to such a degree, that the run-time behavior be-
comes unrealistic.
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3.4 Instrumentation Bias towards Activation Count

When instrumentation alters an application’s behavior, to
such a degree that pro�les strongly correlate with activation
counts, they may no longer provide actionable guidance.
Simply optimizing the most activated method may not be
feasible or provide the desired performance gains, because
the compiler may have already realized these bene�ts.
Figure 5 illustrates a worst-case scenario where a pro�le

based on activation counts may misdirect optimization ef-
forts. In this example. the execute() methods of ActionA
and ActionB could be identi�ed as most called. However,
optimizing them is likely fruitless. A realistic pro�le would
likely direct attention to the part of the program that domi-
nates run time after optimizations, e.g., the bubble sort.

1 class ActionA { int id; void execute () {} }

2 class ActionB { int id; void execute () {} }

3 var actions = getMixOfManyActions ();

4 bubbleSortById(actions);

5 framework.execute(actions);

Figure 5. Worst-case scenario for instrumentation pro�lers.
Highest activation counts maymisguide optimization e�orts.

4 Improving Realism with
Late-compiler-phase-based
Instrumentation

In this section, we sketch late-compiler-phase instrumenta-
tion to improve realism of pro�les and account for inlining.

4.1 Late-compiler-phase Instrumentation

Late-compiler-phase instrumentation inserts probes into
compilation units in the latest practical JIT compiler phase to
avoid interfering with optimizations. When we insert probes,
most optimizations are already applied, which minimizes the
observer e�ect and run-time overhead.
At the high-level, the compilation process remains un-

changed, too. The JVM uses its normal heuristics to select
a method for JIT compilation and the Graal compiler opti-
mizes it with its many phases. Our implementation adds two
phases to the process. The �rst is placed late in the highest
tier, where high-level information is still available, which
we use to collect details about the compiled method and
methods that have been inlined. We also prepare the reso-
lution of a memory address for our second phase. Though,
our �rst phase does not insert any instrumentation nodes,
which avoids interfering with optimizations.

Our second phase is added as late as possible to the low
tier and adds our instrumentation nodes. These nodes record
the CPU cycles at the start and each exit from the compila-
tion unit. It also instruments calls into non-inlined methods.
Further nodes are inserted to compute the CPU cycles taken

directly by this compilation unit, and to add the result to
the unit’s entry in a global array for all compilation units.
For this, we use the previously prepared memory address,
which minimizes the run-time computations. The array is
processed right before the JVM shuts down, to compute and
output the overall pro�le.

Since we instrument code in the JIT compiler, only meth-
ods that are compiledwill collect pro�ling information.Meth-
ods that are interpreted only thus will not be pro�led. How-
ever, for many use cases, the methods relevant for perfor-
mance are invoked often and therefore get JIT compiled.

4.2 Attributing Cycles to Inlined Methods

As discussed in Section 2.4, inlining is a major challenge
for pro�lers when it comes to correctly attributing where a
program spends its time, because inlining and subsequent
compiler optimizations may cause an inlined method to be
arbitrarily intermixed with parts from other methods.

To attribute time to inlinedmethods after all optimizations,
we estimate the cycle cost for the remaining elements. We
know for each GraalIR node fromwhich method it originates.
Based on branch probabilities and loop counts collected at
run time, we then estimate which fraction of the overall
compilation unit comes from a speci�c method. This allows
us to identify which methods make up the hottest compila-
tion units and avoids the overhead of instrumenting each
remaining part of an inlined method separately.

4.3 Evaluation

To evaluate our late-compiler-phase-based instrumentation,
we compare it with sampling- and the other instrumentation-
based pro�lers. The setup is the same as in Section 3.1, which
gives both instrumentation-based pro�lers and samplers
enough time to pro�le the program in a stable state. How-
ever, someminor engineering issues prevented us from using
libgraal for our implementation, which we call Bubo. Thus,
all experiments with Bubo use jargraal, i.e., the Java version
of Graal that is subject to JIT compilation itself. We believe
this has no major impact on our results. In the worst case, it
disadvantages Bubo compared to other pro�lers.

Comparison with Classic Instrumentation. As shown
in Figure 2, the median overhead for the instrumentation
pro�lers is in the range of 82× to 374× over all benchmarks.
This means at the median, JPro�ler causes programs to take
82× more time compared to their uninstrumented version.
In contrast, Figure 6 shows that Bubo has a median over-

head of only 23.3% (min. 1.4%, max. 464%), and having a
generally lower impact on the execution of a program.

Comparison with Sampling. Sampling pro�lers are ex-
pected to have a lower overhead than instrumentation-based
pro�lers, since their overhead is proportional to the sampling
frequency, instead of incurring a constant overhead for every
instrumented method. Figure 6 shows that Bubo has a higher
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median overhead with 23.3% (min. 1.4%, max. 464%) than the
sampling pro�lers. Bubo’s median overhead of 23.3% is also
higher than the 75th percentile of the sampling pro�lers, as
indicated by the right edge of the boxes. Nonetheless, Bubo’s
overhead is much closer to that of sampling-based pro�lers
than that of instrumentation-based ones.

We believe these �rst results show that the approach could
make instrumentation-based pro�ling more practical and
realistic.

1 10 100 1000
Factor Increase in Run Time

Inst JProfiler

Inst YourKit

Bubo

YourKit

Perf

JFR

Honest

Async

Figure 6. Run-time overhead for each pro�ler expressed as
factor over the uninstrumented run time. Async has the low-
est median overhead with 1% (min. 0.1%, max. 52%). Bubo’s
median overhead is 23.3% (min. 1.4%, max. 464%).

5 Related Work

Themost relevant work is on instrumentation at the compiler
level and binary rewriting.

Most notably, Zheng et al. [21] and Basso et al. [2] inspired
our late-compiler-phase instrumentation. Zheng et al. [21]
illustrate the impact of JIT compiler optimizations on, for
instance, object allocations and method invocations, demon-
strating the need to work alongside the JIT compiler to un-
derstand which of these operations are still present after
optimization. Both [2, 21] focused on speci�c compiler op-
timizations and compiler events to better understand the
compiler and performance issues with it. We on the other
hand focus on pro�ling applications.
Much earlier work such as gprof [7], also instrumented

programs as part of ahead-of-time (AOT) compilation. To-
day’s compilers such as GCC and LLVM also support it, e.g.,
to enable pro�le-guided optimizations [16].

However, it seemsmore common today for application pro-
�ling to instrument binaries after compilation to avoid inter-
fering with optimizations. Dynamic binary instrumentation
can be used to make instrumentation very targeted for use in
production, e.g., by sampling programs using instrumenta-
tion at con�gurable frequencies set by the user [11]. Others

optimize instrumentation by combining multiple probes into
one to reduce the overhead without losing information [9]
or by using self-modifying instrumentation [17].

6 Conclusion

In this work, we show that state-of-the-art instrumentation-
based pro�lers for the JVMhave high overhead and report un-
realistic results. We found that the lowest median overhead
is 82× across the AreWe Fast Yet benchmarks. The overhead
can be explained with the cost of instrumentation, which
is visible in the increased bytecode size, native code size,
and amount of inlining. We further argue that the reported
pro�les are unrealistic, because they do not change when in-
lining is turned o�, which indicates that the instrumentation
negates most compiler optimizations.
To overcome these issues, we proposed late-compiler-

phase-based instrumentation. It minimizes interference with
compiler optimizations and as a result delivers more realistic
pro�les than other instrumentation-based pro�lers.
In our prototype implementation, it reduces the median

pro�ler overhead on theAreWe Fast Yet benchmarks to 23.3%
(min. 1.4%, max. 464%), which is more similar to sampling-
based pro�lers. Furthermore, we attribute the cycles for a
compilation unit to the methods fragments that remain in the
compilation unit after optimization to account for inlining.
However, our prototype does not support multithreading.

Future Work. The main bene�t of instrumentation-based
pro�ling over sampling is its precision, i.e., that it gives con-
sistent results (see Section 2.2). However, it’s not generally
possible to assess the accuracy of pro�lers and samplers of-
ten disagree with eachother [3, 14]. Thus, an important open
question is how to better approximate the ground truth pro-
�le for any given program. One could possibly use hardware
simulators to determine the ground truth and thereby assess
the accuracy of pro�lers [6].
One could also consider combining sampling and late-

compiler-phase instrumentation to reduce the overhead, and
gain precision for speci�c parts of a pro�le. A hybrid solution
would also allow pro�ling of executions in the interpreter.

Other future work is more engineering focused. At this
point, Bubo instruments all methods, but perhaps one would
want to select manually which methods to instrument as
in classic instrumentation-based pro�lers. Adding support
for multithreaded application and ensuring the pro�le data
is collected correctly would be needed to make Bubo work
with most JVM applications.
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A Appendix

Table 2. A complete version of Table 1. Comparison of methods percentages across di�erent pro�lers for the DeltaBlue
benchmark with and without inlining.

Pro�ler Inlining Method Percentage

Async

yes

deltablue.Plan 23
Vector.forEach 17
ScaleConstraint.execute 4
Vector.append 3
ScaleConstraint.recalculate 3

no

EqualityConstraint.execute 19
ScaleConstraint.execute 8
invoke.DirectMethodHandle$Holder.newInvokeSpecial 4
Plan$$Lambda.0x00007fcf5800d6c0.apply 3
Variable.getValue 3

JPro�ler

yes

EqualityConstraint.execute 14
Plan.lambda$execute$0 10
Vector.forEach 9
Variable.getValue 6
ScaleConstraint.execute 5

no

EqualityConstraint.execute 14
Plan.lambda$execute$0 10
Vector.forEach 8
Variable.getValue 6
ScaleConstraint.execute 5

VisualVM

yes

Plan.lambda$execute$0 14
Vector.forEach 12
Variable.getValue 6
Planner.addPropagate 4
AbstractConstraint.satisfy 2

no

Plan.lambda$execute$0 24
Vector.forEach 12
Variable.getValue 6
Planner.addPropagate 4
AbstractConstraint.satisfy 2

YourKit

yes

deltablue.Plan.lambda$execute$0 24
som.Vector.forEach 17
deltablue.EqualityConstraint.execute 10
deltablue.Planner.addPropagate 3
deltablue.AbstractConstraint.satisfy 2

no

deltablue.Plan.lambda$execute$0 36
som.Vector.forEach 17
deltablue.EqualityConstraint.execute 10
deltablue.Planner.addPropagate 4
deltablue.AbstractConstraint.satisfy 2
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Abstract

Despite their language-integrated design, Java exceptions
can be difficult to use effectively. Although Java exceptions
are syntactically straightforward, negligent practices often
result in code logic that is not only inelegant but also unsafe.
This paper explores the challenge of auditing Java software
to enhance the effectiveness and safety of its exception logic.
We revisit common anti-patterns associated with Java ex-
ception usage and argue that, for auditing, their detection
requires a more nuanced approach than mere identifica-
tion. Specifically, we investigate whether reporting such
anti-patterns can be prioritized for subsequent examina-
tion. We prototype our approach as Händel, in which anti-
patterns and their priority, or weight, are expressed declar-
atively using probabilistic logic programming. Evaluation
with representative open-source code bases suggests Hän-
del’s promise in detecting, reporting, and ranking the anti-
patterns, thus helping streamline Java software auditing to
ensure the safety and quality of exception-handling logic.

CCS Concepts: • Software and its engineering→ Auto-
mated static analysis; Software safety;Error handling and
recovery; • Computing methodologies → Probabilistic

reasoning; Logic programming and answer set programming.
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1 Introduction

Java was not the first mainstream programming language
with a built-in exception-handling mechanism. Dating back
to the 1960s [35], several prior languages, including Ada [28]
and C++ [26], supported handling runtime errors and excep-
tional conditions in a structured manner. Drawing inspira-
tion from these languages, the design of Java has reconsid-
ered several aspects of exceptions, including a standardized
exception hierarchy, checked exceptions, and strict exception
type checking [24]. After nearly 30 years, Java has experi-
enced enormous success and now rules the world of enter-
prise software with billions of lines of legacy code. Unfortu-
nately, analyzing legacy Java code reveals that exceptions
have become a double-edged sword. Although it promotes
the intended structured handling of exceptional conditions,
it also allows undisciplined and ill-conceived programming
practices [5, 6, 12, 17]. Unless following a strict set of coding
principles, when it comes to exceptions, Java programmers
are prone to exhibit common poor coding practices—often
referred to as anti-patterns [9, 19].

Before a code base can be included in high-stakes environ-
ments, such as government or critical infrastructure systems,
it must be audited for adherence to safety standards. Soft-
ware auditing verifies and validates that a code base complies
with the necessary standards and meets all its baseline re-
quirements [10]. Unfortunately, auditing large code bases is
notoriously time-consuming and tedious, requiring signif-
icant resources and expertise [32]. Consequently, auditing
can greatly benefit from automated tools and processes [16].

Exception handling needs auditing as it fulfills the critical
role of addressing exceptional runtime conditions. Certain
features of Java exceptions make code susceptible to anti-
patterns. Anders Hejlsberg, the lead C# architect, points out
in an interview that “checked exceptions become such an
irritation that people completely circumvent the feature. . .
checked exceptions have actually degraded the quality of the
system in the large” [48]. Indeed, Java programmers often
circumvent the necessity to handle checked exceptions by
creating empty catch clauses or catching a generic super-
class exception type. Extensive research has codified such
Java exception anti-patterns and studied their prevalence in
legacy code bases [5, 6, 12, 38, 44, 53].

This paper focuses on the challenge of auditing Java soft-
ware to ensure the effectiveness and safety of exception
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1 public void myCreateBucket(String name) {
2 S3Client s3 = newS3Client ();
3 try {
4 CreateBucketRequest req = newCBRequest(name);
5 s3.createBucket(req);
6 // throws BucketAlreadyExistsException ,
7 // BucketAlreadyOwnedByYouException ,
8 // AwsServiceException ,
9 // SdkClientException , and S3Exception
10 ...
11 } catch (SdkException e) {
12 ... // handle exception appropriately
13 }
14 s3.close();
15 }

Figure 1. Code snippet for facilitating the exposition and
definitions of Java exception anti-patterns; adapted from [2].

handling. Auditing tools that report many false positives
cause information overload, particularly for large commer-
cial code bases. With unlimited resources, an auditor could
examine each reported case to confirm its validity. However,
this practice would be infeasible in realistic settings. When
it comes to auditing, detecting exception anti-patterns can
benefit from a more nuanced treatment than the current
methods that report their findings using boolean logic.

To address the challenges of boolean reporting, we intro-
duce a novel approach that leverages probabilistic reasoning
to detect and weigh possible anti-patterns. The weighted re-
sults can be used to guide further manual inspection. We pro-
totype our approach as Händel, which concisely expresses
anti-patterns in ProbLog, a probabilistic dialect of Prolog.
This design enables declarative specifications that can be eas-
ily examined and tweaked. Despite the interpretive nature of
ProbLog execution, Händel shows promising performance
and memory consumption characteristics. An evaluation
with representative Java benchmark applications demon-
strates the potential of probabilistic reasoning for reporting
suspected exception anti-patterns as well as Händel’s abil-
ity to point out the likelihood of their presence. This paper
makes the following contributions:

• We introduce a novel approach for reporting exception
anti-patterns based on probabilistic reasoning to guide
subsequent auditing efforts.

• We describe our prototype implementation, Händel,
an extensible analysis framework that leverages prob-
abilistic logic programming to identify potential ex-
ception anti-patterns; in Händel, analysis results are
weighed via highly configurable ProbLog predicates.

• We assess our approach’s suitability for auditing by
applyingHändel to a set of representative Java bench-
mark applications.

2 Exception-handling Anti-patterns

Previous works have established a Java exception-handling
anti-pattern taxonomy [5]. This section revisits common anti-
patterns defined in this taxonomy. Consider the Java method
myCreateBucket depicted in Figure 1. This code snippet uses
the Amazon AWS Java SDK [3]. Specifically, it creates a new
bucket by using the API to interact with the Amazon S3
service. The API createBucket method throws numerous
exceptions, as stated in the listing as comments. All these
exceptions are sub-classes of the base class SdkException.
This inheritance relationship makes it possible to use the
base class exception in the catch clause for handling all
possible exceptions.
Whether this code snippet matches an anti-pattern can-

not be determined definitively. In some contexts, using the
base class is appropriate for the desired level of exception
handling. In others, it may be necessary to handle each of
the potentially thrown exception sub-classes specially. In
particular, from an auditing standpoint, we might need to
be able to specify the degree to which a code base matches
an anti-pattern. The reported degrees would then prioritize
subsequent manual auditing. We next revisit common ex-
ception anti-patterns and argue that boolean reporting logic
might be unnecessarily rigid for software auditing.

2.1 Anti-pattern 1: Catch Generic / Over-Catch

One of the most common Java exception anti-patterns is
Catch Generic orOver-Catch (AP1), inwhich a handler catches
an exception type that is a supertype of the thrown excep-
tions [38]. This type relationship is called subsumption [1].
This anti-pattern branches into two distinct types: (1) “catch
generic”, a program catching a high-level, generic exception
type (i.e., Throwable, Exception, Error, or RuntimeError);
(2) subsumption, or “over-catch” [53], a handler catching
multiple different lower-level exceptions [5]. In both cases,
the anti-pattern reflects that the caught exception type is a
super-class of the types of exceptions thrown. As a result, the
exception handler is less likely to appropriately account for
the nuances of each possible sub-class of exception. For ex-
ample, in our motivating example, we might want to be able
to distinguish between BucketAlreadyExistsException
and BuckedAlreadyOwnedByYouException, as we want to
ensure that these particular exceptional conditions are han-
dled specially. At the same time, it may be acceptable for the
remaining exceptions to be handled generically.

2.2 Anti-pattern 2: Throws Generic / Over-Throws

Another Java exception anti-pattern is Throws Generic (AP2),
in which amethod’s “throws” statement propagates a generic
exception type [5]. Similar to AP1, this anti-pattern derives
from using a super-class exception type. Because the specific
thrown exception types are lost, any handlers that catch
the thrown exceptions become incapable of specializing
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Figure 2. Händel system overview and data-flow diagram

their handling. Inspired by the over-catch anti-pattern, we
propose a more encompassing Over-Throws anti-pattern in
which the type specified in a throws statement subsumes the
types of exceptions thrown. For example, the control flow
of createBucket could pass through a method that propa-
gates SdkException, which may or may not be problematic
depending on the context.

2.3 Anti-pattern 3: Unhandled Exceptions

Yet another anti-pattern we consider is Unhandled Excep-

tion (AP3), in which a handler fails to catch all reachable
exceptions [5, 44]. This anti-pattern describes the practice of
implementing an exception handler that reaches but does not
catch a thrown unchecked exception. By definition, the Java
semantics do not require unchecked exceptions to be han-
dled. However, within certain contexts, it may be necessary
to handle such runtime exceptions gracefully. For example,
assume the createBucket method in our motivating exam-
ple additionally threw an IllegalArgumentException. If
this exception is not handled, the program will terminate
prematurely. Software auditors might want to ensure that
specific unchecked exceptions are caught so that the soft-
ware does not fail within a high-stakes environment.

3 Händel’s Design and Implementation

Auditing contexts may differ greatly, depending on the soft-
ware domain, deployment environment, and security/privacy
restrictions. In light of these observations, our design must
exhibit high degrees of transparency and configurability.
The key insight of our design lies in employing probabilistic
logic programming to specify our analyses. Transparency is
achieved through comprehensible logical rules that specify
anti-pattern detection. Configurability is achieved through
special or custom logic predicates.
We prototype our approach as Händel, which draws in-

spiration from the renowned baroque composer George Frid-
eric Händel. Just as Händel’s compositions are celebrated

for their elegance, precision, and gracefulness, Händel pro-
motes these qualities in Java exception-handling code. Fig-
ure 2 presents an overview of the Händel framework, com-
prising three distinct phases, whose implementations we
detail next.

