

TRITA - MMK 2006:11
ISSN 1400 -1179

ISRN KTH/MMK/R-06/11-SE

Co-design of Control Systems and
their real-time implementation - A

Tool Survey

by

Martin Törngren, Dan Henriksson, Ola Redell,
Christoph Kirsch, Jad El-Khoury, Daniel Simon,

Yves Sorel, Hanzalek Zdenek and Karl-Erik Årzén

Stockholm
2006

Technical Report

Mechatronics Lab, Department of Machine Design

Royal Institute of Technology, KTH
100 44 STOCKHOLM, Sweden

TRITA - MMK 2006:11
ISSN 1400 -1179

ISRN KTH/MMK/R-06/11-SE

Co-design of Control Systems and their
real-time implementation - A Tool

Survey

by

Martin Törngren, Dan Henriksson, Ola Redell,
Christoph Kirsch, Jad El-Khoury, Daniel Simon,

Yves Sorel, Hanzalek Zdenek and Karl-Erik Årzén

Stockholm

2006

Technical Report

Mechatronics Lab, Department of Machine Design

Royal Institute of Technology, KTH
100 44 STOCKHOLM, Sweden

 4

 5

TRITA - MMK 2006:11
ISSN 1400 -1179

ISRN KTH/MMK/R-06/11-SE

Document type

Technical Report

Date

2006-09-26

Author(s)

Martin Törngren, Dan Henriksson, Ola Redell,
Christoph Kirsch, Jad El-Khoury, Daniel Simon,
Yves Sorel, Hanzalek Zdenek and Karl-Erik Årzén

Corresponding author: martin@md.kth.se

MMK

Mechatronics Lab

Department of Machine Design
Royal Institute of Technology, KTH

100 44 STOCKHOLM, Sweden
 Title

Co-design of Control Systems and their real-time
implementation - A Tool Survey

Abstract

Increasing needs for optimized designs and for handling the dependencies among control
systems and their real-time implementation, cause a resulting need for tools that have the
abilities to support design across these traditional discipline boundaries. Tools supporting such
co-design provide new opportunities in developing cost-efficient, dependable and robust
solutions where the interactions between control and implementation engineers can be
improved, and where further possibilities are obtained by increasing the information flow
between the control system and the hardware/software platform during run-time. Work on co-
design has the important effect to stimulate new theoretical research directions where more
work is needed because of the lack of theory and methods in the field. Co-design related to
embedded control system is a fairly new area and most of the methods and theory developed
so far are aimed at analysis rather than synthesis. A further great challenge is that of model
and tool integration, where there are needs to coordinate and integrate the multitude of aspects
and specialized models/tools that are used in the development of embedded control systems.
This survey sets the context of embedded control systems development describing what is
achievable with current generation industrial tools. The context is further elaborated by
discussing categories of tools from different related research disciplines. A set of
representative co-design tools are then described in depth and discussed.

 6

 7

Index

1 INTRODUCTION...9

1.1 REPORT BACKGROUND ..9

1.2 BACKGROUND AND NEEDS...9

1.3 OPPORTUNITIES AND CHALLENGES IN CO-DESIGN..11

1.4 FOCUS, ORGANIZATION AND CONTENT OF THE SURVEY13

2 AN OVERVIEW OF EMBEDDED CONTROL SYSTEMS DEVELOPMENT
AND AVAILABLE TOOL SUPPORT..17

2.1 MODEL BASED DESIGN AND RAPID CONTROL PROTOTYPING19

2.2 TARGET CODE GENERATION...19

2.3 ANALYTICAL VERIFICATION ..21

2.4 SIMULATION AND TESTING BASED VERIFICATION AND VALIDATION22

3 TOOLS FROM CLOSELY RELATED DOMAINS25

3.1 HARDWARE-SOFTWARE CO-DESIGN...25

3.2 MULTI-MODEL DESIGN ENVIRONMENTS AND HYBRID SYSTEMS26

3.3 DISCRETE-EVENT SYSTEMS..28

3.4 NETWORKING TOOLS ...28

3.5 REAL-TIME SCHEDULING AND COMPUTING ..29

3.6 SAFETY AND RELIABILITY..31

4 OVERVIEW OF SELECTED TOOLS...33

4.1 AIDA ..33

Tool Overview ...33

Comparative Aspects...35

4.2 JITTERBUG ...39

Tool Overview ...39

Comparative Aspects...40

4.3 ORCCAD..44

 8

Tool Overview ...44

Comparative Aspects...45

4.4 PTOLEMY II ...51

Tool Overview ...51

Comparative Aspects...52

4.5 RTSIM..55

Tool Overview ...55

Comparative Aspects...58

4.6 SYNDEX..60

Tool Overview ...60

Comparative Aspects...62

4.7 TORSCHE..64

Tool Overview ...64

Comparative Aspects...65

4.8 TRUETIME ...71

Tool Overview ...71

Comparative Aspects...74

5 DISCUSSION: TRENDS AND CHALLENGES ...81

6 CONCLUSIONS..82

7 ACKNOWLEDGEMENTS..83

8 REFERENCES..84

 9

1 Introduction

1.1 Report background
This report has been produced as part of the research work carried out by the Control for
Embedded Systems Cluster within the ARTIST2 network of excellence [ARTIST2,
2006].