3.1 Phase I: Generating Code Property Graph

In Händel’s first phase, a program is converted into a code
property graph (CPG). A CPG is a powerful program rep-
resentation that combines a program’s abstract syntax tree
(AST), control flow graph (CFG), and program dependency
graph (PDG) into a single, joint structure [52]. The AST
represents the program’s source code and syntactic struc-
ture; the CFG captures how execution flows between pro-
gram statements; and the PDG encodes data dependencies
throughout the program. A CPG provides the advantages of
all three graphs in a single, convenient representation. While
CPGs were originally designed for describing and identify-
ing software vulnerabilities, its applicability extends beyond
security-based analyses.
Because they provide a rich expression of a program’s

properties, we adopted CPGs as an intermediate represen-
tation for our analyses. The AST sub-graph contains Java
exception-handling constructs. Each try/catch/finally struc-
ture has a corresponding sub-tree in the AST. A “try” control
structure is at the sub-tree’s root, and each block comprises
the child nodes. We build our anti-pattern analyses by com-
bining the exception-handling structures expressed in the
AST with the control-flow relationships encoded in the CFG
sub-graph. To obtain a CPG representation of a program,
Händel uses Joern, a CPG framework [22].

3.2 Phase II: Translating CPGs into ProbLog Facts

Händel’s second phase translates a given CPG into ProbLog
facts representing the program’s control-flow and exception-
handling relationships. As depicted in Figure 2, this phase
accepts a set of Händel passes as input. Each pass translates
a targeted set of program constructs into ProbLog facts.
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3.2.1 Control-flow Pass. This pass outputs a set of re-
lations describing how execution transitions between pro-
gram statements andmethods. Specifically, it translates a pro-
gram’s CFG and constructs its probabilistic CFG (Prob-CFG),
a weighted CFG, in which an edge’s weight represents the
probability of following that edge [41]. The logic for apply-
ing probabilities to control-flow edges is based on branch
selectivity [40]. Each branch condition in the program is con-
verted into satisfiability modulo theory (SMT) constraints
and solved using the automata-based model counter (ABC)
SMT solver [4]. This pass outputs a set of facts represent-
ing an intra-procedural CFG/Prob-CFG for each method. The
declarative ProbLog rules then infer the set of inter-procedural
edges, thus demonstrating an additional advantage of struc-
turing this analysis using probabilistic logic programming.
Specifically, this pass outputs the following facts:

• method(Entry,Name): CFG node Entry is the entry
point for method Name.

• cfg_edge(X,Y): Edge between CFG nodes X and Y.
• P::prob_cfg_edge(X,Y): Edge between CFG nodes
X and Y with probability P.

• calls(Meth,Callee,Site): Meth calls Callee at CFG
node Site.

• returns(Meth,Site): Meth returns at CFGnode Site.

3.2.2 Exception-handling Pass. This pass traverses the
CPG and identifies nodes relevant to exception-handling con-
structs. Specifically, it identifies exception-handling control
structures (i.e., try and catch blocks), caught exception types,
thrown exceptions, and propagated exceptions. This pass
outputs the following exception-handling facts:

• method_throws(Meth,Exc): Meth propagates Exc.
• throws(X,Exc): Exc is thrown at CFG node X.
• catches(Try,Catch,Exc): Control structure Try han-
dles Exc in block Catch.

• in_try(X,Try): CFG node X is in the try block of con-
trol structure Try.

• in_catch(X,Try): CFG node X is in the catch block
of control structure Try.

• subclass(T1,T2): Type T1 is a sub-class of T2.

3.3 Phase III: Identifying Probable Anti-patterns

Händel’s third and final phase employs ProbLog to iden-
tify potential anti-patterns and their corresponding weights.
As its logic engine, Händel utilizes Cplint [36, 37], an
implementation of ProbLog provided as a library for SWI-
Prolog[51]. We selected Cplint due to its full support of the
ProbLog syntax and the robustness of SWI-Prolog.
Händel infers inter-procedural control edges and paths

from the control flow facts extracted in Phase II. The rules in
Figure 3 specify the relationships that infer inter-procedural
control flow edges and paths between nodes X and Y.

The icfg_edge rule on line one represents intra-procedural
edges. Any existing CFG edges not originating from a call

1 icfg_edge(X,Y) :- cfg_edge(X,Y), \+calls(_,_,X).
2 icfg_edge(X,Y) :- calls(_,Y,X).
3 icfg_edge(X,Y) :- calls(_,M,Z), returns(M,X),
4 cfg_edge(Z,Y).
5
6 icfg_path(X,Y) :- icfg_edge(X,Y).
7 icfg_path(X,Y) :- icfg_edge(X,Z), icfg_path(Z,Y).

Figure 3. Inter-procedural edge and path inference rules

1 P:: exception_distance(N) :- P is 1-(1/N)+0.2.
2
3 antipattern1(Catch ,CaughtExc ,Throw ,ThrownExc ,N) :-
4 throws(Throw ,ThrownExc),
5 catches(Try ,Catch ,CaughtExc),
6 is_subclass(ThrownExc ,CaughtExc ,N),
7 exception_distance(N),
8 in_try(TryNode ,Try),
9 in_catch(CatchNode ,Try),
10 icfg_path(TryNode ,Throw),
11 icfg_path(Throw ,CatchNode).

Figure 4. Specification for AP1: catch generic / over-catch

should be included in the inter-procedural CFG. The rule
on line two represents edges between functions. There is an
edge between nodes X and Y if X is a call site and Y is the callee.
The rule on line three establishes a back-edge from a called
function to its call site. There is an edge between nodes X and
Y if X is the return site of a function that was called by the
node immediately preceding Y. The icfg_path rules on lines
six and seven demonstrate how to infer whether a path be-
tween X and Y exists using the icfg_edge relationships. We
introduce a nearly identical set of rules for prob_icfg_edge
and prob_icfg_path by replacing instances of cfg_edge
with prob_cfg_edge. These rules are integrated into addi-
tional rules that define our anti-patterns.

Figure 4 presents the ProbLog rule for AP1, which identi-
fies whether an exception handler Catch is over-catching. If
an exception is thrown along a path between a try block and
its catch block, and the thrown exception is a sub-class of
the caught exception, then the handler, Catch, may match
AP1. The result is weighted via the exception_distance
predicate. For our purposes, the further apart the two excep-
tions are in the type hierarchy, the more likely it is that AP1
has been matched. Depending on the audit, the weight pred-
icate can be modified. For example, exception_distance
can be updated to use a different formula or replaced with a
different predicate that represents the targeted standard.

For brevity, we omit the AP2 and AP3 specifications. How-
ever, they are equally as comprehensible and configurable
as AP1. AP2 is also defined by type subsumption, so it uses
exception_distance as its weight predicate. The weight
predicate for AP3 is derived from the Prob-CFG as the cumu-
lative probability of the edges along a prob_icfg_path. If a
program throws an exception along a typical—or probable—
path, the exception’s graceful handling should be prioritized.

93



Toward Declarative Auditing of Java Software for Graceful Exception Handling MPLR ’24, September 19, 2024, Vienna, Austria

Table 1. Summary of Händel evaluation; runtime reported
in seconds (s) and memory consumption in megabytes (MB)

Phase III Time / Memory

Benchmark AP1 AP2 AP3

fop-events 14.79 / 343.5 36.03 / 996.3 37.2 / 976.3
fop-sandbox 1.4 / 21.3 104.78 / 2302.9 98.43 / 2062.5
fop-util 0.86 / 17.5 8.94 / 316.2 11.22 / 369.2
h2o-algos 0.42 / 14.7 0.4 / 17.4 0.39 / 14.4
h2o-avro-parser 0.6 / 25.2 0.68 / 36.1 0.76 / 40.8
h2o-clustering 0.42 / 14.7 0.56 / 36.7 0.65 / 39.9
h2o-genmodel 14.64 / 572.4 11.92 / 494 37.19 / 1331.7
h2o-hive 1.95 / 37.2 53.17 / 1809.5 45.45 / 1528.6
h2o-orc-parser 1.11 / 19.8 4.73 / 273.4 7.45 / 377.8
h2o-persist-drive 93.0 / 49.9 1.1 / 73.9 1.71 / 114.8
h2o-persist-gcs 0.81 / 28.2 1.2 / 60.9 1.61 / 82
h2o-persist-http 0.44 / 23.4 0.38 / 20.7 0.41 / 23.4
h2o-persist-s3 134.67 / 3165.7 19.9 / 494.1 143.41 / 3330.9
h2o-security 0.5 / 25.3 0.62 / 40.5 0.48 / 25.1
h2o-webserver-iface 0.5 / 23.9 0.41 / 14.8 0.5 / 24.2
sunflow-image 1.83 / 24.6 2.52 / 124.7 3.09 / 205.2
sunflow-system 1.09 / 19.2 2.14 / 196.2 2.34 / 229.7

4 Evaluation

We evaluate the efficacy of Händel by applying it to 17
benchmark programs. These benchmarks were selected from
the dacapo-23.11-chopin benchmark suite [7]. Specifically,
we analyzed a subset of packages from the fop, h2o, and
sunflow projects. These packages ranged from 150-1600 LoC
with an average of ∼670 LoC. For each benchmark, we ran
Händel to check for each anti-pattern and captured the
time and memory consumption associated with each phase.
Across the 17 benchmarks, Phase I averaged a runtime of
5.53 seconds and 323.6 MB of memory, and Phase II averaged
a runtime of 36.8 seconds and 4501 MB of memory. Table 1
presents the runtime and memory of Phase III.

To study how Händel performs compared to existing ap-
proaches, we implemented two additional rules that mirror
those provided by checkstyle 10.16.0 [11] and PMD 7.1.0 [34],
two popular static Java bug finding tools [39]. Specifically,
we implemented a rule that detects when a program catches
an exception that is too generic and another that detects if a
method propagates a generic exception. Although reminis-
cent of AP1 and AP2, these rules focus on the mere presence
of generic exception types rather than analyzing control-flow
sensitive subsumption relationships. These specifications
utilize generic_expression as a weight predicate, which
assigns exception types arbitrary weights. Suppose an audit
permits catching Exception; in this scenario, an auditor can
either remove the corresponding generic_exception fact
from the database or deprioritize the result by setting the
probability to a small value.
We applied our generic catch, generic throw, and their

comparable rules in checkstyle and PMD to our benchmark
programs, measuring each framework’s identified violations,
runtime, and memory consumption. The results between

checkstyle and PMD contained small discrepancies due to
varying definitions of a “generic” exception or “illegal” prop-
agation. However, due to the flexible and modifiable defini-
tion of our weight predicate, Händel identified the same
potential violations as the other frameworks individually.
Figure 5 presents the runtime and memory consumption
for each framework’s generic catch detection. We observed
comparable metrics for each framework’s throw detection.
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Figure 5. Runtime and memory performance for detecting
a generic catch using Händel, checkstyle, and PMD

5 Discussion

Next, we discuss the implications of our preliminary evalu-
ation, which aims to answer this question: Is probabilistic
logic a suitable approach for detecting and reporting Java
exception anti-patterns?

When evaluating an approach’s suitability for a software
auditing task, one must consider both usability and perfor-
mance. The approach’s programming interface should be
amenable to easy expression and modification, while the
resulting performance should be capable of efficiently ac-
commodating the auditing needs. Our evaluation indicates
Händel’s promise in achieving both objectives, while future
work will determine to what extent.

We evaluate Händel’s usability by examining the expres-
siveness of its anti-pattern specifications. We report our find-
ings based on our experiences constructing the ProbLog rules.
Notice that the rule in Figure 4 is simple but logical. These
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properties should make them amenable to comprehension
and modification by software auditors. We intend further
to study the expressiveness of Händel through usability
studies. In terms of modification, we found that exposing
Händel’s configuration as ProbLog predicates presents an
intuitive interface. Our design contrasts existing approaches,
such as PMD or checkstyle, which utilize XML configuration
files, a format designed for easier computer processing rather
than human comprehension.
Often, expressiveness comes at the cost of performance.

Therefore, an objective of our evaluation was to determine
if the highly declarative detection logic of Händel would
exhibit acceptable performance characteristics. Our bench-
marks show promising performance and memory trends.
The runtime of each anti-pattern varied across the evalu-
ation benchmarks, with times ranging from less than half
a second to 143 seconds, with an average of 15.9 seconds.
We see a similar variation in memory consumption, which
ranges from 14.4 to 3,224.4 MB, with an average of 427.7 MB.
Although our benchmark programs are relatively small, the
observed costs should be acceptable in most auditing scenar-
ios. Furthermore, Händel is still in its prototyping phase,
so we have not explored optimizations based on the under-
lying logic engine or methods to reduce the database size.
We expect that applying such optimizations would strictly
improve Händel’s performance.

We also compared Händel with closely related tools con-
cerned with finding defects in Java programs: checkstyle
and PMD. Because these tools are not designed to detect
control-flow-based defects, we introduced two additional
specifications into Händel similar to closely related defect
specifications in these existing tools. Across all evaluation
benchmarks,Händel showed comparable or superior perfor-
mance levels, which aligns with the well-known efficiency of
logical inference. Furthermore, in Händel’s case, the perfor-
mance expenditure is a front-loaded one-time cost. Phases I
and II, which are more expensive than existing approaches,
only need to be executed once to establish the database of
facts. All subsequent analyses can utilize the same database
and benefit from the performance improvements.

6 Related Work

This work is related to Java anti-patterns, automated soft-
ware auditing, and declarative program analysis. Prior works
have defined catalogs of Java anti-patterns, including excep-
tion handling [5, 6, 12, 31, 43], dependency injection [27],
concurrency [15], and performance [47] and demonstrated
their presence in real software. Prior efforts have focused
on creating tools to identify these anti-patterns [46, 54]. Our
approach differs in specifying anti-patterns in a probabilistic
logic language, thus providing weighted results.
Auditing and validating software is extremely resource-

intensive, requiring significant money, developer effort, time,

and expert knowledge [16, 32]. As a result, prior works have
focused on automating the process [10, 30] or developing
tools to identify software flaws [33]. In contrast to prior
works that focus on identifying specific flaws, our work
provides a more general framework for detecting software
defects that can be expressed as logical rules.
Händel builds on extensive prior research on applying

logic languages to solving program analysis problems. Logic
languages are an effective means for specifying sophisti-
cated and scalable analyses in a declarative manner [13, 21].
Past applications vary from calculating large-scale points-to
relationships [8, 49, 50] to identifying structural program de-
pendencies [18] or code property violations [45]. Händel’s
design takes inspiration from program analysis frameworks
that express their analyses in a logic language [8, 23, 29].
The key novelty of our approach lies in employing proba-

bilistic logic programming [14, 20, 25, 42] for specifying and
executing program analyses.

7 Future Work and Conclusion

This paper presented a novel approach that facilitates audit-
ing Java exception-handling logic. Our approach takes ad-
vantage of probabilistic reasoning and uses a logic language
to declaratively express and configure auditing rules. We
prototyped our approach in Händel. As a proof-of-concept,
we revisited and specified three Java exception anti-patterns
with Händel and demonstrated its ability to detect and pri-
oritize potential anti-pattern matches.

Encouraged by our preliminary results, we plan to further
study Händel’s ability to specify auditing standards and
detect violations. We envision our future work following
three lines of inquiry. First, we plan to explore how exten-
sible Händel is. To that end, Händel can be extended to
support additional Java anti-patterns and anti-patterns in
other languages. Second, we plan to explore Händel’s per-
formance and scalability. These characteristics are essential
forHändel to provide practical benefits to software auditors.
We can implement optimizations and expand our evaluation
set to include larger code bases. Finally, we plan to explore
Händel’s usability further. We can conduct usability studies
to understand whether Händel achieves the desired expres-
siveness and configurability.
As software reliability and quality remain an acute prob-

lem in software development, the need for approaches that
facilitate auditing will only increase. By reporting on our
experiences with Händel, we contribute novel designs and
insights for using probabilistic reasoning in service of soft-
ware auditing.
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Abstract

Dynamic Taint Analysis (DTA) is a widely studied technique
that can e�ectively detect various attacks and information
leakage. In the context of detecting information leakage, taint
is a �ag added to data to indicate whether secret data can
be inferred from it. DTA tracks the �ow of tainted data in
a language runtime environment and identi�es secret data
leakage when tainted data is transmitted externally.

We found that existing DTAs can produce false negatives
and false positives in complex data �ows because of the bi-
nary nature of taint. Since taint is binary, meaning either
secret data is inferable (=1) or non-inferable (=0), it can-
not represent intermediate states that may slightly infer the
secret data, and these states are quantized to 0 or 1. As a
result of this quantization, existing methods are unable to
distinguish between outputs that are practically secure and
those that pose a real security threat in complex data �ows,
resulting in false positives and false negatives.

To address this problem, we introduce the concept of Pos-
sible Source Count (PSC) and propose Dynamic Possible
source Count Analysis (DPCA), which tracks PSC instead of
taint. PSC is a metric that indicates how many secrets can be
identi�ed by observing the data. DPCA tracks and computes
the PSC of each data item using dynamic symbolic execu-
tion. By evaluating the PSC of data that reaches the sink
point, DPCA can e�ectively distinguish between data that is
practically secure and data that poses a security threat.

CCS Concepts: • Security and privacy → Information

�ow control; • Software and its engineering→ Runtime
environments.

Keywords: Taint Analysis, Information Flow Control, Secu-
rity, Information Leakage
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1 Introduction

With the increasing importance of security, information
leakage prevention methods using Dynamic Taint Analy-

sis (DTA) [44] have been widely studied. DTA is a method
that is integrated into the runtime environment or hardware,
and it can e�ectively prevent information leakage without
relying on pattern detection. In an information leakage pre-
vention method using DTA, a �ag called taint is assigned
to secret data to be protected. The taint is propagated from
input to output during computation to track the �ow of data
containing the taint. During the �ow tracking, tainted data
that is about to be output to the outside world is detected as
a leakage of important information.
In taint propagation, handling a data �ow known as an

implicit �ow [5, 38, 42] is generally di�cult. The implicit
�ow is a data �ow in which the output is determined de-
pending on the input, even without explicit operations or
assignments. A typical example of the implicit �ow is a con-
trol �ow via a conditional branch. When secret data is used
in the conditional expression of a branch, the information
of the secret data can be indirectly obtained by observing
the result of the branch. For example, in a statement such as
if(x==0){y=1}, by observing whether y is 1, one can infer
whether the value of x is 0 or not.

Some existingmethods propagate taint in implicit �ows [10,
13, 20], but simply propagating taint in all implicit �ows often
results in inappropriate taint propagation [10]. For exam-
ple, consider a program that checks whether the length of
an input password meets a speci�c length requirement. In
this case, the password, which is secret data, must be used
as the input to the conditional expression that checks the
length. Suppose that the taint is propagated to all variables
assigned in the then/else statements. Then, the taint will also
be propagated to the result "the password length meets the
requirement", and this result cannot be output because it is
tainted. This phenomenon, known as over-tainting, involves

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
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taint propagation to data that does not reveal the original se-
cret, thus preventing program operation. Although the above
example is very simplistic, Section 3 illustrates how over-
tainting makes it almost impossible for a web application to
communicate with an external server.
To overcome such over-tainting problems, some existing

methods selectively propagate taint by following speci�c
heuristics [13, 20]. Such methods propagate taint when an ex-
act value comparison is made, for example, if(x==0){y=1},
since the value of x can be inferred from y, as inferred from
the earlier example. On the other hand, they do not propagate
taint in cases of greater than or less than comparisons, such
as if(x>0){y=1}, because it is di�cult to estimate the input
from observing y. However, following such heuristics fails to
handle cases where if(x>0){y=1} and if(x<2){y++} are
executed in combination. In such a case, if y equals 2, it
implies that x is 1. Thus, taint should also be propagated to y
in such cases, but this is often omitted in the above heuristic-
based methods. Such an omission of taint propagation is
called under-tainting.

The problems described stem from taint being binary, in-
dicating whether secret information might be inferred from
certain data. For example, knowing whether a password sat-
is�es speci�ed length requirements allows only negligible
inference about the password itself. If we strictly propagate
taint based on even the slightest potential for inferring the
password, such information cannot be displayed, despite pos-
ing no signi�cant security threat. Conversely, omitting taint
propagation based on heuristics can lead to potential security
risks, as input values might be inferred from a combination
of branching conditions.
Building on the discussion above, we propose Dynamic

Possible Source Count Analysis (DPCA), a method that quanti-
�es recoverable secret information at each data, rather than
merely determining if secret information can be inferred. We
introduce a metric called a possible source count (PSC), which
quanti�es the number of identi�able inputs by observing
each data. For instance, output data with a PSC of 1 indi-
cates a high risk, as the input is determinable in a single way.
Conversely, a PSC of 2128 suggests the input is practically
impossible to deduce, thereby signifying safety. DPCA as-
signs a PSC to data, tracking its �ow to assess the magnitude
of PSC at sink points. This method enables DPCA to e�ec-
tively distinguish between outputs that are practically safe
and those that pose genuine security threats. Additionally,
DPCAmonitors control �ows that in�uence each data and ef-
fectively detects leaks stemming from complex combinations
of conditional branches.
Our contributions are summarized as follows:

• We introduced PSC, which quanti�es the number of
identi�able inputs by observing data. Using PSC, we
formulated existing heuristic-based dynamic taint prop-
agation issues.

Listing 1. Example of an malicious program
1 // e-mail address is secret data

2 function checkAddress(email) {

3 // Validate the email format

4 if (email.length == 0)

5 return false;

6 // Check other rules ...

7 ...

8 // Maliciously send the email to a remote server

9 fetchSync("https :// example.com/api?" + enc(email));

10 // Assume the email is valid

11 return true;

12 }

• We propose DPCA, which computes and tracks the
PSC of data using dynamic symbolic execution. DPCA
evaluates the PSC of data that has reached the sink
point, e�ectively distinguishing between output that
is practically secure and output that poses a security
threat. As a result, DPCA solves the under-tainting
and over-tainting issues in existing DTAs.

• We implemented DPCA on the JavaScript code instru-
mentation platform and showed that it can more accu-
rately evaluate programs that existing methods cannot
correctly detect for information leakage.

2 Background

2.1 Assumed Information Leakage

We base our discussion of information leakage on the fol-
lowing assumptions: A program receives secret information
(e.g., password, credit card number, and identi�cation ID)
as input and uses this information to perform operations.
When the program communicates with external parties such
as servers or third-party APIs, if the data sent externally
includes secret information, this can be observed by a third
party, potentially leading to information leakage. We assume
that the attacker can change and observe a target program
(e.g., source code) and can observe only public output.

A typical example of the above scenario is when an at-
tacker distributes a program containingmalicious code under
the guise of a useful program or library, leading the victim
to download and execute it on their own computer. In par-
ticular, here we assume a case where a script downloaded
from a server is executed on a web browser. Listing 1 is an
example of such a script. This script contains a function that
checks whether the email address has the correct format-
ting, contained within a library distributed by the attacker.
The function secretly sends the email address to an external
server via a code inserted in line 9. In this example, email is
sent directly to the external server, and thus we can easily
see that it contains an attack, but an attacker can cleverly
rewrite the program to conceal the attack in various ways.
The objective of our research is to prevent such information
leakage caused by attack programs without interfering with
normal program execution.
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Listing 2. Example of implicit �ow
1 let y;

2 if (x == 0)

3 y = 0;

4 else

5 y = 1;

2.2 Preventing Information Leakage with DTA

DTA is a method implemented in a language runtime en-
vironment or hardware to detect and prevent a variety of
attacks [44]. The application of DTA to prevent information
leakage has been widely studied [15, 20, 29, 43, 49, 51]. In the
information leakage prevention method using DTA, a �ag
called taint is added to secret data to be protected. The taint
is propagated from input to output during computation to
track the �ow of data with the taint. As a result of the �ow
tracking, data with the taint detected being output to the
outside is identi�ed as a leakage of important information.

Information Flow Control (IFC) is a technique for analyz-
ing information �ow in a program to detect vulnerabilities
and prevent information leakage. Especially for dynamic
languages such as JavaScript, dynamic IFC has been widely
studied due to its dynamic nature [1, 3, 9, 16, 17, 37, 39].

Dynamic IFC analyzes information �ow similarly to DTA.
Dynamic IFC assigns H and L (high and low) security levels
to each variable, similar to taint, and tracks how the security
level of each variable changes with the information �ow.
The label of each variable is propagated from its input to its
output for each operation or �ow, preventing theH level from
leaking out. Since Dynamic IFC performs a similar analysis
to DTA, which is described in detail later, we consider IFC
as part of DTA.

2.3 Tracking Information Flow in DTA

In this section, we divide data �ows into explicit and implicit
�ows and explain how DTA tracks them. An explicit �ow is
a data �ow where there is a direct dependency between data
through assignments or operations. For example, consider
the operation ~ = G + 1. In this operation, by observing the
output value~, one can completely determine the input value
G . In this way, observing the output in explicit �ows enables
us to determine the input value, fully or partially. Thus, in
DTA, if the input value on the explicit �ow is tainted, it is
propagated to the output.

An implicit �ow is a data �ow where information is prop-
agated between data through conditional branches. In an
implicit �ow, there is no explicit dependency between data
through operations or assignments. More speci�cally, in an
implicit �ow, the output variable updates di�erently based
on the input variables in a conditional expression of a branch.
In such a case, information about the input can be obtained
from the conditional expression and the output value. List-
ing 2 presents an example of implicit �ow. In this example,

Listing 3. Example of web application
1 function webApp(password) { // password is tainted

2 if (! isAuthorized(password)) {

3 return false; // Authorization failure

4 }

5 else {

6 let url = "http :// server.com/api?ok";

7 let response = fetchSync(url); // sink point

8 renderHTML(response);

9 return true;

10 }

11 }

by observing the output value ~ after the code executes, one
can determine whether the input G is 0.
If there is an implicit �ow and secret data is used as

the input in the conditional expression, the information
from the secret data can be obtained from the output, as
described above. For this reason, existing DTA-based meth-
ods that propagate the taint in implicit �ows have been
proposed [10, 13, 19, 20]. In the simplest implementation
of taint propagation in implicit �ows, when tainted data is
used in a conditional expression, the taint is propagated to
all variables updated within the then/else statements. For
example, in the Listing 2 example above, if G has a taint,
the taint is propagated to ~. In the next section, we detail
DTA that propagate taint in implicit �ows and discuss their
associated problems.

3 Issue of Dynamic Taint Analysis

In this section, we will discuss in detail the challenges asso-
ciated with taint propagation in implicit �ows, speci�cally
over-tainting and under-tainting."

3.1 Over-tainting

Over-tainting is a phenomenon where taint is unnecessarily
propagated to data that provides no clues for recovering
the original secret data. This can prevent the program from
operating correctly. In particular, over-tainting often occurs
when taint is indiscriminately propagated in implicit �ows.

One such method that causes over-tainting is Dytan [10].
Dytan enables taint propagation in implicit �ows by e�ec-
tively detecting data dependencies through control �ow
graph (CFG) analysis. However, Dytan indiscriminately prop-
agates taint from all inputs in the conditional expression to
all variables updated in the then/else statements, often lead-
ing to over-tainting [13, 20]. Similarly, Dynamic IFC prop-
agates labels to its output in all implicit �ows, resulting in
over-tainting comparable to that caused by Dytan [3].
For example, consider a typical web application such as

Listing 3. The program authenticates itself locally using
the secret information, password. If the authentication suc-
ceeds, the program issues an HTTP request using a speci�c
URL, obtains the information necessary for HTML rendering
from the server, and renders the HTML using this infor-
mation. Through the conditional branch in the second line,
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Listing 4. Example of information leakage through a combi-
nation of branches
1 for (let i=0; i < password.length; i++) {

2 x = password[i]. charCodeAt ();

3 let y = 0;

4 if (x >= 48)

5 y++;

6 if (x <= 57)

7 y++;

8 }

an implicit �ow transfers taint from the password variable
to the url variable, as seen in the sixth line. Propagation
rules such as Dytan and IFC propagate the taint held by
the password to the url in such a case. The fetchSync API
that performs HTTP access is a sink point, and arriving
tainted data prompts DTA to detect a potential information
leakage. However, the server cannot recover the contents of
the password from the transmitted data and it is practically
secure.

As shown in the above example, indiscriminate taint prop-
agation in implicit �ows can hinder server communication
after a branch using tainted data, even if the code is secure.
This makes writing practical programs challenging. Because
conditional branches with secret data are common, Dytan
and IFC frequently result in widespread over-tainting, se-
verely disrupting normal program operations.

3.2 Under-tainting

To overcome the over-tainting issue, existing research [13,
19, 20] has proposed a method to selectively propagate taint
for each conditional branch. These methods heuristically
select branches unlikely to lead to information leakage by
avoiding taint propagation for these branches. In this way,
the existing methods aim to prevent information leakage via
implicit �ows without interfering with the correct operation
of programs not susceptible to attacks.

The existing methods focus on how much the conditional
expression restricts the range of inputs. The more limited the
possible values of the input when the conditional expression
is satis�ed, the easier it is to determine the input based on
the output. In existing selective propagation methods, taint
is propagated only for conditional branches where the range
of inputs is strongly restricted. For example, as mentioned
above, if (G == 0) in line 2 of Listing 2 holds, G can be
uniquely determined as 0 by observing ~. Such a precise
comparison signi�cantly limits the input range, and since
G can be easily determined from ~, the existing methods
propagate the taint in such instances.

However, these existing methods of selective propagation
have the problem of under-tainting, in which necessary parts
of the taint propagation are omitted. Speci�cally, informa-
tion leakage can be performed by combining branches with
weakly restricted inputs.

Listing 4 is an example of a program that allows such
information leakage. If password is secret information and
tainted, taint is propagated by explicit �ow to x. The con-
ditional branches at lines 4 and 6 have implicit �ows that
include tainted values in the conditional expressions, but
each conditional branch has a wide range of possible values
to make the conditional expression true. For this reason, ex-
isting methods assume that the input cannot be identi�ed
from the output in these conditional branches and do not
propagate taint.
However, upon complete execution of this code, it may

be possible to determine the possible value range for each
character in x, i.e., password, by observing y. For example,
if the value of y is 2, the range of possible values of x can
be narrowed down to 48 <= G <= 57, representing the
ASCII digits 0 to 9. This is because while the individual
conditions G >= 48 and G <= 57 each cover a wide range,
their conjunction G >= 48&&G <= 57 signi�cantly narrows
the range. Thus, taint should be propagated to y, and existing
methods that omit this propagation result in under-tainting.

4 Possible Source Count

4.1 Overview

We introduce a Possible Source Count (PSC), which quan-
ti�es the number of identi�able inputs by observing data,
contrasting with binary taint analysis, which determines
whether secret information can be inferred. A smaller PSC
makes it easier to identify the secret data, increasing the risk
of data leakage. For example, a PSC of 1 means the input
is inferable to a single value, indicating high risk upon ob-
servation. Conversely, a PSC of 2128 indicates that inferring
the secret input is practically impossible, indicating safety
upon observation. In short, PSC measures the di�culty of
recovering the original secret from observed data.
Using the example shown in Figure 1, we describe PSC.

The secret information input by the user is called source secret,
and the data output by the program, observable from the
outside, is called public output. Figure 1 shows that a program
may receive �ve possible source secrets (s1 - s5) and produce
two possible public outputs (o1, o2). The program outputs
o1 if s1 through s4 are input, and o2 if s5 is input. Assume

Source secret

Public output

(s1) (s2) (s3) (s4)

(o1) (o2)

(s5)

Figure 1. A relationship between source secrets and public
outputs
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Listing 5. PSC examples
1 // source secret data (32bit integer)

2 x1 = readSource (); // PSC(x1) = 1

3 // binary operation

4 x2 = x1 * 3; // PSC(x2) = 1

5 x3 = x1 & 7; // PSC(x3) = 2^29

6 // if-statement

7 if (x1 == 0) {

8 x4 = 0; // PSC(x4) = 1

9 } else {

10 x4 = 1; // PSC(x4) = 2^32-1

11 }

that an observer knows all these source secret and public
output relationships in advance. Generally, we assume the
relationship between source secrets and public outputs is
known if the observer can read the program source code.
If o1 and o2 are observed, the PSC is as follows:

• When the observer detects o1 as a result of the program
execution, the source secret was one of s1 to s4. In
this case, the PSC for o1, representing the number of
possible source secrets, is 4.

• Conversely, when o2 is observed, the observer can
conclusively determine that the source secret was s5.
Here, the PSC for o2, indicating the uniqueness of the
source secret, is 1.

It should be noted that the PSC is not a static value but
a dynamic one, determined by the public output observed
in a single program execution. In other words, if the input
changes with each execution, a di�erent PSC will be ob-
served. In the given example, the PSC when observing o2 is
smaller than when observing o1, making it riskier to observe
o2

4.2 PSC Calculation

This section describes more concrete examples of PSCs in
program execution, as shown in Listing 5. In the second line
of Listing 5, a 32-bit integer is read as the source secret and
assigned to x1. Since the source secret comprises the secret
data itself, it can be uniquely identi�ed by observing this
data, and thus %(� (x1) is 1.
The PSC for the result of an operation, such as addition

or multiplication, varies depending on the operation type as
follows:

• In line 4 of Listing 5, x1 multiplied by 3 is substituted
into x2. When the observer knows that x2 is the result
of the operation x2 = x1 * 3, then by observing x2,
x1 can also be uniquely identi�ed. Furthermore, since
%(� (x1) is 1, the resulting %(� (x2) is also 1.

• In line 5, the bit-wise AND of x1 and 7 is substituted
into x3.When the observer observes x3, he can identify
the lower 3 bits (7 = 2

3 − 1) of x1, but not the upper 29
bits because they are cleared. As a result, the observer
can identify x1 within 2

29 possibilities, and %(� (x3)

becomes 229.

In an if-statement, the PSC obtained may vary greatly de-
pending on the conditional expression used and the dynamic
execution �ow as follows.

• In line 8, x4 is assigned 0 if x1 == 0. In this case,
%(� (()x4) becomes 1. This is because when an ob-
server observes that x4 is 0, the observer knows that
x1 was 0, allowing x1 to be uniquely identi�ed.

• Conversely, if 1 is assigned to x4 through the else
statement in line 9, then %(� (x4) becomes 232 − 1,
which equals 4294967295. When the observer observes
that x4 is 1, they only know that x1 is not 0. Therefore,
the PSC is the number of all possible values of a 32-bit
integer minus one.

4.3 PSC and Security Risk

In this section, we discuss the values of PSC and the degree of
risk in information leakage using several examples. The mag-
nitude of the observed PSC signi�cantly re�ects the risk level
when information is observed. For example, we often see on
receipts that only the last four digits of a credit card number
are printed, while the other digits are obscured. Although
credit card numbers are very sensitive personal information,
these last four digits are generally not considered to be a
critical secret. When these last four digits are observed by
someone, considering the credit card number has 16 digits
each ranging from 0 to 9, the PSC of this data is 1016−4 = 10

12,
representing a vast number of possibilities. Thus, even if the
last four digits of a credit card number are observed, there
are still 1012 possible combinations, making it di�cult to
precisely identify the complete credit card number.
On the other hand, leaking data with low PSCs is highly

risky. For example, if instead of the last four digits, the last 12
digits of a credit card number are leaked, the PSC of the last
12 digits is 1016−12 = 10, 000. This is particularly concerning
for credit card numbers, as they could potentially be brute-
forced on a website. When the number of possible entries is
narrowed down to just several thousand, it becomes feasible
for an observer to correctly identify the complete credit card
number.

4.4 Problem Analysis with PSC

We consider the issues associated with tainting described in
Section 3 in terms of PSC as follows:

4.4.1 Over-tainting. As described in Section 3, when taint
is propagated indiscriminately across all branches, over-
tainting can occur, disrupting the normal execution of the
program. We found that over-tainting stems from the propa-
gation of taint to safe variables with a large PSC, where it is
impossible to infer the inputs.

Consider the example of a web application shown in List-
ing 3, speci�cally a scenario inwhich the application accesses
an external server on line 7. This access signi�es successful
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password authentication in the local environment to an ex-
ternal server; however, the external server cannot feasibly
recover the password.

For this reason, we can consider its output to be generally
secure; however, a DTA that indiscriminately propagates
taint on all branches regards it as dangerous and prevents
any access to external servers. Speci�cally, if the DTA prop-
agates taint through an implicit �ow from password to url,
the tainted data will be used in a fetchSync operation and
blocked. Nonetheless, given the high PSC of url, deduc-
ing password from it is virtually impossible, access to the
external server is practically secure.

4.4.2 Under-tainting. As described in Section 3, selec-
tively propagating taint according to the heuristics leads to
under-tainting, where information leakage occurs depending
on the combination of branches. This happens because the
DTA, when selectively propagating taint, omits taint propa-
gation if the secret source is considered unidenti�able within
each independent conditional branch. However, by consid-
ering multiple combinations of branches, an observer can
deduce the secret source from the public output. This means
that if the PSC of the public output is very small due to the
combination of branches, the existing DTA may erroneously
omit the propagation of taint.

4.5 Relationship between Taint and PSC

From the above discussion, we conclude that it is necessary
to allow the leakage of data with a so large PSC that the
secret data cannot be recovered in order to allow normal
execution of the program, while it is necessary to properly
detect information leakage of data that results in having a
small PSC by passing through multiple �ows.
We consider the PSC to be an extension of taint. When

taint is 0 (= the data from which no secret information can
be recovered), the PSC for that data has a maximum value
of 2{bit width of the source secret} (= observing the data does not
identify the secret information at all). On the other hand,
when taint is 1 (= the data uniquely identi�es the secret
information), its PSC has a minimum value of 1 (= observing
the data can uniquely identify the secret information).

Actual applications have many variables with the PSC be-
tween the minimum and maximum. For example, although
a variable with a PSC of ({maximum PSC}-1) is data that is
only slightly related to the source secret, its PSC is almost
the same as the maximum value, and the observer cannot
identify the source secret if the bit width of the source secret
is su�ciently large. However, taint, being binary, cannot rep-
resent such data well. Even for data with a PSC su�ciently
large that the secret data cannot be recovered, existing meth-
ods that propagate at all branches set taint to 1, causing
over-tainting. On the other hand, the method that selectively
sets taint to 0 at conditional branches, allows leakage of the
secret information even though the public output has a small

PSC in some cases. In other words, over-tainting and under-
tainting are caused by rounding taint to 1 or 0 because taint
is binary and cannot express the size of the PSC.