The origin of the report traces back to work carried out at KTH and LTH in work on co-
design tools. A first attempt of a tool survey was carried out as part of the Swedish
Flexcon project (ending 2005). During the first year of the ARTIST2 project this work
was extended to encompass a contextual perspective of industrial tool usage and tools
from related domains. During the second year of ARTIST2 this draft report was extended
with descriptions of more tools and finalized. A short summary of the report has been
published separately [Törngren et al., 2006].

1.2 Background and needs
In the early of days of computer control system design, resource constraints were legio.
Memory was scarce as was computational performance and accuracy. Failure rates were
high and communication rates low. During the 60s-70s the (few) designers working in the
area were well aware of the need for co-design of the control systems and its electronics
and software implementation; that is, the fact that control design decisions had an impact
on the implementation whereas decisions taken in terms of which electronic components
to use and how the software was implemented, constrained the control system design.
Designers at that time were often responsible for developing both the control system and
its implementation, [Motus and Rood, 1994].

Early efforts on real-time implementation environments and code generation can be
found in the 1980s in the conferences Computer Aided Control Engineering (often called
Computer Aided Control Systems Development, [Control Systems Society, 2004]). As
computer-aided engineering tools improved it became possible to support a wider range
of tool functionality. Examples of relatively early efforts which in some way address real-
time implementation of control systems include

- The Development Framework [Bass et al., 1994], which combined and to some extent
integrated control design (in Simulink) with software engineering capabilities using a
CASE tool (Software through Pictures)

- The GRAPE tool-set [Lauwereins et al., 1995], developed for digital signal
processing systems and supporting distributed systems (allocation, scheduling,
partitioning).

- Efforts by Honeywell labs including MetaH and the Parallel Scalable Design
Tool-set, [Vestal, 1994; Bhatt et al., 1996]. The MetaH effort has been the basis for
further work the Architecture and Analysis Description Language, which now has
been standardized by the SAE, [AADL, 2004].

 10

The evolution of electronics and software over the last decades has provided a technology
basis making it possible to realize virtually all kinds of control related functionality in
different products. Software has become the competitive advantage in embedded control
systems allowing unprecedented flexibility. Many examples can be given including the
evolution of automotive control systems such as braking control and engine management,
the use tracking and focus control in CDs/DVDs (now available per piece at a few dollars
cost) to industrial robotics (where software now is the dominating cost in development).

Networking of such embedded control systems have followed the introduction of stand-
alone controllers in a rather rapid pace, being introduced in process control in the 70s, in
aerospace in the 80s and in the automotive industry in the 90s. Networking initially had
the basic purpose to reduce the cost of installations (reduced cabling, shared sensors,
facilitated diagnostics etc.), but once in place, will be used to realize new coordinating of
existing subsystems thus creating new functionality. Apart from product internal
networks, embedded systems are also increasingly being connected to external systems,
for example for maintenance purposes. Again entirely new functionality is possible by
such connections, for example coordinating a fleet of vehicles.

In consequence, many computer-controlled systems are today distributed systems
consisting of computer nodes and a communication network connecting the various
systems. It is not uncommon for the sensor, the actuator, and the control calculations to
reside on different nodes in the system. One prominent example of this is modern
automotive systems, which contain several embedded ECUs (electronic control units)
used for various feedback control tasks, such as engine performance control, anti-lock
braking, active stability control, exhaust emission reduction, and cruise control.

While the above mainly shows the possibilities in terms of new functionality and
increased performance, this evolution has also drastically increased the complexity of the
resulting systems. This complexity has many facets. For example, considering again the
automotive industry, a top-of the line car today has some 70 nodes (microprocessor based
core entities of the distributed system) which are delivered by some 30 vendors. Within
the individual nodes in the networked control loops, the controllers are often
implemented as one or several tasks on a microprocessor with a real-time operating
system. Often the microprocessor also contains tasks for other functions, e.g.,
communication and user interfaces. The operating system uses multiprogramming to
multiplex the execution of the various tasks. The CPU time and the communication
bandwidth can hence be viewed as shared resources for which the tasks compete.

Pursuing the use of embedded control systems further thus requires efficient complexity
management. The traditional separation of engineers into different disciplines is closely
related to the increasing complexity but the division into disciplines can also create
problems. For control systems, the typical separation between control and
implementation engineers makes it important to define and appropriately handle design
issues that have an impact across these domains. Issues such as control bandwidth and
computational structure vs. choice of processors and processor scheduling will affect, and
be dependent, on each-other. Ineffective support for communication and analysis across
the domains covered by the disciplines may not only cause lengthy and costly iterations
but also later product failures with even more serious consequences.