5 Dynamic Possible Source Count Analysis

We propose the Dynamic Possible source Count Analysis
(DPCA), a method that propagates and tracks PSCs. DPCA
monitors how secret sources are utilized in computations
across di�erent operations and branches. It then estimates
the PSC of public outputs at the sink point, using this data
to assess the associated risk levels.

5.1 Naive Method

As mentioned above, PSC quanti�es the number of possible
secret sources that can be identi�ed by observing data. A
straightforward method to determine PSC involves inputting
all possible input patterns into a program, executing it, and
creating a brute-force map of inputs to outputs. By compar-
ing this map to the actual output of the program, the PSC
for that output can be determined. For example, in the case
of Figure 1, we can create a map by recording the outputs
for all inputs from s1 to s5, and the PSC can be computed
from the map when o1 or o2 is actually observed.

However, a brute-force method that operates with all pos-
sible inputs is impractical. Therefore, we propose a more
lightweight method that dynamically computes the PSC for
outputs during a speci�c execution, based on their values
and the control �ow paths they traverse. Speci�cally, DPCA
actively tracks both explicit and implicit data �ows involv-
ing computations with secret sources and computes the PSC
based on this tracked �ow information when the data is
output. Further details of this method are described below.

5.2 Possible Source Count Tracking

5.2.1 Tracking Symbol and Path Constraint. DPCA
dynamically computes and records the symbol (sym) and
path constraint (pc) of each variable in the program when-
ever it is updated. These terms are almost synonymous with
symbol and path constraint in symbolic execution. However,
in DPCA, only secret sources are represented as symbols,
while all other variables in the program are recorded with
the speci�c values used in their computations.
We use Listing 6 to illustrate an example of sym and pc

tracking. The detailed rules are described in Section 5.4.

Listing 6. Examples of sym and pc
1 let secret = read();

2 let x = secret + 1;

3 let y = 1;

4 let z = y;

5 if (secret > 1)

6 y = 2;

7 if (secret < 4)

8 y++;
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Listing 7. PSC Computation
1 let psc = 0;

2 for (let i = min(secret); i < max(secret); i++) {

3 if (apply(sym ,i) == public_output && apply(pc,i))

4 psc++;

5 }

• In the �rst line, a variable secret is used to read the
source secret. At this assignment, sym: secret is
saved. Since there is no speci�c path constraint (pc)
here, pc: true is preserved. In cases where pc is not
restricted, further mentions of pc are omitted.

• In the second line, the value 1 is added to secret, and
x stores sym: (secret + 1). This operation, which
is an example of an explicit �ow, updates the sym
accordingly.

• In the third and fourth lines, the sym for y and z are
updated to sym: 1, indicating that these variables
are not directly related to the source secret. For such
variables, runtime values are directly assigned, which
simpli�es the storage of sym and pc and reduces the
computational overhead.

• Due to the implicit �ow in line �ve, y now stores sym:
2, pc: (secret > 1).

• Each time it encounters an implicit �ow, the pc is com-
bined using an AND operation. In line 8, y updates to
sym: 3, pc: (secret > 1 AND secret < 4).

DPCA is a dynamic method, and unlike static symbolic
execution, sym and pc use actual values obtained dynami-
cally for variables other than the source secret. These values
re�ect the speci�c conditions and inputs of the current exe-
cution, along with the constraints of the path traversed. This
approach allows PSC computation to be performed in a more
lightweight manner.

5.2.2 PSC Computation. Listing 7 shows a naive way
to compute PSC using sym and pc of the public output, as
previously described. min(secret) and max(secret) indi-
cate the minimum and maximum values that can be taken
by secret. For example, if the source secret is an 8-bit in-
teger, the minimum and maximum values would be -128 to
127, respectively. public_output is the value of the public
output that was actually observed. apply(sym,i) computes
the result of substituting the value of i for secret in the ex-
pression stored in sym. For instance, if sym: (secret + 1),
then apply(sym,2) would yield 3. apply(pc,i) similarly
returns true or false when i is substituted. The psc obtained
by executing this algorithm re�ects the PSC that the public
output represents.

This algorithm computes the number of all possible source
secrets that satisfy the constraints imposed by both explicit
and implicit �ows which determine the public output, which
is equivalent to PSC. Although this algorithm is signi�cantly

less computationally expensive than running the entire pro-
gram, it may still be computationally expensive to try all
possible source secrets.

We introduce several heuristics to obtain a PSC in a light-
weight manner. Speci�cally, a pc is analyzed to reduce the
number of candidate source secrets that need to be evaluated.
For example, if a pc includes a matching comparison such
as {secret == 0}, only one possible value for the secret
satis�es it. If a pc involves a range, such as {secret > 0 &&

secret <= 10}, we determine the lower (1) and upper (10)
limits for secret. Our implementation then computes the
number of satisfying values as 10 by subtracting the lower
limit from the upper. By employing heuristics for such con-
ditional expressions, a PSC can be computed in most cases
without needing to execute the entire for-loop.

5.2.3 Discussion on Errors. The PSC computed by the
algorithm described may di�er from that obtained through
brute force execution of the entire program, potentially lead-
ing to an overestimated risk. This is because the algorithm
assumes that an observer can uniquely identify the path
taken through the program based on the output value, sim-
plifying the analysis to avoid complexity.
For instance, in the program if(sec==0) out=0; else

out=1;, observing out directly indicates whether the ’if’ or
’else’ branch was executed, revealing that sec is 0 when out

is 0. Conversely, in the scenario if(sec==0) out=0; else

out=0;, observing out does not disclose the value of sec, as
it remains 0 regardless of the branch taken.
DPCA operates under the assumption that di�erent ex-

ecution paths assign di�erent values to variables. This as-
sumption can lead DPCA to compute a PSC that is lower
than the actual PSC obtained by brute force, suggesting a
higher risk of information leakage than is truly present and
potentially causing a false positive. However, this does not
result in false negatives. The practice of assigning identical
values in di�erent paths is rare, implying that false positives
are seldom a concern in subsequent evaluations.

5.3 Information Leakage Detection

If a small PSC is computed for data at a sink point, DPCA
interprets this as an indication of information leakage, sug-
gesting that the source secret could potentially be inferred.
In such cases, a threshold value for detecting information
leakage should be set based on the characteristics of the
source secret. Typically, there is a noticeable discrepancy in
PSC values between scenarios where information is leaked
and where it is secure. Thus, we can establish a relatively
high threshold value for PSC to enhance safety without in-
terfering with correct program operation. Details on the
observed PSCs and their implications are further discussed
in Section 6.
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Table 1. Propagation rules within explicit �ows.

Operation Example Propagation

source secret sec_input() B~< : (sec) ?2 : ()

internal data 1 B~< : (1) ?2 : ()

assignment y = x B~< : (x.sym) ?2 : (x.pc)

unary operation -x B~< : (-(x.sym)) ?2 : (x.pc)

binary operation x1 + x2 B~< : ((x1.sym) + (x2.sym))

?2 : ((x1.pc)&&(x2.pc))

Table 2. Propagation rules within implicit �ows.

Operation Example Propagation

if-statement if(x) {...} B~< : ()

?2 : (x.sym=={x value})

array access x = table[key] B~< : ((table[key].sym))

?2 : ((table[key].pc)&&

(key.pc)&&

(key.sym == {key value}))

property access x = Obj.key B~< : (Obj.key) ?2 : (Obj.pc)

5.4 Detailed Tracking Rules

Section 5.2 outlined the basic methods for tracking sym and
pc; this section describes their more detailed tracking rules.

5.4.1 Explicit Flows. Propagation rules for sym and pc
in explicit �ows are summarized in Table 1. In these rules,
x.sym represents the sym associated with variable x. Notably,
only secret sources are symbolized, while all other variables
are recorded with the speci�c values used during program
execution. These rules are applied to all statements involving
explicit �ows. Examples illustrating the application of these
rules in actual programs can be found in Section 6.

5.4.2 Implicit Flows. Table 2 summarizes the propagation
rules for three typical implicit �ows. In these �ows, each pc
is systematically combined using an AND operation with
the conditional expressions it encounters, as described in
Section 5.2.

If-statement: As illustrated in the table, within an if-
statement, the sym of the conditional expression is added as
the pc of the variable assigned in the conditional clause. The
term {x value} in the table refers to the runtime value of x.
For example, consider the expression if(x){y=1}, where x is
a boolean variable assumed to be true. Suppose x has {sym:
(secret<0)} and the value (true) arises from an explicit
�ow involving a comparison with secret. In this scenario, y
would be assigned {sym: (1), pc: ((secret<0)==true)}.
This stores the comparison between the sym of x and its
actual value (true) in the pc of y. If x were false, then {pc:

((secret<0)==false)} would be recorded as the pc for y.
Typically, the conditionals in if-statements are evaluated
as boolean variables following explicit �ow rules, and the
propagation rules described in this section are then applied.

Array Access: In array access, both the retrieved elements
and the key determine the sym and pc of the output. In the
table, {key value} denotes the runtime value of key. The
rule {(key.sym == {key value})} in the pc re�ects an
implicit �ow, where the value of key indirectly determines
the output when the array is accessed with key. For instance,
if key has {sym: secret} and its runtime value is 2, then
{sym: (secret==2)} is incorporated into the output PC. If
key does not contain any source secret in its sym, then the
condition {(key.sym =={key value})} is invariably true
and can be omitted.

Property Access: In JavaScript, property accesses, such
as accessing the length of an object, are recorded directly in
the sym and used in PSC computation. For example, in the
expression y = x.length, if x has a sym and pc represented
as {sym: secret, pc: ()}, then the sym and pc for y
become {sym: secret.length, pc: ()}. This indicates
that the sym for y directly inherits secret appended with
.length, re�ecting the property access.

An analysis of the control �ow graph (CFG) is essential for
tracking implicit �ows, as it allows for the identi�cation of
each conditional branch’s scope of in�uence, which is crucial
for applying the rules described. DPCA is implemented on a
JavaScript code instrumentation platform, details of which
are provided in Section 6. The CFG analysis is performed by
this infrastructure, facilitating the tracking of control and
data dependencies.

6 Evaluation

6.1 Evaluation Methodology

We implemented DPCA as a JavaScript framework designed
to process JavaScript programs by taking them as input
and integrating PSC tracking directly into the application’s
source code through instrumentation. For code instrumenta-
tion, we utilize Linvail [8], a platform suited for implement-
ing shadow executions. Shadow executions involve tagging
runtime values with analysis-speci�c data, enabling DPCA to
dynamically and accurately track the �ow of secrets within
the program.

Linvail is capable of inserting individual traps for various
JavaScript statements—such as function calls, if-statements,
and binary operations—and can execute arbitrary processing
within these traps. We have integrated the PSC tracking
process, described in the previous section, into these traps
using Linvail. DPCA stores sym and pc for each variable
managed by Linvail and updates these attributes within the
traps as part of the PSC tracking process.
We implemented two functions, tagAsSource(x) and

tagAsSink(x) for our evaluation. tagAsSource(x) is de-
signed to receive a variable that holds a source secret, signal-
ing to DPCA to manage and track it as such. tagAsSink(x)
designates its input as a sink point. For instance, speci-
fying tagAsSink(console.log) instructs DPCA to treat
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console.log as a sink point, thereby enabling the frame-
work to perform a PSC check on any data input to the speci-
�ed function.
As with DPCA, we implement Dytan [10], DTA++ [20],

and GIFC [39] in Linvail to compare detection accuracy and
performance with DPCA.

6.2 Benchmarks

For our evaluation, we use the following benchmarks:

• Four attack programs from AntiTaintDroid [36]
• Five attack programs from GIFC [39]
• Four benign programs:
– Program implementing password authorization
– Program implementing password length validation
– Program implementing password equivalence check
– Program implementing device ID check

AntiTaintDroid [36] comprises a set of benchmark pro-
grams designed to test taint propagation on Android devices.
We have ported the programs related to implicit �ow to
JavaScript. Additionally, we have selected �ve IFC accuracy
benchmarks from GIFC [39]. We show the �ve results within
32 benchmarks since they uniformly exhibit the same out-
comes in this evaluation. Both AntiTaintDroid and GIFC
benchmarks are designed to test for information leakage,
speci�cally measuring the ability of DPCA and other exist-
ing tools to correctly detect such leaks.

On the other hand, we prepared four benign programs that
do not leak information to test whether a web application
can operate correctly with information leakage detection
tools. These benign programs are presented from Listings 8
to 11. Each program represents a segment of code typically
used in typical web applications that manage secret informa-
tion. While these programs handle secret information, the
output they produce is related to but insu�cient to recon-
struct the original secrets. Therefore, they qualify as benign
programs that do not leak secret information. These bench-
marks are used to verify whether the execution terminates
correctly without any false detection of information leakage.
Both programs use the strings ’temp1234’ and ’temp0123’ as
source secrets in cases involving two distinct inputs. These
source secrets, provided at runtime, remain unobserved by
attackers.

6.3 Detection Accuracy

Table 2 presents the taint, label, and PSC attached to the pub-
lic output by existing methods (DTA++, Dytan, and GIFC)
and the proposed method (DPCA). The term “labeled” in
GIFC has the samemeaning as “tainted” inDTA. The columns
labeled ’sym, pc’ list the symbols (sym) and path constraints
(pc) for variables at the sink point, focusing only on the
parts vital for PSC computation. PSC is derived using the
method described in the previous section. For clarity, outputs
that were not tainted/labeled despite potential information

Listing 8. passAuthorization: Program with password au-
thorization
1 tagAsSink(fetch);

2 let pass = tagAsSource(pass);

3 function is_authorized(pwd) {

4 let cachedPass = null;

5 let cookies = document.cookie;

6 let cookiesArray = cookies.split(';');

7 for(let c of cookiesArray){

8 let cArray = c.split('=');

9 if(cArray [0]. indexOf('pass') > -1){

10 cachedPass = decodeURIComponent(cArray [1]);

11 }

12 }

13 return (cachedPass == pwd);

14 }

15
16 if (! is_authorized(pass)) {

17 return;

18 }

19 let url = "http :// server.com/api?ok";

20 fetch(url).then(response => {

21 return response.json();

22 })

Listing 9. passLenCheck: Program with password length
validation
1 tagAsSink(console.log);

2 let pass = tagAsSource(pass);

3 let str;

4 if (pass.length >= 8) {

5 str = "valid password!"

6 } else {

7 str = "invalid password"

8 }

9 console.log(str);

Listing 10. passEqCheck: Program with password equiva-
lence check
1 tagAsSink(console.log);

2 let pass = tagAsSource(pass1);

3 let confirm = tagAsSource(pass2);

4 function CheckPassword(pass , confirm){

5 if(pass != confirm){

6 return "Input values do not match";

7 }

8 return "Input values match";

9 }

10 console.log(CheckPassword(pass , confirm));

Listing 11. deviceIdCheck: Program with deviceID check
1 tagAsSink(fetch);

2 let cachedId = tagAsSource(cachedId);

3 let url = "http :// server.com/api?ok";

4 navigator.mediaDevices

5 .enumerateDevices ()

6 .then(( devices) => {

7 devices.forEach (( device) => {

8 let id = tagAsSource(device.deviceId);

9 if (id === cachedId)

10 fetch(url);

11 });

12 })

13 .catch ((err) => {

14 console.log(`${err.name}: ${err.message}`);

15 });

16 }

leakage are marked with (FN), and outputs that were taint-
ed/labeled without intended leakage are marked with (FP).
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Figure 2. Detection results. FN: False negative, which means
that a secret source leaks to the public output. FP: False
positive, which means that a benign program is incorrectly
detected as an information leakage. sym, pc: symbol (sym)
and path constraint (pc) observed at the sink point (only the
key details are described here for simplicity).

The result shows that DPCA computes very large PSCs
for the attack programs and small PSCs for the benign pro-
grams. Comparing the PSCs of the columns of DPCA, there
is a large di�erence from 1 for the attack programs to 2

64

for the benign programs. This means that DPCA is able to
correctly detect whether secret information is leaked or not
in all cases, no matter which threshold from 1 to 2

64 was
selected in this evaluation. As observed in this experiment,
since there is a large di�erence in the computed PSC be-
tween attack programs and benign programs, it is desirable
to set a threshold with a somewhat large PSC (e.g., 232 in this
experiment), taking safety into account, and use DPCA as
a warning of danger. Note that the threshold of PSC to be
detected as information leakage is not universal and should
be considered depending on the nature of the target pro-
gram and the importance of the source secret as described
in Section. 5.2.
We discuss the results of the attack programs and the

benign program in detail below.

Listing 12. countToTrick: Program to leak information via
for-loop
1 tagAsSink(console.log)

2 let pass = tagAsSource('temp1234 ')

3 let out = "";

4 for (let i = 0; i < pass.length; i++) {

5 let y = 0;

6 let z = pass[i]. charCodeAt ();

7 for (let j=0; j<z; j++) {

8 y = y + 1;

9 }

10 out = out + String.fromCharCode(y);

11 }

12 console.log(out);

A�ack Programs. Attack programs (AntiTaintDroid and
GIFC benchmarks) are programs that intend to leak the secret
information in this evaluation. They send the source secret to
the sink point via various implicit �ows and aim to be leaked
as public output. Therefore, information leak detection tools
must correctly detect the public output of such programs as
information leakage.
DPCA shows a very small PSC (=1) for all attack pro-

grams. The PSC of 1 means that observing the public output
uniquely identi�es the source secret, which is very danger-
ous because it is the same as the source secret being leaked to
the outside world as it is. Therefore, DPCA successfully de-
tects the public outputs with such small PSCs as information
leaks.
Dytan and GIFC also succeeded in detecting attack pro-

grams. Since they propagate taints in all implicit �ows, false
negatives are unlikely to occur. On the other hand, DTA++
fails to detect attacks in some programs. This is because
DTA++ selectively propagates taints in implicit �ows, taking
practicality into account.

For example, countToTrick is one of the attack programs.
It uses a for-loop to leak secret data to the outside world.
Listing 12 is a part of countToTrick. It converts the secret
data into byte value and indirectly propagates the secret data
to ~ by going through the for-loop for the number of times
of the value. This for-loop checks the conditional branch
(8 < E0;) to determine whether to exit the loop. However,
as the possible values of this conditional expression are not
strongly limited, the propagation rule of DTA++ does not
allow taint propagation in the for-loop, which results in
false negatives and allows information leakage. Since Dytan
and GIFC propagate taints in all branches, they can detect
information leakage in this program.
DPCA can accurately computes the PSC by tracking the

conditional expression even in for-loop. Listing 12 converts
the for-loop conditional expression (j<z) into an expres-
sion with only the source secret as a variable (secret) and
stores it in path constraint (pc). For example, when i=0 and

j=0, the sym obtained from j<z is {0<secret[0]} and pc is
{0<secret.length}. This is derived from the �ow tracking
rule of binary operations in DPCA, {sym:(j.sym)<(z.sym)}
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and {pc:(j.pc)&&(z.pc)}. Since z extracts the index of 0
from pass, which is the source secret, at line 6, it has {sym:
secret[0]}. As j is newly de�ned at line 7, it has no source
secret in its sym ({sym: 0}). Therefore, the sym obtained
from (j<z) is {0<secret[0]}. And from the tracking rule
of if-statement, {0<secret[0]} is added to pc of y in line
8. By looping around to the end condition of the for-loop
in this way, y �nally contains {pc: (0<secret.length &&

0<secret[0] && 1<secret[0] && .... 115<secret[0]

&& 116>=secret[0])}. Since the pc before and after the end
condition of the loop {115<secret[0] && 116>=secret[0]}

can be transformed into {secret[0] ==116}, DPCA com-
putes the value satisfying this as 1 (PSC=1). Thus, DPCA
accurately computes PSC by tracking sym and pc in attack
programs, and succeeds in detecting information leakage.

Benign Programs. Benign programs are generic web ap-
plications that are not intended to leak information in this
evaluation. Although they use a source secret, the source se-
cret cannot be recovered even if the public output sent to the
sink point is observed. Therefore, information leak detection
tools are required to detect that the public output of such
programs is not information leakage and not to prevent the
execution of the programs.
DPCA shows a very large PSC (=264) for all benign pro-

grams. This means that the source secret cannot be identi�ed
even if the public output is observed, in other words, no infor-
mation leakage will occur. Therefore, DPCA does not detect
public outputs with such a large PSC as information leakage
and does not interfere with normal program execution.
Most of the existing methods generate false positives in

benign programs. In particular, since Dytan and GIFC propa-
gate taint in all implicit �ows, if there is a conditional branch
that touches the source secret even if it does not lead to
information leakage, the taint is propagated to many of the
subsequent processes, and false positives are likely to occur.
For example, passEqCheck shown in Listing 10 is a pro-

gram that asks users to enter their passwords twice and
checks their equivalence, which is common in web applica-
tions. This benchmark registers two passwords, pass and
confirm, as source secrets, and displays their comparison
results. Since the conditional expression, (if (pass ! =

confirm)) in line 5 touches source secrets, Dytan and GIFC
propagate taint to the subsequent process. Then the string of
the comparison result has taint and its out�ow is detected as
an information leakage. In reality, however, the source secret
cannot be recovered from the comparison result because
both source secret values are unveri�able by the observer.
Therefore, the attack detection is false positive. Based on
the propagation rules, as DTA++ does not propagate taint
from a conditional expression of if (pass ! = confirm),
it does not cause a false positive in passEqCheck. However, it
causes false positives in other benign programs. Its selective

Table 3. Performance Results (ms)

Benchmarks Baseline DTA++ Dytan GIFC DPCA

24 43 1802 1294 1379 2953

AES 27 1773 1293 1307 3758

FFT 10 37 37 37 38

FT 3 31 29 30 33

HN 16 2404 2236 2259 5790

KS 22 1981 1871 1929 3611

LZW 13 85 74 80 99

MD5 9 92 88 89 115

propagation method may not be su�cient for general web
applications.

DPCA can accurately compute the PSC in such a program
by tracking the conditional expressions. In line 5 of List-
ing 10, (if (pass ! = confirm)), since pass and confirm
have di�erent source secrets, the pc from which the string
in line 6 is obtained is {pc: (sec1 != sec2)} (sec1 is the
symbol of pass, and sec2 is the symbol of confirm). Apply-
ing this formula to the PSC computation program yields the
following:

Listing 13. PSC computation for passEqCheck
1 let psc = 0;

2 for (let sec1 = 0; sec1 < 2^64; sec1 ++) {

3 for (let sec2 = 0; sec2 < 2^64; sec2 ++) {

4 if (sec1 === sec2)

5 psc++; // psc = 2^64

6 }

7 }

DPCA can express with PSC that the source secret can-
not be recovered from the result of the comparison if there
are two source secrets. Therefore, it does not generate a
false positive and does not interfere with normal program
execution.

6.4 Performance

We conducted performance benchmarks to measure the im-
pact of DPCA on the performance of the original application
(the baseline) and compare it with DTA++, Dytan, and GIFC
in this regard. We use 8 benchmarks that are used in [2, 39].
Table. 3 shows the execution time in milliseconds to run

the performance benchmarks. The numbers are the average
time of ten executions. Since both the existing method and
DPCA are implemented on top of the code instrumentation
tools, the insertion of instructions for the �ow tracking has
a performance impact. DPCA stores sym and pc in each
variable for PSC computation and updates them for each
instruction, and also computes PSC at the sink point, which
requires 1.1x to 2.9x overhead compared to existing meth-
ods. In particular, AES has the highest PSC overhead due
to its longer code length, more traps to be inserted, and the
management of a large number of arrays.

108



MPLR ’24, September 19, 2024, Vienna, Austria Eri Ogawa, Tetsuro Yamazaki, and Ryota Shioya

However, the implementation of DPCA in this experiment
is naive, and there is room for optimization. We also believe
that a direct implementation in the language runtime, rather
than in the code instrumentation tool, would signi�cantly
speed up the process. Speeding up DPCA is our future work.

7 Related Work

DTA is originally a method to prevent attacks that exploit
program vulnerabilities such as SQL injection and cross-site
scripting [10–12, 18, 22, 23, 25, 26, 28, 30–33, 44, 45, 47, 48, 50].
To detect unknown vulnerabilities in a program, DTA assigns
the taint to untrusted external inputs and propagates the
taint according to the data �ow. We check whether the data
is tainted in the parts that perform important operations that
a�ect the system, such as the SQL engine and the input part
of the �le API. If the taint is found, it is assumed that an
attack has been inserted from the outside, and the program
can be stopped to prevent the attack.
DTA methods for information leakage prevention have

been widely studied, but most of them do not consider the
implicit �ow [6, 7, 11, 14, 17, 21, 24, 34, 40, 46]. In addition to
the aforementioned Dytan [10] and DTA++ [20], there are
also PIFT [52] methods that consider taint propagation in
implicit �ows. PIFT proposes a lightweight DTA method to
prevent information leakage in a mobile environment. PIFT
focuses on the temporal locality from the time a value is
loaded from memory to the time it is stored to e�ciently
track the data �ow including implicit �ows. However, PIFT
has an issue in terms of tracking accuracy.
Especially due to the recent increase in injection attacks

for web applications, many taint analysis frameworks for
script languages are proposed [22, 25, 28, 45, 47, 48]. CSSE [32]
and Phan [28] are taint analysis frameworks built on PHP
to detect vulnerabilities in web applications. Vogt et al. [47]
built a taint tracking system on top of a JavaScript VM to
prevent cross-site scripting (XSS) attacks. JSBAF [48] is also
a taint analysis framework for JavaScript that combines dy-
namic and static analysis to �nd vulnerabilities in web appli-
cations.
IFC (Information Flow Control) is a method of detect-

ing vulnerabilities and preventing information leaks by an-
alyzing information �ow and enforcing compliance with
de�ned information �ow policies. Especially in JavaScript,
dynamic IFC has been widely studied due to its dynamic
nature [1, 3, 9, 16, 17, 37, 39]. Dynamic IFC assigns H and L
(high and low) security levels to each variable and monitors
how the security level of each variable changes to prevent the
H level from being leaked to the outside world. Flowmonitor-
ing includes implicit �ows. Several dynamic IFC techniques
introduce a P (partially leaked) label in addition to H/L to
monitor implicit �ows. However, as we discussed before, dy-
namic IFC can cause false positives and stop the execution
of safe programs that include implicit �ows [3].

Quantitative Information Flow (QIF) is an analytical tech-
nique to calculate the amount of con�dential information
leaked in the output data of a system [4, 27, 35, 41]. QIF
models the correspondence between the output which an
attacker can observe and secret information as a communi-
cation channel in information theory. The method computes
entropy to represent the amount of secret information in
the output. The computation of the amount of information
leaked from the program can be done automatically by gen-
erating its state transition diagram (discrete-time Markov
chain). QIF can identify information leakage in a program,
including implicit �ow if the entire program is analyzed ac-
curately. However, there are issues such as state explosion
when calculating the state transition diagram for a large
program. In addition, static information leakage which QIF
deals with and dynamic leakage have di�erent meanings as
discussed in [4]. Under the assumption that an attacker has
no prior knowledge of secret information and attempts to
leak secret information by repeating many trials against the
attack target, the static information leakage discussed in QIF
is e�ective. On the other hand, this paper focuses on the case
where an attacker identi�es secret information in a program
that is input by a good user, based only on the contents of
the program and the observed values of the public output.
In this case, the source secret is not a random value since a
good user tries to input the correct secret information. Un-
der these assumptions, it is more appropriate to consider
dynamic leakage rather than static information leakage as
assumed by QIF [4].

8 Conclusion

We introduced the PSC, a metric that quanti�es how many
secrets can be identi�ed by observed data, and proposed
DPCA which tracks this metric. DPCA assesses the PSC of
data as it reaches a sink point, e�ectively distinguishing
outputs that are practically secure from those that pose a
security threat. We implemented DPCA on a JavaScript code
instrumentation platform and demonstrated its capability to
evaluate programs more accurately than existing DTA meth-
ods, which often fail to detect information leakage properly.

One of our future works is the optimization of DPCA for
obtaining a PSC using model counting. Model counting, also
known as Sharp-SAT, involves determining the number of
variable combinations that satisfy a given boolean formula.
In this context, PSC can be computed by applying model
counting to a conditional formula composed of sym and pc.
This approach is expected to be more comprehensive and
e�cient, particularly in handling complex conditions.

Acknowledgement

This work was supported by JST PRESTO JPMJPR21P5.

109



Dynamic Possible Source Count Analysis for Data Leakage Prevention MPLR ’24, September 19, 2024, Vienna, Austria

References
[1] Thomas Austin and Cormac Flanagan. 2012. Multiple Facets for

Dynamic Information Flow. In Proceedings of the 39th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

Vol. 47. 165–178. h�ps://doi.org/10.1145/2103621.2103677

[2] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Ham-

mer. 2014. Information Flow Control in WebKit’s JavaScript Bytecode.

In Principles of Security and Trust, Martín Abadi and Steve Kremer

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 159–178.

[3] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Ham-

mer. 2021. Permissive runtime information �ow control in the pres-

ence of exceptions. Journal of Computer Security 29 (03 2021), 1–41.

h�ps://doi.org/10.3233/JCS-211385

[4] Nataliia Bielova. 2016. Short Paper: Dynamic leakage: A Need for a

NewQuantitative Information FlowMeasure. In Proceedings of the 2016

ACM Workshop on Programming Languages and Analysis for Security

(Vienna, Austria) (PLAS ’16). Association for Computing Machinery,

New York, NY, USA, 83–88. h�ps://doi.org/10.1145/2993600.2993607

[5] Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. 2008. On the Limits

of Information Flow Techniques for Malware Analysis and Contain-

ment. In Proceedings of the 5th international conference on Detection

of Intrusions and Malware, and Vulnerability Assessment, Vol. 5137.

143–163.

[6] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncover-

ing Information Leakage from Browser Extensions. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications

Security. 1687–1700.

[7] Yu-Yuan Chen, Pramod A. Jamkhedkar, and Ruby B. Lee. 2012. A

Software-Hardware Architecture for Self-Protecting Data. In Proceed-

ings of the 2012 ACM Conference on Computer and Communications

Security (CCS ’12). 14–27. h�ps://doi.org/10.1145/2382196.2382201

[8] Laurent Christophe, Elisa Gonzalez Boix, Wolfgang De Meuter, and

Coen De Roover. 2016. Linvail: A General-Purpose Platform for

Shadow Execution of JavaScript. In Proceedings of the IEEE 23rd Inter-

national Conference on Software Analysis, Evolution, and Reengineering

(SANER), Vol. 1. 260–270. h�ps://doi.org/10.1109/SANER.2016.91

[9] Andrey Chudnov and David Naumann. 2015. Inlined Information Flow

Monitoring for JavaScript. In Proceedings of the 22nd ACM SIGSAC Con-

ference on Computer and Communications Security (Denver, Colorado,

USA) (CCS ’15). 629–643. h�ps://doi.org/10.1145/2810103.2813684

[10] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A

Generic Dynamic Taint Analysis Framework. In Proceedings of the

International Symposium on Software Testing and Analysis (ISSTA ’07).

[11] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2007. Raksha:

A Flexible Information Flow Architecture for Software Security. In

Proceedings of the 34th Annual International Symposium on Computer

Architecture (ISCA ’07).

[12] Ali Davanian, Zhenxiao Qi, Yu Qu, and Heng Yin. 2019. DECAF++:

Elastic Whole-System Dynamic Taint Analysis. In 22nd International

Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019).

USENIX Association, 31–45.

[13] Leandro S. de Araújo, Leandro A. J. Marzulo, Tiago A. O. Alves, Felipe

M. G. França, Israel Koren, and Sandip Kundu. 2020. Building a Portable

Deeply-Nested Implicit Information Flow Tracking. In Proceedings of

the 17th ACM International Conference on Computing Frontiers (CF ’20).

[14] Daniel Y. Deng, Daniel Lo, Greg Malysa, Skyler Schneider, and G. Ed-

ward Suh. 2010. Flexible and E�cient Instruction-Grained Run-Time

Monitoring Using On-Chip Recon�gurable Fabric. In Proceedings of

the 2010 43rd Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO ’43). 137–148.

[15] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn

Song. 2007. Dynamic Spyware Analysis. In USENIX Annual Technical

Conference on Proceedings of the USENIX Annual Technical Conference

(ATC’07). Article 18, 14 pages.

[16] Willem Groef, Dominique Devriese, Nick Nikiforakis, and Frank

Piessens. 2012. FlowFox: A web browser with �exible and precise

information �ow control. Proceedings of the ACM Conference on Com-

puter and Communications Security, 748–759. h�ps://doi.org/10.1145/

2382196.2382275

[17] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld.

2014. JSFlow: Tracking Information Flow in JavaScript and Its APIs. In

Proceedings of the 29th Annual ACM Symposium on Applied Computing.

1663–1671.

[18] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu,

Xujiewen Wang, Rundong Zhou, and Heng Yin. 2014. Make It Work,

Make It Right, Make It Fast: Building a Platform-Neutral Whole-

System Dynamic Binary Analysis Platform. In Proceedings of the 2014

International Symposium on Software Testing and Analysis. 248–258.

h�ps://doi.org/10.1145/2610384.2610407

[19] Byeongho Kang, TaeGuen Kim, BooJoong Kang, Eul Gyu Im, and

Minsoo Ryu. 2014. TASEL: Dynamic Taint Analysis with Selective

Control Dependency. In Proceedings of the Conference on Research in

Adaptive and Convergent Systems (RACS ’14). 272–277. h�ps://doi.org/

10.1145/2663761.2664219

[20] Min Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.

2011. DTA++: Dynamic Taint Analysis with Targeted Control-Flow

Propagation. In Proceedings of the Network and Distributed System

Security Symposium (NDSS ’11).

[21] Hari Kannan, Michael Dalton, and Christos Kozyrakis. 2009. De-

coupling Dynamic Information Flow Tracking with a dedicated co-

processor. In Proceedings of the IEEE/IFIP International Conference on

Dependable Systems Networks. 105–114. h�ps://doi.org/10.1109/DSN.

2009.5270347

[22] Rezwana Karim, Frank Tip, Alena Sochurkova, and Koushik Sen. 2020.

Platform-Independent Dynamic Taint Analysis for JavaScript. IEEE

Transactions on Software Engineering 46 (2020), 1364–1379.

[23] Jingfei Kong, Cli� C. Zou, and Huiyang Zhou. 2006. Improving

Software Security via Runtime Instruction-Level Taint Checking. In

Proceedings of the 1st Workshop on Architectural and System Sup-

port for Improving Software Dependability (ASID ’06). 18–24. h�ps:

//doi.org/10.1145/1181309.1181313

[24] Jinyong Lee, Ingoo Heo, Yongje Lee, and Yunheung Paek. 2015. E�-

cient Dynamic Information Flow Tracking on a Processor with Core

Debug Interface. In Proceedings of the 52nd Annual Design Automation

Conference (DAC ’15). Article 79, 6 pages. h�ps://doi.org/10.1145/

2744769.2744830

[25] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 Million Flows

Later: Large-Scale Detection of DOM-Based XSS. In Proceedings of

the 2013 ACM SIGSAC Conference on Computer and Communications

Security. 1193–1204.

[26] K. Li, R. Shioya, M. Goshima, and S. Sakai. 2009. String-Wise Infor-

mation Flow Tracking against Script Injection Attacks. In Proceedings

of the 15th IEEE Paci�c Rim International Symposium on Dependable

Computing.

[27] Stephen McCamant and Michael D. Ernst. 2008. Quantitative Informa-

tion Flow as Network Flow Capacity. SIGPLAN Not. 43, 6 (jun 2008),

193–205. h�ps://doi.org/10.1145/1379022.1375606

[28] MattiaMonga, Roberto Paleari, and Emanuele Passerini. 2009. A hybrid

analysis framework for detecting web application vulnerabilities. In

2009 ICSE Workshop on Software Engineering for Secure Systems. 25–32.

h�ps://doi.org/10.1109/IWSESS.2009.5068455

[29] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Exploring

Multiple Execution Paths for Malware Analysis. In Proceedings of the

IEEE Symposium on Security and Privacy (SP ’07).

[30] James Newsome and Dawn Song. 2005. Dynamic Taint Analysis for

Automatic Detection, Analysis, and Signature Generation of Exploits

on Commodity Software. In Proceedings of the Network and Distributed

System Security Symposium (NDSS ’05). h�ps://doi.org/10.1184/R1/

6468716.v1

110

https://doi.org/10.1145/2103621.2103677
https://doi.org/10.3233/JCS-211385
https://doi.org/10.1145/2993600.2993607
https://doi.org/10.1145/2382196.2382201
https://doi.org/10.1109/SANER.2016.91
https://doi.org/10.1145/2810103.2813684
https://doi.org/10.1145/2382196.2382275
https://doi.org/10.1145/2382196.2382275
https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1145/2663761.2664219
https://doi.org/10.1145/2663761.2664219
https://doi.org/10.1109/DSN.2009.5270347
https://doi.org/10.1109/DSN.2009.5270347
https://doi.org/10.1145/1181309.1181313
https://doi.org/10.1145/1181309.1181313
https://doi.org/10.1145/2744769.2744830
https://doi.org/10.1145/2744769.2744830
https://doi.org/10.1145/1379022.1375606
https://doi.org/10.1109/IWSESS.2009.5068455
https://doi.org/10.1184/R1/6468716.v1
https://doi.org/10.1184/R1/6468716.v1


MPLR ’24, September 19, 2024, Vienna, Austria Eri Ogawa, Tetsuro Yamazaki, and Ryota Shioya

[31] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Je� Shirley,

and David Evans. 2005. Automatically Hardening Web Applications

Using Precise Tainting. In Proceedings of IFIP International Information

Security Conference.

[32] Tadeusz Pietraszek and Chris Vanden Berghe. 2006. Defending Against

Injection Attacks Through Context-Sensitive String Evaluation. In

Proceedings of Recent Advances in Intrusion Detection (RAID ’05). 124–

145.

[33] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. 2006. Argos:

An Emulator for Fingerprinting Zero-Day Attacks for Advertised Hon-

eypots with Automatic Signature Generation. In Proceedings of the 1st

ACM SIGOPS/EuroSys European Conference on Computer Systems 2006.

15–27. h�ps://doi.org/10.1145/1217935.1217938

[34] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou,

and Youfeng Wu. 2006. LIFT: A Low-Overhead Practical Information

Flow Tracking System for Detecting Security Attacks. In Proceedings

of the 39th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO 39). 135–148.

[35] Seemanta Saha, Surendra Ghentiyala, Shihua Lu, Lucas Bang, and

Tev�k Bultan. 2023. Obtaining Information Leakage Bounds via Ap-

proximate Model Counting. Proc. ACM Program. Lang. 7, PLDI, Article

167 (jun 2023), 22 pages.

[36] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Mohamed Ali

Kaafar. 2013. On the E�ectiveness of Dynamic Taint Analysis for

Protecting Against Private Information Leaks on Android-based De-

vices. In 10th International Conference on Security and Cryptography

(SECRYPT ’13).