 11

In addition, there is a strong trend within industry today to use commercially available
information technology and commercial-off-the-shelf (COTS) components deeper and
deeper in the real-time control systems. These components have restricted configurability
and may not be well suited for control systems. Limited resources combined with
non-optimized hardware and software components introduce non-determinism in the
real-time system. Digital control theory normally assumes equidistant sampling intervals
and a negligible or constant control delay from sampling to actuation. However, this can
seldom be achieved in practice in a resource constrained system. For control systems this
is of particular concern. Timing variations in sampling periods and latencies degrade the
control performance and may in extreme cases lead to instability. Tough product
demands in terms of competition and legislation will moreover cause a need for
optimizing system designs where the trade-offs (and design issues) at hand, e.g. control
performance vs. word-length/price of processor, will affect more than one engineering
domain. The needs for optimization are particularly relevant for large series production
where the goal is to make the hardware cost proportion as small as possible. Typical
examples are provided by the automotive industry which try to squeeze control
functionality onto as small microprocessors/controllers as possible.

Co-design is also required for emerging highly safety-critical applications such as steer
and brake by wire. The traditional approaches for achieving highly dependable systems
are not really viable here because they are so costly; instead there is a need to combine
application and computer system measures in order to develop cost-efficient dependable
computer control systems – i.e. co-design between the control system and its
implementation is required.

Optimization of the control system implementation will have the effect that resource
constraints appear, constraints that to be properly accounted for during control design.
Constraints can also occur in products with smaller series. This is for example the case in
novel applications such as wireless distributed systems where power and communication
constraints will affect the control system design.

All in all there is consequently an increasing need for tools that support co-design of
control systems with their electronics and software implementation. For optimal use of
computing resources, the control algorithm and the control software designs need to be
considered at the same time, or alternatively, given the constraints of e.g. a COTS based
platform, the imperfections it provides has to be taken into account in the control design.

1.3 Opportunities and challenges in co-design
There are many instances of the control / computer implementation co-design problem.
These can typically be formulated as optimization problems; consider the two following
examples:

 12

Control and scheduling co-design problem: Given a set of systems to be controlled
and a computer with limited computational resources, design a set of controllers
and schedule them as real-time tasks such that the overall control performance is
optimized.

Control and cost co-design problem: Given a set of systems to be controlled and
control performance specifications for these, choose an implementation in terms
of a distributed computer system including deciding the allocation of control
functions, their partitioning into tasks, scheduling and triggering, such that the
overall production cost is minimized while guaranteeing the specified control
performance.

A major challenge, however, in solving these types of optimization problems is that the
relations between the involved parameters are non-linear and sometimes even difficult to
formulate, see FIG. 1 which illustrates some of the relationships. Although confined
optimization problems can be formulated, and sometimes also solved analytically, real
problems are even more complex and typically involve optimization of several variables.
In realistic settings, the support of simulation and what-if-type analysis is therefore an
important approach.

Figure 1. Complex relationships between control system qualities and computer system design
parameters

As outlined above, there are many variants of the co-design problem and thus problems
that tools can be targeted to solve.

Whereas the co-design takes place during system development it can target both design
time optimization as well as the design of on-line interactions, for example, dealing with
re-configuration in order to handle changing conditions such as changing loads or partial
system failures. The definition of the division of responsibilities and the information
flow, required during run-time, between the controller and the platform is an important
part of the co-design work. Examples of such issues include the determination of where
to detect certain conditions such as e.g. a computational failure; should this be the
responsibility of the platform or the controller? Where should the resulting error handling
be placed?

A key challenge for the implementation of control systems is that of trying to define the
appropriate abstractions and their dependencies with discipline specific design
parameters (compare with FIG.1). Experiences have shown that research into an
interdisciplinary area such as control/computer co-design can help to identify the gaps

Scheduling &
Network

Parameters
(T,D,Prio,

Protocol,…)

Task Timing
Parameters

(latencies, jitter, …)

Control
Performance

(variance, rise time,
overshoot, ….)

Complex relationship Complex relationship

 13

between different theories and stimulate entirely new research directions, [Törngren et
al., 2001].

1.4 Focus, organization and content of the survey
The main focus in this survey is on tools that provide a bridge between the domains of
control function and computer system design in that they allow

• one or more trade-offs to be resolved (e.g. cost vs. performance),
• constraints, on behalf of the control or computer system, to shape the design of

the other.

Examples of issues involved include from the control side

- choice of controller synthesis method (e.g. taking robustness and compensation
with respect to computer system deficiencies into account)

- algorithm computational requirements (e.g. types of arithmetics required
- resulting memory requirements (code and data, volatile-/non volatile storage)
- algorithm structure and information flow (causing data and control flow

requirements)
- control design (causing accuracy requirements in computation as well as

requirements on assumed timing; delays, periods and admissible jitter)
-

and from the computer system side

- choice of hardware components (affecting cost, quantization in computations, and
basic communication and computational speed)

- the choice of networking protocol
- the software logical structure, partitioning into tasks
- the overall execution structure of the system (including the triggering of actions,

synchronization and scheduling – determining the actual timing of the system).

In addition, certain decision and issues lie in-between these traditional views, for example
the allocation of control functionality to computational elements. The execution time of a
particular control system function will also depend both on the controller design as well
as on the implementation method including the software/hardware platform. Other, non-
control related functionality, also has to be considered since it can have an impact on for
example the system timing.