[37] Bassam Sayed, Issa Traoré, andAmanyAbdelhalim. 2018. IF-Transpiler:

Inlining of Hybrid Flow-Sensitive Security Monitor for JavaScript.

Computers & Security 75 (02 2018), 92–117. h�ps://doi.org/10.1016/j.

cose.2018.01.017

[38] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010.

All You Ever Wanted to Know about Dynamic Taint Analysis and

Forward Symbolic Execution (but Might Have Been Afraid to Ask).

In Proceedings of IEEE Symposium on Security and Privacy. 317–331.

h�ps://doi.org/10.1109/SP.2010.26

[39] Angel Scull, Laurent Christophe, Jens Nicolay, Coen De Roover, and

Elisa Gonzalez Boix. 2018. Practical Information Flow Control for Web

Applications. In Proceedings of the International Conference on Runtime

Veri�cation. 372–388. h�ps://doi.org/10.1007/978-3-030-03769-7_21

[40] Asia Slowinska and Herbert Bos. 2009. Pointless Tainting? Evaluating

the Practicality of Pointer Tainting. In Proceedings of the 4th ACM

European Conference on Computer Systems (EuroSys ’09).

[41] Geo�rey Smith. 2009. On the Foundations of Quantitative Information

Flow. In Foundations of Software Science and Computation Structure.

h�ps://api.semanticscholar.org/CorpusID:6680444

[42] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael

Pradel, and Andrei Sabelfeld. 2019. An Empirical Study of Informa-

tion Flows in Real-World JavaScript. In Proceedings of the 14th ACM

SIGSACWorkshop on Programming Languages and Analysis for Security

(PLAS’19). New York, NY, USA, 45–59. h�ps://doi.org/10.1145/3338504.

3357339

[43] Elizabeth Stinson and John C. Mitchell. 2007. Characterizing Bots’

Remote Control Behavior. In Proceedings of 4th International Conference

on Detection of Intrusions and Malware, and Vulnerability Assessment

(DIMVA ’07, Vol. 4579). 89–108. h�ps://doi.org/10.1007/978-3-540-

73614-1_6

[44] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. 2004.

Secure Program Execution via Dynamic Information Flow Tracking.

In Proceedings of the 11th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

XI).

[45] Toshinori Usui, Yuto Otsuki, Yuhei Kawakoya, Makoto Iwamura, and

Kanta Matsuura. 2022. Script Tainting Was Doomed From The Start
(By Type Conversion): Converting Script Engines into Dynamic Taint

Analysis Frameworks. In Proceedings of the 25th International Sympo-

sium on Research in Attacks, Intrusions and Defenses. 380–394.

[46] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos

Prvulovic. 2008. FlexiTaint: A programmable accelerator for dynamic

taint propagation. In 2008 IEEE 14th International Symposium on High

Performance Computer Architecture (HPCA ’08).

[47] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christo-

pher Krügel, and Giovanni Vigna. 2007. Cross Site Scripting Prevention

with Dynamic Data Tainting and Static Analysis.

[48] Shiyi Wei and Barbara G. Ryder. 2013. Practical Blended Taint Analysis

for JavaScript. In Proceedings of the 2013 International Symposium

on Software Testing and Analysis. 336–346. h�ps://doi.org/10.1145/

2483760.2483788

[49] Heng Yin, Zhenkai Liang, and Dawn Song. 2008. HookFinder: Identi-

fying and Understanding Malware Hooking Behaviors. In Proceedings

of the Network and Distributed System Security (NDSS ’08).

[50] Heng Yin and Dawn Song. 2010. TEMU: Binary Code Analysis

via Whole-System Layered Annotative Execution. Technical Report

UCB/EECS-2010-3. EECS Department, University of California, Berke-

ley.

[51] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin

Kirda. 2007. Panorama: Capturing System-Wide Information Flow for

Malware Detection and Analysis. In Proceedings of the 14th ACM Con-

ference on Computer and Communications Security (CCS ’07). 116–127.

h�ps://doi.org/10.1145/1315245.1315261

[52] Man-Ki Yoon, Negin Salajegheh, Yin Chen, and Mihai Christodorescu.

2016. PIFT: Predictive Information-Flow Tracking. In Proceedings of

the Twenty-First International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’16).

Received 2024-05-25; accepted 2024-06-24

111

https://doi.org/10.1145/1217935.1217938
https://doi.org/10.1016/j.cose.2018.01.017
https://doi.org/10.1016/j.cose.2018.01.017
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1007/978-3-030-03769-7_21
https://api.semanticscholar.org/CorpusID:6680444
https://doi.org/10.1145/3338504.3357339
https://doi.org/10.1145/3338504.3357339
https://doi.org/10.1007/978-3-540-73614-1_6
https://doi.org/10.1007/978-3-540-73614-1_6
https://doi.org/10.1145/2483760.2483788
https://doi.org/10.1145/2483760.2483788
https://doi.org/10.1145/1315245.1315261


The Cost of Profiling in the HotSpot Virtual Machine
Rene Mueller

Huawei Zurich Research Center
Zurich, Switzerland

rene.mueller@huawei.com

Maria Carpen-Amarie
Huawei Zurich Research Center

Zurich, Switzerland
maria.carpen.amarie@huawei.com

Matvii Aslandukov∗
Kharkiv National University of Radio Electronics

Kharkiv, Ukraine
matvii.aslandukov@nure.ua

Konstantinos Tovletoglou∗
Independent Researcher
Zurich, Switzerland

ktovletoglou01@qub.ac.uk

Abstract
Modern language runtimes use just-in-time compilation to
execute applications natively. Typically, multiple compiler
tiers cooperate so that compilation at a later stage can lever-
age profiling information generated by earlier tiers. This
allows for machine code that is optimized to the actual work-
load and hardware. In this work, we study the profiling over-
head caused by code instrumentation in the HotSpot Java
virtual machine for 23 applications from the Renaissance
suite and five additional benchmarks.

Our study confirms two common assumptions. First, most
applications move quickly through the profiling phase. How-
ever, we also show applications that tier up surprisingly
slowly and, thus, are more affected by profiling overheads.
We find that the instrumentation needed for profiling can
slow application execution down by up to 35×. A key factor
is the memory contention on the shared profiling data struc-
tures in multi-threaded applications. Second, most virtual
call sites are monomorphic, i.e., they only have a single re-
ceiver type. This can reduce the run-time cost of otherwise
expensive receiver type profiling at virtual call sites.
Our analysis suggests that, for the most part, profiling

overhead in language runtimes is not a cause for concern.
However, we show that there are situations, e.g., in multi-
threaded applications, where profiling impact can be conse-
quential.

CCS Concepts: • Software and its engineering → Just-
in-time compilers; Runtime environments.
∗Work done while at Huawei Zurich Research Center, Switzerland.
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1 Introduction
Modern language runtimes with just-in-time (JIT) compilers
are very popular for managed languages such as Java, C#,
JavaScript, etc. Their advantage over ahead-of-time (AOT)
compilation is their ability to leverage run-time information
about the actual workload for additional compiler optimiza-
tions. The downside of the JIT compilation, however, is not
only the delay of the compilation effort into the execution
phase, but also the overhead from collecting the profiling
information.
In this work, we quantify the profiling overhead of the

HotSpot Java virtual machine (JVM) in the OpenJDK. We
observe that the profiling overhead introduced by code in-
strumentation can cause an up to 35-fold application slow-
down. Fortunately, applications with a pronounced hotspot
move quickly through the profiling phase. This reduces the
observable impact of profiling on the run-time or throughput
of applications. HotSpot, thus, does live up to its name. How-
ever, we also find application code from popular benchmarks
that tiers up more slowly and remains longer in the profiling
phase. This poses the question: why do some application
move faster through the profiling phase than others?

Contributions. We describe the code instrumentation
used in HotSpot to collect profiling information and evalu-
ate the resulting run-time overhead across the Renaissance
suite [19] and five of our own benchmarks. Specifically, we
measure the run-time cost from the code instrumentation
used to collect the profiling data and find that profiling can
slow down applications by up to 35×. We show that this
slowdown can be caused by application threads that concur-
rently update shared data structures that hold the profiling
information.
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Of all profiling instrumentation, the code used to collect
receiver type profiles, e.g., the different receiver types en-
countered in virtual method calls, has the largest footprint
and the largest number of branches. The effective run-time
overhead depends on the number of encountered types (de-
gree of polymorphism). Based on the analysis of the afore-
mentioned workloads, we confirm the common assumption
for object-oriented programs that most virtual call sites are
monomorphic. This can reduce the effective cost in 80 % of
the cases in which receiver type profiles are collected.

2 Background
The HotSpot JVM executes Java bytecode, which is the in-
struction set for the abstract stack machine defined by the
Java Virtual Machine specification. The instruction set and
its execution engine were originally designed to execute
Java programs. Today, however, the Java bytecode is used
as an intermediate representation format for many other
languages besides Java, such as Scala, Kotlin, Ruby (JRuby),
Groovy, Clojure etc. Therefore, we do not limit this study to
Java applications and, instead, consider Java bytecode as the
workload for the JVM. The Java bytecode and JIT compila-
tion in HotSpot JVM are designed to support the open-world
assumption of Java in which new classes can be loaded or
existing classes redefined at run-time [14], e.g., by modify-
ing or adding methods. After such a bytecode change, the
JIT compiler can perform on-the-fly optimizations across
methods and classes that go beyond the traditional dynamic
link/loading and which would be difficult to implement using
ahead-of-time compilation approaches.

Multi-tier Compilation. HotSpot is a complex language
runtime that consists of an interpreter and twomethod-based
JIT compilers, called C1 and C2 (see Figure 1), which are
further organized in four compilation tiers. C1 is the simpler
of the two compilers and generates code more quickly, al-
beit with fewer optimizations. In addition, the application
start-up time is further reduced by not compiling all the
bytecode at once. Instead, methods are first executed by the
bytecode interpreter. They subsequently move through the
compiler tiers depending on their “hotness”, essentially, the
time application threads spend in these methods. Hotness is
quantified by two metrics: (1) the number of times a given
method is invoked and (2) how often the loops in the method
are executed, i.e., the number of times a back-edge of any
loop in the method is taken.

Bytecode Profiling. As the application’s bytecode code
moves through the compiler tiers, i.e., the code tiers up, profil-
ing data is collected through code instrumentation added by
the C1 compiler (in Tiers 2 and 3) or during execution in the
interpreter (Tier 0). The C1 compiler can add code instrumen-
tation to different degrees, ranging from no-instrumentation
(Tier 1), only counting method invocations and loop trips

Interpreter

Tier 1
(no profiling)

Tier 2
(invocations & back-edges) Tier 3

(full profile)

Tier 4
(fully optimized,
no profiling)

Figure 1. Multi-tiered compilation in HotSpot

in Tier 2, to full profiling of a number of selected bytecode
instructions (listed in Table 1) in Tier 3. When the instru-
mented code is executed or the application runs sufficiently
long in the interpreter, profiling information is collected and
written into Method Data Objects (MDOs). These objects are
maintained by the JVM, each containing profiling data for a
specific method.
The collected profiling information is made available to

the C2 compiler (Tier 4) and enables it to generate more effi-
cient code. For example, the C2 compiler uses the frequency
of taken and non-taken paths of branches to determine the
layout of basic blocks, makes inlining decisions for virtual
method calls based on the actually encountered receiver
types, or omits the generation of machine code for paths
that were never taken during profiling. Many of these opti-
mizations are speculative. Thus, in order to guarantee correct
execution, the C2 compiler emits run-time checks that guard
the speculatively generated code. If such a check fails, the
execution resumes in the interpreter while the bytecode is
recompiled with the earlier-made speculation adjusted ac-
cordingly. Such an occurrence is called a deoptimization event.
The execution exits the interpreter and resumes in compiled
code once the JIT compilers make the new code available.
The application code will eventually stabilize without further
deoptimizations in the highest tier (Tier 4). Once fully tiered
up, no further profiling data is collected in order to eliminate
the run-time overhead from code instrumentation.

Figure 1 shows different possible paths a method can take
through the tiers. The common path for a method (high-
lighted in bold in the figure) is to move from the interpreter
to the fully-profiling Tier 3 and subsequently to Tier 4. Triv-
ial methods that are eventually inlined by C2, e.g., getters
and setters, take a different path (shown as dotted lines in
Figure 1). Furthermore, if the load on C2 compiler threads
is high and the queue of compilation jobs for C2 becomes
long, a back-pressure path is introduced (shown as dashed
lines) that temporarily slows down the tiering-up until the
pressure on the C2 compiler threads has eased up.
In this study, we analyze the overhead of the different

types of instrumentation that can be added by the C1 com-
piler. The instrumentation covers the bytecode instructions
listed in Table 1 but also includes method-level information
such as the number of method invocations and loop back-
edges taken in any loop of the method. This data is written
into the MDO, which is organized as an array of 8-byte slots.
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1 ; e.g., invokestatic

2 movabs MDO_addr ,%rsi

3 addq $1 ,count_off (%rsi)

4 callq static_target_method

5 ...

(a) Count Profile

1 ; e.g., ifeq

2 movabs MDO_addr ,%rax

3 movabs taken_off ,%rsi

4 je .l1

5 movabs not_taken_off ,%rsi

6 .l1: mov (%rax ,%rsi ,1) ,%rdi

7 lea 1(%rdi),%rdi

8 mov %rdi ,(%rax ,%rsi ,1)

9 je .l2

10 ...

11 .l2: ; actual target

(b) Branch Profile

1 ; in method preamble

2 movabs MDO_addr ,%rsi

3 mov invoc_cnt_off (%rsi),%edi

4 add $2 ,%edi

5 mov %edi ,invoc_cnt_off (%rsi)

6 and overflow_mask ,%edi

7 cmp $0 ,%edi

8 je counter_overflow

9 ...

(c) Invocation Count

Figure 2. x64 assembly code for count and branch profiles, and the invocation counter in the method preamble

Table 1. Profile types in Method Data Objects (MDO) and
profiled bytecode instructions

Profile Type Bytecode Instructions
Counter Profile invokestatic, invokespecial,

invokedynamic
Jump Profile goto, goto_w

Branch Profile ifeq, ifge, ifle, ifne, ifnonnull, . . .
Multi-branch Profile tableswitch, lookupswitch
Receiver Type Profile aastore, checkcast, instanceof

Virtual Call Profile invokeinterface, invokevirtual
Invocation Count per-method counter
Back-edge Count per-method counter

Profiling Instrumentation in x64. Figure 2 shows three
examples of the code instrumentation created by the C1
compiler in x64 assembly. In each of the examples, one or
more slots in the MDO are updated. Each slot is referenced
through an offset from the MDO’s base address. Observe the
absence of atomic instructions. Thus, the counter updates are
not thread-safe. Updates can be lost if counters are updated
by multiple threads concurrently.
Figure 2a shows the Count Profile used in invokestatic

(for static methods) or invokespecial (for Java construc-
tors). It simply increments the count slot in the MDO that
corresponds to the profiled bytecode instruction. The code
template to collect Branch Profiles is shown in Figure 2b. A
branch profile contains two slots, which count how often
the branch was taken or not taken. The Invocation Count
of a method is incremented in the method preamble (see
Figure 2c). The snippet does not only increment the counter1
but also checks for overflows using the overflow_mask. This
masks out the least significant ten bits of the counter, causing
an “overflow” every 1,024 invocations. Each time such an
overflow occurs, a call into the runtime is made to notify it
that the method may move up to the next tier. The Receiver
1The add 2 is correct for the increment operation because the least signifi-
cant bit in the count is used as a “sticky” carry bit.

1 public void render(int[] image) {

2 int width = camera.getWidthPixels ();

3 int height = camera.getHeightPixels ();

4 for (int y = 0; y < height; y++) {

5 for (int x = 0; x < width; x++) {

6 Ray ray = camera.rayThroughPixel(x, y);

7 Object3D closest = null;

8 double min = Double.POSITIVE_INFINITY;

9 for (Object3D o : objects) {

10 double dist = o.intersect(ray);

11 if ((dist > 0) && (dist < min)) {

12 min = dist; closest = o; }

13 }

14 Color pixel = backgroundColor;

15 if (closest != null)

16 for (Light l : lights)

17 pixel = pixel.blend(

18 closest.computeColor(camera , l));

19 image[y * width + x] = pixel.asRGBInt ();

20 }

21 }

22 }

Listing 1. render method of object-oriented Java raytracer

Type Profile, e.g., used in virtual calls (invokevirtual), has
one of the most complex templates. It counts the occurrence
of different data types of receiver objects for a method call at
the call-site. On x64, the corresponding code template takes
150 bytes and 23 CPU instructions.

3 Motivation
The instrumentation by C1 increases the size of the generated
machine code by a non-trivial amount. We illustrate this on
a raytracer application.

3.1 Raytracer Application
Listing 1 shows the Java source code of the raytracer’s

render method that iterates over pixels of the image plane,
shoots rays from the camera location through the pixels into
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Table 2. Code footprint of the render method in number of
x64 instructions and the duration of the method call

Profiling x64
Tier Invocations, Bytecode # CPU Run

(Compiler) Back-edges Instr. Instr. Time
1 (C1) 306 2.4 s
2 (C1) ✓ 380 2.6 s
3 (C1) ✓ ✓ 709 3.8 s

no inline 4 (C2) 550 1.0 s
4 (C2) 1,255 0.9 s

the scene, checks for intersections of the rays with objects,
and determines the color of the pixels. We choose this appli-
cation for illustration because it has a number of interesting
properties. First, it uses subtype polymorphism, which allows
optimization for Java’s virtual method dispatch at run-time
(invokevirtual). Every scene object type, such as Sphere,
Box, Triangle, etc., is a subclass of the abstract base class
Object3D and comes with its own implementation of an
intersect(Ray) method that determines whether a given
ray intersects with an object of that particular type. Sec-
ond, the render method uses Java Iterable and Iterator
objects in for-each loops to iterate over the collection ob-
jects and lights in the scene. These iterators are controlled
through invokeinterface bytecode instructions. For both
invocations, the receiver types are profiled in Tier 3. Third,
render also has several nested loops, allowing it to tier up
quickly, which simplifies the analysis. Finally, the method
also permits speculative optimizations on the control flow,
e.g., omitting the then-branches (lines 12 and 16) if the rays
did not intersect with any object during profiling.

Table 2 shows the size of full-method compilations of the
render method by each of the four compilation tiers as the
number of generated machine instructions for x64. Note that
two different compilers are used: the base compiler C1 and
the optimizing compiler C2. The C1 compilations shown in
Table 2 differ only in the number of instructions emitted for
profiling. Counting method invocations and back-edges in
Tier 2 increases the code footprint from 306 in Tier 1 to 380
instructions (+24 %). The profiling of bytecode instructions
in Tier 3 further increases code footprint to 709 instructions
(2.3× baseline C1). For C2 (Tier 4), we show two variants
in Table 2. For the first, we disable the aggressive inlining
of method calls by the C2 compiler. This permits a direct
comparison with C1 (Tier 1) as in both cases only the trivial
getter methods in lines 2 and 3 (Listing 1) as well as the call
to iterator in the for-each statements in lines 9 and 16 are
inlined. The second variant shows the default behavior of
HotSpot in Tier 4 with full inlining allowed. The scene on
which we invoke render, consists of only one concrete type
of Object3D, specifically, Sphere. The call sites in render
are therefore monomorphic and, if permitted, C2 then not

only inlines all calls in render but also the nested calls.
The inlining of calls explains the significant increase of the
method’s footprint by 4.1×.
Table 2 also shows duration of the call to the render

method after it is fully compiled to machine code. The table
shows that C1 code with invocation and back-edge counting
(Tier 2) takes 8 % longer than without any profiling, increas-
ing the call duration from 2.4 s to 2.6 s. Full instruction profil-
ing increases the duration of the render call further to 3.8 s.
Thus, full profiling for the raytracer increases the run-time by
58% compared to code created by the same compiler with-
out any profiling instrumentation. Switching from C1 to the
optimizing C2 compiler and using the collected profiling in-
formation results in a speedup of 2.4×. Allowing aggressive
inlining in C2 increases the speedup over Tier 1 to 2.6×.

3.2 Slow Tier-Up
The run-time overhead for the application that is caused
by code running in the profiling tiers can be substantial,
as shown in Table 2 for the raytracer application (+58%).
However, it is often argued that this overhead is negligi-
ble for applications that spend most of the time in a small
well-contained range of bytecode instructions, such as “hot”
methods or “hot” loops, in particular, if they run sufficiently
long to amortize the tier-up overhead. Such code hotspots
tier up quickly and consequently spend little time in the full-
profiling Tier 3 where they encounter the highest overhead.
Figure 3 (left) shows the tier-up behavior of the single-

threaded raytracer application running on an Intel Xeon W-
1270 systemwith eight cores. The area plot showswhich type
of code is executed by the application during the 3.3 s run-
time. We sample the application at a fixed frequency using
the Linux perf utility. For each sample reported by perf, we
look up the type of code that was under the program counter
(PC). Since all code besides the VM itself is dynamically
generated2, we implement a JVM Tooling Interface (JVMTI)
agent that gets notifiedwhen the VMhas generated new code.
This allows us to map the PC from the samples to the symbol
names of the generated codelets. We also extend the JVMTI
API such that each notification of the agent also carries the
number of compilation tier (1,. . . ,4) that generated it, such
that we can map PC samples from perf back to compiler
tiers. The tier breakdown shows how the applications move
through the compilation tiers.

The raytracer, with its well-defined hotspot comprised of
the loop-nest in the render method, tiers up quickly. Most
of the application time is spent executing code created by
the highest compilation tier (Tier 4). The fraction spent in
the fully-profiling Tier 3, which experiences the highest run-
time overhead, is shown as the red area in Figure 3. It only

2Dynamically generated code also includes the interpreter. The codelets
that correspond to the bytecode instructions executed in the interpreter are
generated during the start-up of the HotSpot JVM.
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Figure 3. Two applications with different tier-up behavior. Left: raytracer tiering up quickly, Right: dotty from Renaissance
with a slow tier-up over the 50 default benchmark repetitions

appears at the beginning of the application. The “spikes” in
Tier 3 activity are due to exits from Tier 4 code, either when a
loop of a partially compiled method ends or a deoptimization
event occurs that is caused by a failed speculative optimiza-
tion. The figure also shows that the application spends a
short time in the interpreter (blue).

However, not all applications have a pronounced hotspot
like the raytracer which would allow them to tier up quickly.
In Figure 3 (right) we show the tier-up behavior of one such
application from the Renaissance suite [19]. The benchmark
is dotty, which runs the Dotty compiler to compile a number
of Scala source files for the scalap utility. The area plot
shows the tier distribution of the application thread for 50
repetitions of the dotty benchmark, the default number for
this benchmark. The red Tier 3 area, although gradually
shrinking over time, does not reach zero even after a minute
of repetitions of the benchmark. The reason is the large code
base with over 20,000 touched unique methods and over
27,000 compilations during this one-minute run.
The large number of compilations also strain the C1 and

C2 compiler threads which in turn compete with applica-
tion threads for system resources. However, the cost of the
dynamic compilation itself is outside of the scope of this
study as it is orthogonal to the run-time overhead that is
incurred from the profiling instrumentation. In this work,
we quantify the impact this profiling has on the observable
application performance. The effective impact is determined
by two factors. The first factor is the slowdown of the in-
strumented machine code that is generated by C1 in Tiers 2
and 3 over non-instrumented C1 code (Tier 1). The second
factor is represented by the fraction of time the application
spends executing instrumented code relative to the fraction
it executes non-instrumented code (Tier 1 and Tier 4). In
the next sections, we provide an analysis of both factors

Table 3. Additional applications in the workload study

Application Lang. Description
Raytracer-Java Java Raytracer, 4-object scene

Raytracer-JRuby Ruby Raytracer, 4-object scene
Raytracer-Clojure Clojure Raytracer, 4-object scene
SparkSQL-TPC-H Scala 22 queries at scale factor 1

H2O-GBM Java H2O inference on a GBM

on a standard JVM benchmark suite and a number of other
applications.

4 Profiling Overheads
In this section, we present a quantitative analysis of profiling
overheads in Renaissance [19], which is a modern bench-
mark suite for the JVM. We also include the five additional
applications listed in Table 3 in our analysis.

Raytracer-*. We implement the simple raytracer from
Section 3.1 in three languages that can be executed on the
JVM: Java running directly on the JVM, Ruby on JRuby, and
Clojure. The additional implementations in JRuby and Clo-
jure allow us to study the effect of stacking language run-
times on top of the HotSpot JVM, specifically, running a dy-
namically typed code on top of a runtime that uses statically
typed bytecode. All raytracers render the same scene that
contains four objects, each of a different type. The render
method of the Java raytracer is shown in Listing 1. By using
different object type, the call sites on lines 10 and 18 are
polymorphic and the receiver types have to be profiled. We
compile the Clojure code ahead-of-time to Java bytecode in
order to avoid the start-up overhead of the on-the-fly gen-
eration of bytecode by the Clojure runtime. JRuby uses its
own interpreter and JIT compiler that creates Java bytecode
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on-the-fly. For the JRuby JIT compiler, we enable the use
of invokedynamic instructions for Ruby call-sites. This pro-
vides a 2.5× speedup when fully tiered up but adds to the
profiling cost due the increased use of method handles that
are translated in lambda-forms for which the JVM creates
bytecode dynamically (JEP-160 [21]). This additional byte-
code contains more profiled instructions and may further
also collect argument and return types in calls (JSR-292 [9]).

SparkSQL-TPC-H. We run the 22 SQL queries from the
TPC-H decision support database benchmark on top of Spark-
SQL (Spark 3.3) with a Parquet data set at scale factor 1. We
do not use any explicit data cache except the buffer cache
of the file system. We execute the queries back to back in
a single benchmark run. We discard the measurements of
the first run when the buffer cache is cold. We include this
application because of the dynamically generated Java code
from SparkSQL’s full-stage code generation and its large
code footprint overall.

H2O-GBM. We train a gradient-boosted decision tree
model (GBM) on the airline dataset [25] using H2O-2, an
in-memory Java machine learning platform. We export the
trainedmodel as Java code. Each decision tree is implemented
as a method with one or more conditional branches on the se-
lected attributes. We use this trained model in the benchmark
in an inference configuration on a subset of the training set.
We add this benchmark due to its large number of branches.

4.1 System Setup
We execute all benchmarks on an Intel Xeon W-1270 system
with eight cores and 64 GiB of DDR4 memory (we provide
an analysis for an Arm system in Appendix A). The oper-
ating system is Ubuntu 22.04.2 LTS. We run a release build
of the OpenJDK 17.0.5 and unless otherwise noted, we use
the configuration set by JVM Ergonomics3, e.g., heap size,
garbage collector, and number of threads for the garbage
collector and C1 and C2 compilers. On our system, JVM
Ergonomics limits the threads used for the C1 and C2 com-
pilers to four threads each. This thread count is only used
during times of the highest compiler load. We use the G1
garbage collector, as chosen automatically by the JVM, for
all experiments. We control the tier-up behavior shown in
Figure 1 (common case: Interpreter→Tier 3→Tier 4) with
the XX:TieredStopAtLevel=L VM option which prevents
HotSpot from tiering-up beyond level L = 1, . . . , 4.

4.2 Slowdown from Profiling
Figure 4 shows the increase of execution time of the 28 JVM
applications caused by profiling overheads in Tiers 2 and 3.
As the figure shows, full profiling can increase the execution

3For dotty and SparkSQL-TPC-H, we need to increase the size of the JVM’s
code cache to 512MB in order to run the application exclusively in Tier 3,
due to the increase of the code-footprint from the profiling instrumentation.

time by up to 35× over C1 code with no profiling when we
prevent the application to fully tier-up into Tier 4. The geo-
metric mean of Tier 3 slowdown across the workloads is 5.7×.
The profiling of method invocations and back-edges in Tier 2
can have a 6× overhead over Tier 1 (geometric mean 1.8×).
For comparison, the fully optimizing C2 compiler provides a
speedup of 2.4× (geometric mean) over non-instrumented
C1 code, with the highest speedup of 10× for gauss-mix and
raytracer-jruby.

4.3 Cache Contention Analysis
In the following, we analyze the behavior of the benchmark
application with the highest profiling overhead, fj-kmeans
(35×). This benchmark performs a parallel k-means clus-
tering using Java’s ForkJoinPool. On our 8-core system,
this pool contains 16 worker threads. The program parti-
tions 500,000 random data points into five clusters. This
is achieved using the traditional k-means algorithm. The
implementation consists of two parallel phases executed
in fork-join manner, (1) assignment of each data point to
the nearest cluster centroid, (2) updating the location of
the centroids. The two phases are repeated 50 times. Even
though the algorithm itself is simple, the implementation
using the fork-join paradigm adds additional complexity due
to the dynamic splitting of tasks into sub-tasks based on the
amount of work of a task, i.e., number of data points and
centroids. The number of data points and clusters is very
small and, thus, the two parallel phases during which the
worker threads run independently is relatively short. The
frequent synchronization between phases effectively causes
the worker threads to execute the same code at the same
time. This is not a problem for Tier 1 code. In Tier 3, however,
the tightly synchronized worker threads update the same
MDO slots nearly at the same time. The resulting contention
on MDO slots has a significant performance impact. We note
that this performance impact occurs even though HotSpot
does not prevent data races during counter accesses, which
could be prevented using more expensive atomic operations
such as compare-and-swap instructions. The cause is the
cache coherence protocol. The cache line that contains the
updated MDO slot will be marked as modified in the core’s
private cache, which also invalidates any copies that other
cores may have in their private caches. Thus, when one of
the other cores then tries to access the same MDO slot, the
access will miss in the core’s local cache. The coherence pro-
tocol resolves this miss by moving the modified cache line
to private cache of the requesting core.
We quantify the impact of the contention on the MDO

by measuring coherence traffic using the Linux perf tool as
we vary the number of threads used by fj-kmeans. We focus
on the snoop messages, i.e., messages that are exchanged
to probe the state of a cache line. Specifically, we count the
number of snoop responses in which the line was found in
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Figure 4. Profiling overheads in Tier 2 and Tier 3 relative to Tier 1 for the Renaissance suite and our additional benchmarks.
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Figure 5. The number of read-for-ownership (RFO) requests
that hit in L3 while a higher-level cache has the cache line
in modified state correlates with the slowdown from Tier 3
profiling. Shown for fj-kmeans for different number of logi-
cal cores made available to the JVM.

modified state (snoop HitM). 4 We show the number of snoop
HitM for both Tier 1 and Tier 3 in Figure 5 along with the
resulting slowdown. We control the number of threads, thus,
the degree of contention, by varying the number of logical
4We measure the L3 snoop hits by counting the
offcore_response.demand_rfo.l3_hit.snoop_hitm events.

cores available to the JVM. We restrict the JVM process to
subsets of logical cores using the taskset utility. Our Intel
system has 16 logical cores, i.e., eight physical cores each
capable of running two hardware threads. We increase the
number of logical cores by starting with the first hardware
thread on the physical cores from 0 to 7. Logical cores 8
to 15 then use the second hardware thread of the physical
cores. Figure 5 shows that the L3 snoop HitM counts for
Tier 3 code are about four orders of magnitude higher than
for Tier 1. We use a logarithmic scale for the inset figure for
better comparison with the Tier 1 counts. The slowdown in
execution time (right y-axis) follows roughly the number
of snoop HitM. The worst-case slowdown from profiling is
45× if each of the eight physical core runs one application
thread. The number of snoopHitM decreases once the second
hardware thread of a physical core is used. The reason is that
the threads that run simultaneously on the same core share
private caches, in which case no snoop is triggered. This
reduces the snoop traffic even though the work is distributed
over more threads.

Figures 6 (left) and (right) compare the Tier 3/Tier 1 ratio
for snoop HitM and the slowdown for all benchmarks. We
distinguish between single- and multi-threaded benchmarks.
The figures show that a high slowdown tends to correlate
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with a high ratio of HitM snoops. Furthermore, the single-
threaded benchmarks have an extremely low HitM ratio.
We can confirm this by restricting the number of cores

made available to the JVM. Using the taskset utility, we
limit and pin the JVM to one single logical core. This also
determines the number of application threads spawned by
the benchmarks. As expected, the Tier 3/Tier 1 slowdown
is substantially reduced. When limited to one logical core,
the profiling slowdown in akka-uct is reduced from 20× to
2.2×, philosophers from 18× down to 2.4×, naive-bayes from
15× down to 2.1×. In general, the slowdown when running
on one core is between 1.4× and 2.4× for all benchmarks,
except for raytracer-jruby, where it remains virtually un-
changed at 7×. The high slowdown in the JRuby benchmark
does not originate from MDO contention but rather from
the code instrumentation for the profiling itself. This over-
head is reduced from 7× to 4× when we disable the use of
invokedynamic for Ruby call-sites in the JRuby JIT compiler.
The reason is that fewer profiled instructions are generated
as part of the translated lambda-forms, which reduces the na-
tive code footprint in Tier 3, e.g., the largest raytracer-jruby
method in Tier 3 from 135 kB to 90 kB.

4.4 Increase of Code Footprint
In addition to the 5.7× slowdown (geomean), the Tier 3 pro-
filing increases the mean size of the generated native code
by 2.6× (geomean) over all benchmarks. Figure 7 shows the
mean sizes of the native code that is generated by each C1
compilation for all benchmarks. The blue bar shows themean
sizes of the C1 code without instrumentation when we limit
the VM to tier up beyond Tier 1, the orange bar when we stop
at Tier 3. In the latter case, the C1 generated code contains
instrumented as well non-instrumented code. The error bars
in the figure show the 90 % percentile interval. We found that
that the distribution of the compilation sizes has a long tail
regardless whether instrumentation is present. In fact, the

distributions tend to follow a Pareto-like distribution. As the
figure shows, the 90% percentile intervals are much larger
for Tier 3 code. The size of the largest compilation in dotty
is 221 kB for the TreePickler::pickleTree by Tier 3. The
added instrumentation increases the size of generated native
code by more than 6×. The mean size of the compiled code
for dotty, however, only increases by 3.7× when instrumen-
tation is added. h2o-gbm is the next largest benchmark in
terms of average Tier 3 code size and 90 % percentile interval.
2/3 of the compilations in h2o-gbm that are larger than 8 kB
are for the 50 methods that implement the 50 decision trees
of the ensemble of gradient-boosted trees. The high number
of branch profiles in these methods significantly increases
the code footprint.

4.5 Microarchitectural Impact
One concern when running code with a large footprint on
modern out-of-order processors is the resulting increase of
front-end pressure. We examine this for the two benchmarks
with the largest compilations using the top-down microarchi-
tecture analysis method [24]. Table 4 shows the break-down
of issue slots in the pipeline. In the ideal case, there is an
instruction (micro-op) retiring in every slot, i.e., retiring =
100%. In practice, however, slots may be unfilled. Unfilled
pipeline slots are classified as due to front-end (FE) or back-
end (BE) stalls, or incorrect speculation. The table shows that
dotty and h2o-gbm are both dominated by front-end stalls.
In both cases, the Tier 3 profiling increases the front-end
stalls by 10 percent points.
A further analysis shows that the primary cause of the

increase in front-end stalls are fetch-latency issues due to
instruction cache misses (+7% cycles in dotty, +2% in h2o-
gbm) and branch resteers (+3% in dotty, +4 % in h2o-gbm).
Instruction cache misses can be a direct result of the larger
code footprint. Branch resteers are caused by branch mis-
predictions that cause a delay fetching instructions from the
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Table 4. Top-down microarchitectural analysis for dotty and
h2o-gbm ( % of issue slots in the pipeline)

FE BE
Tier bound retiring bad spec

dotty 1 53 % 10% 33% 4%
3 63% 7 % 27% 3%

h2o-
gbm

1 39% 21% 34% 7%
3 49% 11 % 35% 4%

correct path. For h2o-gbm, we also observe issues in fetch-
bandwidth. In Tier 3, the number of slots unfilled due to
bandwidth limitations in the decode pipeline increases by
4 %. This seems to indicate that instruction streams contain-
ing profiling instrumentation are more difficult to decode for
the processor. In all other single-threaded benchmarks, we
do not observe such strong effects on the microarchitecture.
In summary the added instrumentation by Tier 3, can in-
crease the front-end pressure and affect applications that are
already front-end-bound even stronger. This front-end bot-
tleneck is a well-known problem in server workloads today.
A lot of resources are invested on addressing this problem in
modern processors, i.e., increasing instruction cache sizes,
better branch predictors and instruction prefetchers, etc.
In this section, we showed the worst-case performance

overhead by restricting HotSpot from moving beyond the
profiling phase, which is an artificial setup not encountered
in real-world deployments. Nevertheless, it reveals a poten-
tial performance issue in the current HotSpot JVM that is
due to the contention on the data structures that hold the
profiling data.

5 Case Study: Receiver Type Profile
In this section, we discuss one profile type in more detail:
the Receiver Type Profile. It has the largest code footprint and
contains multiple conditional branches. It is emitted by the
C1 compiler to capture the type of the receiver object. The
profile is collected for invokevirtual, invokeinterface,
instanceof, as well as checkcast, and aastore bytecode
instructions. The figure on the right shows the data lay-
out of the receiver type profile in the MDO. The Receiver
Type Profile consists of the two key-value pairs A and B,

M
D
O

ba
se

MDO

Header

other.count

A.type

A.count

B.type

B.count
Re

ce
iv
er

Ty
pe

an
d

Vi
rtu

al
Ca

ll
Pr
ofi

le

each storing the type (i.e., the class
of the receiver) and the number of
times (count) this particular type
was encountered at this bytecode
location. Thus, the profile remem-
bers the first two distinct receiver
types encountered and counts the
number of occurrences. If more
than two types are encountered,
other.count is incremented. The first slot in the receiver
type profile, the Header field, contains the bytecode index,
i.e., the location in the bytecode program, along with the
type of the profile data and a number of flags. The flags
indicate whether the instruction has caused a deoptimiza-
tion event. We show the full code template of the receiver
type profile in Listing 2. The code first checks whether the
type of the current receiver object matches that in the A or
B slots. If so, the corresponding counter is incremented. If
not, it checks whether A.type or B.type do not yet have
an assigned type. If a free slot is found, it is assigned to the
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1 ; rcx: pointer to the receiver object (rcvr)

2 movabs MDO_base_addr ,%r8 ;r8 <- MDO base

3 mov 0x8(%rcx),%ecx ;ecx <- klass ptr

4 movabs $0x800000000 ,%r10

5 add %r10 ,%rcx ; decompressed klass ptr

6 cmp a_type (%r8),%rcx ;rcvr is A.type?

7 jne .l1 ;no -> test B.type

8 addq $0x1 ,a_count (%r8) ;A.count += 1

9 jmpq .l5 ;jump to end

10 .l1:

11 cmp b_type (%r8),%rcx ;rcvr is B.type?

12 jne .l2 ;no -> is A empty?

13 addq $0x1 ,b_count (%r8) ;B.count += 1

14 jmpq .l5 ;jump to end

15 .l2:

16 cmpq $0x0 ,a_type (%r8) ;A.type is empty?