The focus in the survey in terms of the product life-cycle is on tools that support system
design related to modeling, analysis and synthesis. The emphasis is on “upper case” tools
– i.e. tools that support design at the conceptual level of function and implementation
architecture design. A further delimitation is that the types of analysis in main focus are
related to the run-time behavior of the system (e.g. control system, timing behavior and
power consumption) – as opposed to non-run time properties (typically more purely
structurally related) such as maintainability and hardware reliability.

 14

A challenge in this survey is that fact that the area is very dynamic with new tools
frequently emerging and that there are already a multitude of existing tools that in one
way or the other support co-design. While academic tools often are dedicated to one or a
few tasks, commercial tools often support a wide range of design tasks that may span a
large portion of the system development.

The tools chosen for the given focus have in common that they directly support co-design
of control systems and their implementation in terms of being able capture the
appropriate models, analyse dependencies related to trade-offs and/or capable of
constraints based synthesis.

Tools that support a one way synthesis from control specification to implementation,
without explicitly (or weakly) formulated constraints or dependencies, are not covered in
the survey part, thus for example excluding pure rapid prototyping systems. Generic tools
that do not explicitly support control systems have been excluded from the survey. In
addition, for tools that have a basic ability for co-design but where there are add-ons that
provide much more interesting capabilities, only add-on tools are covered (one example
of this is Matlab/Simulink1 which is not included by itself but rather indirectly since some
of the chosen tools are based on it).

The tools chosen for the survey should finally not be seen as exhaustive, but rather as
highly representative for the given focus.

The following tools are included in the survey:

- AIDA from the Royal Institute of Technology, Sweden.
- Jitterbug and TrueTime from Lund University, Sweden
- Ptolemy II from the University of Berkeley, California
- RTSIM from the RETIS Laboratory, Pisa, Italy
- SynDEx and Orccad from INRIA, France
- TORSCHE from the Czech Technical University in Prague

The tools included in this report approach co-design of real-time control systems in
different ways, with specific design scenarios and concerns in mind. Some of the tools,
such as TrueTime and AIDA, are specially tailored towards control and real-time
co-design, whereas for others, such as Ptolemy II, the real-time control systems
simulation is just one part of a larger framework. The abstraction level ranges from a very
high level of abstraction of the distributed computer system in terms of time-varying
delays, jitter in periods and transient faults, to detailed architectural models, as in
TrueTime and RTSIM, that actually mimic the operation of for example an RTOS. Some
of the tools are more directed towards synthesis, e.g. in terms of code generation such as
ORCCAD, but also for the assignment in space and time of control functions, the case for
SynDEx and TORSCHE. Finally, the tools also have an origin from different disciplines,
but all have been extended to cater for control and computer system co-design.

1 From the Mathworks: http://www.mathworks.com

 15

As an aid to the reader, and also to be able to relate the chosen focus area to other related
tools, the survey begins in Section 2 with an overview of control systems development
and the functionality that is provided by existing high-end commercial tools. As a further
contextual outlook, Section 3 gives an overview of closely related domains with which
there are some connections to the tools discussed here. Several examples of tools are
given in Section 3, where the reader will note that these tools often are on the boarder-
line to the area of co-design treated in this report; examples of such tools include AIRES
(from the Univ. of Michigan), Sildex (from TNI), the TT-Tech tool-suite (from TT-Tech)
and CAMeL-View (developed at the Univ. of Paderborn, now available as a commercial
tool).

Section 4 contains the survey of the above mentioned tools. Finally, Section 5 discusses
their characteristics and outlines trends and challenges in the further research and
development of co-design tools.

A complementary description of the area of co-design is given in the corresponding
Roadmaps by the ARTIST2 Control for Embedded Systems Cluster, [ARTIST2 Control
cluster roadmaps, 2006]. These roadmaps are available on-line2 together with other
publications produced by the cluster.

Other useful surveys and roadmaps include the

- Handbook of Networked and Embedded Control Systems [Hristu-Varsakelis and
Levine, 2005], which indirectly describes a number of related tools and many of the
concerns involved in co-design.

- ARTIST roadmaps [Bouyssounouse and Sifakis, 2005], describing the needs in many
application domains and giving examples of tools and their functionalities.

- The COLUMBUS project survey on modeling and tools for hybrid systems [Carloni
et al., 2004], giving an overview of tools dedicated to hybrid systems.

2 Publications by the ARTIST2 Control for Embedded Systems Cluster:
http://www.md.kth.se/RTC/ARTIST2/publications.html

 17

2 An overview of embedded control systems development
and available tool support

The strong market demands, an increasingly competitive pressure and the increasing
system complexity are driving and making the use of powerful tool environments ever
more important.

Control engineering has a strong tradition in model based development, using well
founded mathematical concepts for describing the plant to be controlled, the control
systems as well as disturbances affecting the plant and sensors. Control engineering
models are used to communicate designs among developers (within and in-between
companies), for system analysis as well for synthesis. However, industrial adoption
and practices still vary to a great extent. Some industrial domains are characterized by
control theoretic and model based approaches supporting the development. Other
domains, however, such as automotive engine control, rely heavily on look-up tables
and calibration of systems for control purposes – i.e. there is less of a tradition of
model based control.

The maturity of model based development thus varies a lot but is in general more
developed in “Control for embedded systems” compared to “software development
for embedded systems”. Many domain specific traditions are also in place as mirrored
by the wide variety of specialized modelling languages and tools, see e.g.
[Bouyssounouse and Sifakis, (2005), and Törngren & Larses (2005)].

The development and tools discussed in this section represent the more advanced
model-based development practices that can be found in industry. This section
provides an introduction to representative capabilities provided by existing
commercial tools, including their support for

- system modeling and design
- rapid control prototyping (RCP), allowing control designs to be quickly

prototyped using general purpose controller hardware
- analytical verification of system properties
- code generation from control system models including analysis of quantization

effects, e.g., relevant for fixed-point implementation
- testing of generated code and final implementations

Other important capabilities supported by many tools, but not covered in this report,
include the calibration of target systems (e.g., over CAN, where for example control
parameters and look-up tables can be fine tuned and the control performance analyzed
on-line) and configuration management, providing versioning and change
management of for example design models, tests and components.

The above listed functionalities are not distinct and can thus be used in different
development stages and the functionalities to some extent also overlap. They are
briefly described in the following sections.

There exist a large number of tools that support more or less of the above sketched
functionality. The tools can differ in the modeling paradigms provided (e.g.
continuous-time, discrete-time, vs. discrete-event) and in the provided analysis and
synthesis support. The most common type of analysis is that of simulation based

 18

testing; examples of several forms of testing are given in the following sub-sections.
Many tools support some form of code generation where two types can be
distinguished; code generation for rapid prototyping vs. for production systems. In the
former case, there are less stringent requirements on the code generator since
prototyping systems typically constitute resource adequate systems, i.e. systems with
more than plenty of execution and memory resources. For production code generation
there are additional requirements which require more elaborate optimization of the use
of execution and memory resources.

Examples of tools that support a larger portion of the above mentioned functionality
include the tool chains provided by the companies Mathworks3/dSPACE4, Etas5 and
Esterel Technologies6.

Systems development is often depicted using different process models. The V-model,
illustrated in FIG. 2, is such a model, which is commonly used although it is highly
simplified.

Figure 2. The V-cycle model of control system development, illustrating the use of tools that
support various design activities, from early modeling and simulation to hardware in the loop
testing.

The V-model does not, for example, illustrate the iterations part of the development
and the dependencies that exist between different development stages. The
simplifications part of the V-cycle can also be seen by considering tasks that have to
be part of control system development. Examples of such tasks include

- Defining initial requirements and constraints

3 http://www.mathworks.com
4 http://www.dspace.com
5 http://en.etasgroup.com/
6 http://www.esterel-technologies.com/

Function design

Rapid Control Prototyping Integration testing

Code Generation/
platform integration

Unit testing
Controller

Platform

Plant RT-
simulation

Calibration

Controller

Function design

Rapid Control Prototyping Integration testing

Code Generation/
platform integration

Unit testing
Controller

Platform

Plant RT-
simulation
Plant RT-
simulation

Calibration

Controller

 19

- Defining and planning the development project including choosing supporting
tools

- Deciding the control design approach and performing the control design
- Choosing sensors and actuators
- Choosing the computing platform (software and hardware)
- Mapping the control design to the computing platform
- Verifying that the requirements are satisfied by the implementation
- Validating that the solution actually meets stake-holder needs
- Fine tuning the final implementation by calibration

It is clear that all these steps are interdependent and that many different approaches
are possible in ordering and/or parallelizing these tasks.

2.1 Model based design and rapid control prototyping
Typical for modern tools is that they support graphical specifications of control
functionality. Classical methods of control theory can be used to identify and optimize
the control characteristics of the function. As the graphical specifications provide an
executable semantics, the control function can be simulated, either by stimulating it
with appropriate input values or by having the function in a closed loop with plant and
environment models. The graphical specifications include basic components or model
elements which can be hierarchically decomposed. In describing the behaviour of
each component there are typically several alternatives; a native behavior description
can be used (for instance using pre-defined transfer function or state space
components) or the behavior of the component can be defined by encapsulating
programmed algorithms (e.g. coded in C-code). The components can be treated as
white or black boxes.

Furthermore, the graphical specification of the control function can be extended by an
appropriate I/O interface specification; in practice these specification are just other
components that include code that directly can access I/O devices. The resulting
model can be compiled (where code is generated) and executed either on a PC directly
or on a separate real-time hardware, each providing connections with the actual
controlled system. This stage is called rapid control prototyping. It is an established
method for fast design iterations.

In these early stages of the development process a control engineer will usually focus
on the functional and behavior of the control function but not on details of a later
software implementation on an electronic control unit. Modeling guidelines are
important to ensure proper use and maintenance, but can also be required to ensure the
proper behavior and the generation of efficient production code.

The design models form a basis for communication, analysis and code generation.
Code generation and some specific analysis techniques are described in the following.