17 jne .l3 ;no -> is B empty?

18 mov %rcx ,a_type (%r8) ;A.type = rcvr

19 movq $0x1 ,a_count (%r8) ;A.count = 1

20 jmpq .l5 ;jump to end

21 .l3:

22 cmpq $0x0 ,b_type (%r8) ;B.type is empty?

23 jne .l4 ;no -> increment 'other '

24 mov %rcx ,b_type (%r8) ;B.type = rcvr

25 movq $0x1 ,b_count (%r8) ;B.count = 1

26 jmpq .l5 ;jump to end

27 .l4:

28 addq $0x1 ,other_count (%r8) ;other.count +=1

29 .l5: ...

Listing 2. x64 instructions used to profile the receiver type
of an invokevirtual call

object’s receiver type and its count set to one. If no free slot
is found, other.count is incremented.
Although C1 only leverages the first two types (in A and

B), the number of profiled types can be increased to eight
through the XX:TypeProfileWidth VM option. We use this
feature to measure the degree of polymorphism for virtual
calls in our benchmarks. A frequently cited observation
is that the majority of calls in object-oriented programs
with virtual method dispatch have only one single receiver
type—[6] observes that a one-element in-line cache is ef-
fective about 95% of the time. In other words, most call
sites are monomorphic. Figure 8 shows the degree of poly-
morphism for our benchmarks. The figure shows the num-
ber of key-value entries used in the receiver type profile
for which we increase the width from the two to eight
(XX:TypeProfileWidth=8). The number of entries corre-
sponds to the number of encountered types and, hence,
the degree of polymorphism at the call site. The zero-entry
other.count > 0, demands an explanation: C1 does not al-
ways need to emit the full profiling instrumentation snippet
shown in Listing 2 for the receiver type profile. If it can deter-
mine through class hierarchy analysis that the virtual call site
has a static binding, i.e., exactly one receiver, it replaces the

0% 20% 40% 60% 80% 95%
Breakdown of invokevirtual call-sites

             *als
       chi-square
        *dec-tree
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  *log-regression
       movie-lens
     *naive-bayes
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        mnemonics
    par-mnemonics
      rx-scrabble
         scrabble
            dotty
     philosophers
       scala-doku
     scala-kmeans
 scala-stm-bench7
  finagle-chirper
     finagle-http
        raytracer
  raytracer-jruby
raytracer-clojure
          h2o-gbm
   *sparksql-tpch

0 entries (o.c > 0)
1 entry
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Figure 8. Polymorphism at invokevirtual call-sites mea-
sured as the number of entries in the receiver-type profile

complex code snippet shown in Listing 2 with that of a count
data profile (Figure 2a) that simply counts the number of in-
vocations by incrementing the other.count in the receiver
profile type of the MDO. Sites with other.count > 0, thus,
are deduced to be monomorphic and were reached at least
once. In Figure 8, we omit call-sites that were never reached
in the instrumented code, i.e., sites with zero-entries and
other.count = 0. We consider the remaining zero-entries
also as monomorphic.

The results in Figure 8 confirm earlier observations for the
workloads we studied: the majority of virtual call sites are
monomorphic. At least 95 % virtual calls are monomorphic
for 17 out the 28 benchmarks. The exceptions in Renaissance
are dotty (92 %) and all Spark benchmarks that internally
use SparkSQL (marked with * in Figure 8). The JRuby ray-
tracer has the lowest percentage of monomorphic call sites
(91 %). This is not surprising since it runs inside JRuby, an
interpreter for the dynamically typed language. Clojure is
also dynamically typed but the Clojure raytracer has a larger
fraction of monomorphic sites (95 %). The Java raytracer has
only monomorphic sites except the three call-sites that refer
to the four subtypes of Object3D used in the scene.
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Figure 9. Fraction of Tier 3 samples during the first 30 s of
the Renaissance benchmarks

From these results, we can make the following observa-
tions. First, at least 44 % of all virtual call-sites (shortest blue
bar) have static binding and virtual dispatch is not needed.
Second, in at least 21 % (shortest orange bar), inline-caching
can optimize the virtual calls. A method dispatch through
vtables is only needed in less than 9% of the virtual calls
(largest green + red + purple bars). From a profiling perspec-
tive, this means that in more than 44% of the call sites, the
expensive instrumentation for the receiver profile template
(Listing 2) can be substituted with the simple counter in Fig-
ure 2a. Furthermore, in 80 % or more of call sites where the
full receiver type profile is collected, the sites are monomor-
phic and the control-flow path (Listing 2) takes only one
single conditional branch and one unconditional jump. The
run-time overhead then is similar to that of a branch profile
with a not-taken branch.

6 Tier-Up Behavior
The observable end-effect of the profile overhead depends
on how long methods stay in the profiling phase in the un-
constrained JVM. We quantify how fast an application tiers
up by measuring the fraction of executed Tier 3 methods
over time. We use Linux perf to sample the program and
our JVMTI agent that annotates the compiled methods with
the compiler tier that produced them. Figure 9 shows the
fraction of samples in Tier 3 code for all Renaissance bench-
marks during the first 30 s of their execution. As expected, all
benchmarks start with a high fraction in Tier 3, which drops
as methods get replaced by their optimized Tier 4 variants.
While most benchmarks do not spend any significant

amount of time in Tier 3 after 12 seconds, we highlighted
dotty as the outlier. It tiers up considerably slower than
the other benchmarks. As shown in Section 4.2, the Tier 3
profiling instrumentation slows the single-threaded dotty
benchmark down by 2.6×. Albeit this slowdown is smaller
than for other benchmarks, profiling has a higher impact on
the end-to-end performance in dotty.
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Figure 10. Tier-up times and method hotness for Renais-
sance benchmarks after a 30 s execution

The duration of the tier-up phase depends on the size of
an application and the presence of pronounced hotspots. As
a very coarse approximation, we quantify the size of the
benchmarks by the number of allocated MDOs. This repre-
sents the number of unique methods that are invoked during
execution since the VM creates an MDO for every profiled,
compiled or inlined method. Similarly, we characterize the
hotness of a method by its invocation count and number
of loop back-edges taken in the method. Both counts are
tracked in methods’ data objects during Tier 2 and Tier 3
profiling. As in HotSpot’s compiler policy, we use the sum
of the two counts as a measure for the hotness of a method.
Intuitively, an application tiers up faster if the invocation
and back-edge counts are distributed over fewer MDOs. Con-
sider dotty and dec-tree for example. For both benchmarks,
HotSpot creates approximately 19,000 MDOs during the first
30 seconds. We find that 90 % of the invocation and back-
edge counts fall on 7,575 MDOs in dotty, whereas in dec-tree
90% of the counts occur in only 6,472 MDOs. This means
that dec-tree has fewer hot methods (MDOs) and we would
expect it to tier up faster than dotty.

In Figure 10, we show the tier-up time and the number of
hot MDOs, i.e., the number of MDOs that account for over
90% of invocation and back-edge counts, after the initial
30 s. We define the tier-up time as the time until the 95 % of
application has tiered up such that the percentage of Tier 3
samples in a 1-second window (Figure 9) has dropped below
5%. For example, the tier-up time for dotty is 25 s and for
dec-tree is 8 s. The figure shows that benchmarks with a
small number of top 90 %-MDOs, e.g., < 1,000, tend to tier up
quickly while dotty with the highest tier-up time also has
the largest 90 % MDO count. For other benchmarks, the 90 %-
MDO count has a weaker correlation with tier-up times.

7 Discussion and Related Work
We show that the performance overhead of profiling in the
HotSpot JVM can be high. Furthermore, in the current imple-
mentation of HotSpot this overhead, including the one from
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the bytecode compilation, is incurred every time the applica-
tion starts. While this overhead is amortized in long-running
applications, it poses a challenge when HotSpot is used in
Function-as-a-Service (FaaS) scenarios since the user code
has to move through the profiling tiers each time a function
instance is started. AWS Lambda’s SnapStart [2] improves
the startup latency using checkpointing. However, as far as
we understand, the checkpoint is taken before the function
has handled the first request, i.e., before the application code
has tiered up. Thus, this neither reduces profiling nor the
compilation overhead. An interesting solution is CRaC (Co-
ordinated Restore at Checkpoint)[20]. CRaC can create a full
checkpoint of the JVM process executing a Java application
when requested from within the application code, e.g., after
a function in a FaaS setting has served enough requests that
it has tiered up. CRaC can be used in combination with a
snapshot orchestrator like Pronghorn [11], which automati-
cally determines, stores and reuses the best checkpoint for
each application. Similarly, Azul ReadyNow [3] persists the
profiling logs and employs this information to accelerate
warm-up in subsequent application runs.

A possibility is to switch from JIT to AOT compilation
altogether, such as using Graal’s native-image to create a
machine binary, thereby closing Java’s powerful open-world
assumption. The CRaC approach, in contrast, still has a JIT
compiler that could be used for run-time adaptation and
leaves the open-world assumption open.

Once fully tiered up, no further profiling data is collected
in the current HotSpot JVM. This lack of information limits
later optimizations to adapt to changes in workload charac-
teristics. Like other runtimes [8], HotSpot is known to suffer
from stale or polluted profiles; the longer a program runs,
the “more generic” the machine code becomes. Sporadic low-
overhead updates of the profiling data while the code is fully
tiered-up may help detect changes in the workload charac-
teristics. Such a low-overhead profiling could enable more
sophisticated optimizations.
Profiling is used as a means of optimization in static lan-

guages as well, through dynamic binary translation (DBT),
dynamic binary optimization (DBO) and feedback-driven op-
timization (FDO). Large-scale studies coming from Google [5,
22] and Facebook/Meta [16, 17] give a sense of the gains ob-
tained with FDO and post-link optimization. More precisely,
they perform fleet-wide profiling of application binaries and
install the new optimized code once it is generated. The two
techniques show similar performance. Profile-guided opti-
mization has also been shown to provide speedups in the
context of memory-restricted applications, e.g., on mobile
devices [12]. The critical difference between JIT profiling and
DBO/FDO is that in JIT-compiled languages the profiling
and feedback loop are readily included in the compilation
mechanism. There is no need for back and forth translation,
as the system naturally optimizes the code as it goes.

Related Work. A large number of studies on JIT com-
pilers for dynamic languages touch on profiling costs. Al-
thoughmissing a clear quantification of whatmakes profiling
expensive, many works propose solutions to mitigate this
overhead, e.g., through profile caching [13] and cross-run
sharing [1, 4, 10, 15]. Our work complements these studies
with a comprehensive characterization of profiling costs.

By contrast, Dot et al. [7] propose collecting additional
profiling data in order to reduce the costs of the run-time
checks specific to dynamic languages [18]. The additional
profiling information is inexpensive to collect but allows for
optimizations that lead to 7 % speedup on average.

Wade et al. [23] assess the impact of different profile types
on the performance of generated code in JIT vs. AOT compi-
lation. The authors use the DaCapo and SPECjvm2008 suites
on OpenJDK9 and present a breakdown based on profile
types and their contribution to the total impact. The authors
conclude that even a small amount of profiling can signifi-
cantly improve the generated code. Our work is orthogonal
to this study, as it looks at the costs of profiling, provides a
deep-dive into the receiver type profile and tier-up behavior
of real-world applications running on OpenJDK 17.

8 Conclusions
We study the profiling overhead caused by code instrumen-
tation in the C1 compiler of the HotSpot JVM. We report a
slowdown of up to 35× over the code generated by the same
compiler without profiling instrumentation. The largest over-
head is observed in multi-threaded applications and as the
main cause, we identify the memory contention on the pro-
filing data structures. Although the impact of this overhead
is not significant for applications with a pronounced hotspot
and that quickly move through the profiling phase, we find
one benchmark in the Renaissance suite that tiers up slowly
and experience a higher impact.

The receiver type profile requires the most complex code
instrumentation and is also among the most frequently col-
lected profiles. However, its complexity often does not cause
a significant run-time overhead as we found 95 % of the call
sites to be monomorphic. Furthermore, in at least 44 % of the
call sites, the C1 compiler can already deduce that they are
monomorphic from the class hierarchy analysis and elide
the type profile. Call sites without such a static binding are
profiled. However, they end up being monomorphic in 80 %
of the cases. Thus, only one conditional branch, which is pre-
dictable as always-taken, is executed at run-time, lowering
the effective profiling costs.

A low-overhead, hardware-assisted profiling mechanism,
would allow profiling in fully-tiered code and permit the
JVM to apply speculative optimizations adapted to changes
in the workload. We believe that pursuing this avenue is
worthwhile as it may enable performance improvements in
JIT runtimes beyond traditional native compilation.
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A Profiling Overheads on Arm64
We provide a brief analysis of the profiling overheard for
the 64-bit Arm architecture. In general, we observe a similar
behavior as on the Intel system. Figure 11 shows the arm64
assembly code for the count profile, branch profile, and the
method-level invocation count. The shown profiling snippets
require two to three instructions more on arm64 than on x64.
The main reason is that setting the 48-bit MDO address in a
register requires three instructions, each setting 16-bits of

1 ; x0: pointer to the receiver object (rcvr)

2 mov x4,MDO_addrlo16 ; x4 <- MDO base

3 movk x4 ,MDO_addrmi16 ,lsl #16

4 movk x4 ,MDO_addrhi16 ,lsl #32

5 ldr w0 ,[x0 ,8] ; w0 <- klass ptr

6 eor x0 ,x0 ,0 x800000000 ; decompr. klass ptr

7 add x9 ,x4,a_type_off

8 ldr x8 ,[x9] ; x8 <- A.type

9 cmp x0 ,x8 ; rcvr is A.type?

10 b.ne .l1 ; no -> test B.type

11 ldr x8 ,[x4,a_count_off]

12 add x8 ,x8 ,1 ; A.count += 1

13 str x8 ,[x4,a_count_off]

14 b l5 ; jump to end

15 .l1:

16 add x9 ,x4,b_type_off

17 ldr x8 ,[x9] ; x8 <- B.type

18 cmp x0 ,x8 ; rcvr is B.type?

19 b.ne .l2 ; no -> is A empty?

20 ldr x8 ,[x4,b_count_off]

21 add x8 ,x8 ,1 ; B.count += 1

22 str x8 ,[x4,b_count_off]

23 b .l5 ; jump to end

24 .l2:

25 add x9 ,x4,a_type_off

26 ldr x8 ,[x9] ; A.type is empty?

27 cbnz x8 ,.l3 ; no -> is B empty

28 str x0 ,[x9] ; A.type = rcvr

29 orr x8 ,xzr ,1

30 add x9 ,x4,a_count_off

31 str x8 ,[x9] ; A.count = 1

32 b .l5 ; jump to end

33 .l3:

34 add x9 ,x4,b_type_off

35 ldr x8 ,[x9] ; B.type is empty?

36 cbnz x8 ,.l4 ; no -> increment 'other '

37 str x0 ,[x9] ; B.type = rcvr

38 orr x8 ,xzr ,1

39 add x9 ,x4,b_type_count

40 str x8 , [x9] ; B.count = 1

41 b .l5

42 .l4

43 ldr x8 ,[x4,other_count_off]

44 add x8 ,x8 ,1 ; other.count += 1

45 str x8 ,[x4,other_count_off]

46 .l5: ...

Listing 3. arm64 instructions used to profile the receiver
type of an invokevirtual call

Table 5. arm64: Top-down microarchitectural analysis for
dotty and h2o-gbm ( % of issue slots in the pipeline)

FE BE
Tier bound retiring bad spec

dotty 1 56 % 15% 22% 7%
3 68% 9 % 19% 3%

h2o-
gbm

1 36% 24% 33% 6%
3 49% 16 % 33% 3%

the address, instead of one single instruction on x64, which
can contain the full MDO address in the immediate field of
the move (movabs) instruction. The footprint of the three
arm64 instructions is two bytes larger than that of movabs.
The instruction count increase is further exacerbated by
C1’s suboptimal register use. It moves the MDO address
into a register anew for every profiled bytecode instruction
rather than retaining the value in a register for reuse. For
example, in Listing 1, theMDO address of the rendermethod
is set more than 40 times, even though sufficient unused
architecture registers are available. The assembly snippet for
collecting the receiver type profile (Listing 3) is even larger.
With 40 instructions, it is almost twice as large as on x64.

We repeat the overhead analysis from Section 4 on an Arm
system. Because this is a dual-socket server-class system,
we limit the number of CPU cores available to the JVM to
16, the same number as the logical core count on the Intel
system, in order to obtain a comparable system configuration.
Furthermore, we bind the JVM to use memory from the
NUMA zone that is local to 16 CPU cores.
Figure 12 shows the profiling overheads in Tier 2 and

Tier 3 for the Arm system. The overheads are similar to
those of the Intel system. The geometric mean of the profil-
ing slowdown is 5.0× compared to 5.7× on the Intel. We also
identify fj-kmeans on arm64 as the benchmark that expe-
riences the highest profiling overhead in Tier 3 with a 34×
slow-down compared to Tier 1 (cf. 35× on x64 in Figure 4).
The overheads in naive-bayes and akka are slightly higher
for the Arm configuration, while philosophers shows a lower
overhead. The Tier 3 profiling instrumentation increases the
code footprint by 2.7× (geomean) compared to 2.6× on Intel.
As expected, the average size of the code of a compilation
when restricting the JVM to stop at Tier 3 is 8.5 % higher
on arm64 than on x64. Since the Tier 1 code is only 2.4 %
larger on arm64 than on x64, we conclude that C1’s profil-
ing instrumentation on Arm indeed causes an increase in
code footprint size. However, despite this increase, only 1/3 of
benchmarks experience a higher slow-down on arm64 and,
hence, has a small performance impact.

We also repeat the top-down microarchitectural analysis
(Table 5) and observe a similar behavior as on x64. Both
benchmarks are also front-end bound on arm64. The pro-
filing instrumentation further increases the percentage of
pipeline slots that are empty due to front-end issues.
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1 ; e.g., invokestatic

2 mov x3 ,MDO_addrlo16

3 movk x3 ,MDO_addrmi16 ,lsl 16

4 movk x3 ,MDO_addrhi16 ,lsl 32

5 ldr x8 ,[x3,count_off]

6 add x8 ,x8 ,1

7 str x8 ,[x3,count_off]

8 ...

(a) Count Profile

1 ; e.g., ifeq

2 mov x0,MDO_addrlo16

3 movk x0,MDO_addrmi16 ,lsl 16

4 movk x0,MDO_addrhi16 ,lsl 32

5 mov x8,taken_off

6 mov x9,not_taken_off

7 csel x2,x8 ,x9,eq

8 ldr x3 ,[x0,x2]

9 add x3,x3 ,1

10 str x3 ,[x0,x2]

11 b.eq .l1

12 ...

13 .l1: ; actual target

(b) Branch Profile

1 ; in method preamble

2 mov x0 ,MDO_addrlo16

3 movk x0 ,MDO_addrmi16 ,lsl 16

4 movk x0 ,MDO_addrhi16 ,lsl 32

5 ldr w2 ,[x0,invoc_cnt_off]

6 add w2 ,w2 ,2

7 str w2 ,[x0,invoc_cnt_off]

8 and w2 ,w2,overflow_mask

9 cmp w2 ,0

10 b.eq counter_overflow

11 ...

(c) Invocation Count

Figure 11. arm64 assembly code for count and branch profiles, and the invocation counter in the method preamble
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Figure 12. arm64: Profiling overheads in Tier 2 and Tier 3 relative to Tier 1 for the Renaissance suite and our additional
benchmarks. Benchmarks in bold are single-threaded.
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