2.2 Target code generation
The use of code generation has increased significantly only over the last few years
[Reuter et al., 2004]. There are several motives for introducing code generation in the
first place including reducing the development time, ensuring consistency among

 20

models - code - and documentation, reduction of programming faults, and ease of
porting.

Important requirements on code generation technology are on the other hand to ensure

- efficiency in terms of memory and speed, and
- dependable code generation, providing testing and analysis techniques to

ensure that the generated code behaves as intended
Using this technology, a control engineer will deliver an executable graphical
specification as a reference for further simulations and as a basis for the generation of
code for implementation.

Efficient code generation means that a minimum of execution time, RAM and ROM
resources as well as stack size is required to run the code on an embedded processor.
This minimizes chip size and costs. But production-quality code generation involves
more than just these benchmarks. There are soft criteria that are equally important,
including human readability of the code, traceability between code and model and
target awareness of the code. Modern code generators typically support also the
automatic generation of the software documentation.

Code generators use a range of techniques to meet such requirements including
standard and inter-block optimizations and the use of code pattern libraries. For
reasons of efficiency, some production code generators also have the ability to
perform processor- and compiler-specific optimizations. FIG.3 illustrates the
difference between optimized vs. non-optimized code-generation.

Figure 3. Code generation example; from Simulink to C-code (Courtesy of dSPACE).

Dependable code generation is closely related to the provision of complementary
facilities for ensuring that the generated code is correct. For example, even though the
control system model may have been verified, bugs in code generators, compilers and
even hardware can cause erroneous behaviour. Examples of available testing
environments supporting the progression and profiling, from models to
implementation, are given in section 2.4.

 21

In the context of this report, it is interesting to note that a code-generator in effect
provides an interface between control designers and implementation engineers; it can
thus serve as a co-design tool. This is particularly the case for the types of problems
considered in this report, where resource constraints appear.

A control system design could in the simplest case correspond to a few discrete-time
equations. In practice, a controller contains both state machine logic and such
equations. In transferring such a control system design to software there are many
decisions to be made and many trade-offs are possible. It is often desirable to
minimize the required amounts of memory (e.g. allowing only on-chip memory to be
used) and to reduce the execution time of a given algorithm (reducing the delay from
sampling to actuation). At the same, it is desirable to use a cheap processor while
providing the accuracy needed for computations. Unfortunately, these requirements
are contradicting. While reduced memory consumption can be achieved, it typically
comes at the cost of increased execution time and reduced accuracy. While execution
times of algorithms can be reduced, this in turn typically requires more memory and
reduces the accuracy of requirements, etc. Full automatic code generation is very
difficult unless some of these constraints can be relaxed.

An example of a code generator that support designers in dealing with such trade-offs
is Targetlink from dSPACE. In doing so, the tool provides support for evaluating
control performance, execution time and memory consumption for given
implementations in terms of choices of variable sizes, scaling of variables etc. For
fixed point processor implementations, Targetlink supports scaling tasks and
automation wherever possible.

2.3 Analytical verification
There are several theoretical approaches towards analytical verification of control
systems. These approaches are strongly linked to the types of models, or models of
computation, that they are developed for. As illustrated in Figure 4, these models
could be characterized in terms their notion of data and time. Control theoretic
approaches are strong in handling continuous time data and continuous time, for
example allowing formal model based analysis of robustness and stability with respect
to sensor noise and defects (or just modeling errors) in the controlled plant. The
theory is also well developed for period (time-triggered) discrete-time systems
whereas there is less work addressing discrete-data (quantization) and even less so for
discrete-event systems, [ARTIST2 Control cluster roadmaps, 2006].

More recently, formal techniques with a computer science background have also been
made available within in control engineering tools or by exporting models to other
tools providing such facilities. Such techniques are applied to the discrete-event
system parts (lower right hand part of Fig. 4) of control systems, see e.g. Ranville
(2004) and the ARTIST roadmap, [Bouyssounouse and Sifakis, 2005]. The term
‘model checking’ was introduced in the early eighties. The capabilities of the
technology have advanced significantly over the years, and it is now, for example,
commonly applied in the area of hardware verification. Model checking is a technique
that relies on building a finite state machine model of a system of interest and
checking that a desired property holds in that model. One example of the type of

 22

question that can be addressed is as follows: Can the ABS feature be requesting a
decrease in engine torque at the same time as the cruise control feature is requesting
an increase in engine torque? The use of model checking then requires formulating
this type of requirement in the provided formal specification language and a system
model that is amenable to analysis.

Figure 4. Model categories according to how data and time are represented. Theoretical
approaches are less well developed for hybrid systems, where different models are mixed (e.g.

a system containing several continuous systems where the connections and activations
between them is controlled by a state machine).

A central problem in applying model checking is the scalability of the techniques,
suffering from very large state spaces. This problem becomes even more cumbersome
when dealing with embedded control systems that are composed of variables,
continuous in both range and time, and incorporating a mixture of discrete-event and
continuous time systems. Moreover, there has most probably also been a lack of
training and in developing appropriate user interfaces. In adopting this technology,
methodology and model extraction become important, to actually address the most
relevant problems (subsystems, functions) and at the right level of abstraction. The
use of such tools is right now emerging in embedded control systems and there is
plenty of research in attempting to extend the technology, ([Bouyssounouse and
Sifakis, 2005], [Carloni et al., 2004]).

2.4 Simulation and testing based verification and validation
The model-based development approach also brings new opportunities to perform
tests7 at various stages within the development – not only at the end after having built
the actual system.

7 Note that the use of the word testing here encompasses tests performed on models, physical
systems/components or a combination thereof.

Continuous data Discrete data

Continuous
time

Discrete
time

Discrete
event

dx/dt(t) = Ax(t)+Bu(t)

x(k+1)=Γ(k)x(k)+Φ(k)u(k)

dxq/dt(t) = Aqxq (t)+Bquq(t)

x(kh+h)=Γx(kh)+Φu(kh)

Continuous data Discrete data

Continuous
time

Discrete
time

Discrete
event

dx/dt(t) = Ax(t)+Bu(t)

x(k+1)=Γ(k)x(k)+Φ(k)u(k)

dxq/dt(t) = Aqxq (t)+Bquq(t)

x(kh+h)=Γx(kh)+Φu(kh)x(kh+h)=Γx(kh)+Φu(kh)

 23

As soon as a model for the control function, a plant model and models of other
pertinent aspects of the environment, such as disturbances, are available these models
can be used in a closed control loop. The strength of testing through simulation is (at
least) four-fold:

- There are few limitations in the types of systems that can be tested, e.g. works
for non-linear systems and for hybrid systems

- The test conditions can be well defined and the tests are repeatable
- The tests can be automated.
- The tests can support a wide variety of purposes including verification in early

development stages as well as analysis of failures during maintenance.

A corresponding challenge is that of defining relevant test scenarios and also in
appropriately managing the test process. However, once such an environment is set
up, it can be reused, not only for other systems/products but also incrementally during
development. It is for example today common to support so called software-in-the-
loop (SIL) simulation, where the basic setup is the same but where the control
function part of the model has been replaced by the corresponding production code.
The behaviour of the production code can then be compared with the behaviour of the
function model.

A final step in testing is so called hardware-in-the-loop (HIL) simulation. Here, the
real control unit is embedded within a testing environment that typically contains real-
time simulation, electrical components emulating parts of the environment and some
real physical components. Real-time plant models are required for realistic
simulations. HIL simulation covers a brought range of test procedures, including

• correct interaction of networked components,
• test of diagnostic functions and communication,
• electrical fault simulation,
• simulation of not yet existing control units, so-called rest-bus simulation,

systematic generation and injection of electrical and logical faults.

 24

 25

3 Tools from closely related domains
There are many areas and disciplines with tools that have some relation to the type of
co-design tools being studied in this survey. FIG. 5 outlines a number of related areas.
The characterization is for illustrative purposes mainly but does indicate that the areas
are more or less connected and overlapping (all overlaps are not shown!). The purpose
of this section is to briefly outline some these related areas and their connection to the
tools studied in this report. Some examples are given. The tools covered in section 4
originate from several of the communities shown in FIG. 5.

Figure 5. Sample research areas/disciplines with tools with some relation to the co- design of
control systems and their implementation. Note that several of these areas address other
dimensions of co-design.

3.1 Hardware-software co-design
Tools from the area of hardware-software co-design have many similarities to the
types of tools studied in this report, where the main difference is the type of
functionality considered (control functions vs. more or less general software). In
common are the goals to provide support to designers that assist in mapping
functionality to a platform while highlighting relevant trade-offs.

Tools in this area often utilize hardware/software modeling languages such as
SystemC and VHDL, which can be seen as a kind of high-level languages including
concurrent behavior. There are several examples of commercial design environments

Co-Design Tools

Hybrid Systems

Control

Multi-Model Design
Environments

Real-Time Scheduling &
Computing

Networking
Hardware-software co-design

Discrete-event
systems

Safety & Reliability

Co-Design Tools

Hybrid Systems

Control

Multi-Model Design
Environments

Real-Time Scheduling &
Computing

Networking
Hardware-software co-design

Discrete-event
systems

Safety & Reliability

 26

(such as those from companies like Xilinx8, Cadence9 and Mentor10) that provide
integrated design environments where both software and hardware, and the mapping
of software onto the hardware, can be specified. The area is intensively evolving.

An interesting research project in this category is Metropolis11 which has the aim to
support design from specification to implementation on hardware and software
platforms. Two important parts of Metropolis are its methodology and meta-model
(tools are also available). The meta-model serves the purpose to allow different
models of computation to be defined. The meta-model allows behaviors to be defined
using the basic capabilities of actions, constraints, and their refinements. Quantity
constraints enable the specification of performance and cost constraints such as time
and power (more information on Metropolis is available in the Hybrid systems tool
survey, [Carloni et al., 2004]).

3.2 Multi-model design environments and hybrid systems
Very closely related to hardware-software co-design area, is that of multi-model
design environments. A typical example here is Ptolemy II. Ptolemy enables the
definition of several model of computation, their assembly as a number of concurrent
components and finally the definition of how these heterogeneous models interact.
Ptolemy is described in more detail in section 4 since it provides pre-defined models
of computation supporting co-design.

There are also modeling languages that in themselves provide a multitude of structural
and behavioral descriptions. Examples in this category include UML2 and the AADL.
While the UML was initially intended for general purpose software systems, work is
being undertaken by the OMG12 to provide more capabilities for non-functional
aspects, e.g. for describing timing behavior and fault-tolerance, by defining UML
profiles (an overview of some of these activities are provided in the ARTIST
roadmaps, [Bouyssounouse and Sifakis, 2005].). The AADL on the other hand is a
language dedicated to support the implementation of control systems, [AADL, 2004].
The AADL standard was developed based on the MetaH effort. A somewhat similar
but broader effort is the development of the EAST-ADL, a description language for
automotive systems [EAST-ADL, 2004] with some relation to the Autosar13 initiative.
Both the AADL and the EAST-ADL provide constructs and properties required for
analysis of safety, reliability and timing, as well as explicit models of software
components.

A closely related and partly overlapping area is that of hybrid system tools. These are
tools specialized in the modeling, simulation and formal analysis of systems
composed of continuous and discrete event systems (manifested by combining
differential equations with state machines). There are many tools that provide some
support for hybrid systems (and possibly also other models of computations).

8 http://www.xilinx.com/
9 http://www.cadence.com/
10 http://www.mentor.com/
11 http://www.gigascale.org/metropolis/

12 http://www.omg.org/
13 http://www.autosar.org/

 27

Example tools include Matlab/Simulink with Stateflow, Modelica/Dymola, Sildex and
HyVisual. See [Carloni et al., 2004] for an excellent survey of hybrid system tools.

Control systems are more or less intrinsically hybrid systems. However, whereas the
hybrid community studies the behavior of interacting continuous and discrete event
subsystems, the co-design tools surveyed in this report focus on the interaction
between the control system and its implementation. These types of tool categories
therefore strongly complement each-other. However, it is often feasible to develop
support for co-design functionality on top of the capabilities provided by hybrid
system tools. An example of this is Matlab/Simulink from the Mathworks on top of
which for example the TrueTime tool is built, further described in section 4.

Many of the hybrid system tools provide code generation. Some also provide explicit
support for embedded systems design and in this sense contain ingredients from
several of the above mentioned areas. As an example, consider Sildex, a tool-set for
formally specifying and designing control and data-oriented real-time embedded
systems. Sildex (which is produced by TNI14) targets safety-critical embedded
software applications and is based on the synchronous language Signal. To describe
each component, the user can choose from different styles: data-flow style, state
machines, truth tables, or Grafcets. It is also possible to import Simulink diagrams or
to write components in the C language.

The Sildex environment conforms to the description of model based design in Section
2.1 in supporting graphical components, their connections and hierarchy. Sildex
provides two features for validating a specification diagram. Through simulation it is
possible to execute the embedded code generated by the compiler and to study the
evolution of the program’s state machines and data flows. As a complement, there is a
formal proof mechanism of safety properties (analytical verification of state machines
as mentioned in Section 2.3). Code generation is support from the models to C and
ADA code.

An advantage of Sildex is its foundation on a mathematically well defined language,
facilitating the application of various analysis and synthesis techniques. The current
focus of SILDEX is on embedded software design and the tool lacks the capability of
modeling generic hybrid systems, [Carloni et al., 2004]).

Finally, another class of related efforts are those that instead focus on the integration
of different domain tools and/or the management of the superset of information
treated by different tools. In systems development there is for example the need to
manage the dependencies and to provide traceability between related information
artefacts, from requirements documents/models, over designs to implementation.
There may also be the need for stronger interactions between domain models, for
example the need to support co-simulation between tools describing different
behaviors (communication entities) and to support the allocation of functional (or
software) models to hardware, when these are described in different tools. A typical
scenario is also when a particular design model, e.g. a functional behaviour model,
contains basic information that is required for many different types of analysis (e.g.
allocation as described above, for safety analysis such as FMEA, or for formal
verification purposes). In many cases there is a need to provide model

14 http://www.tni-world.com/

 28

transformations, decide on appropriate model exchange formats and to deal with tool
APIs. Representative model integration approaches, and their relation to multi-domain
modelling languages are surveyed by [Chen, et al., 2006].

An example of a multi-domain tool environment for mechatronics products and with
an emphasis on product development is CAMeL-View. It provides an interactive way
to build up models of complex mechatronic systems which include different system
domains, such as multi-body, hydraulic, control-engineering and discrete systems.
With CAMeL-View the developer is supported by an extensible database comprising
predefined components which is similar to Matlab/Simulink. The integration of
models taken from Matlab/Simulink and other tools is also supported. For today’s
design it is also important to include the 3-D graphical description which is a core
feature of CAMeL-View. The graphical description can be imported from numerous
CAD systems, like OpenInventor, VRML, DXF or IGES. They are reduced
automatically for animation purposes. For the analysis the specific model can
automatically be transferred to a mathematical representation and to optimized C code
especially for real-time simulation and Hardware-in-the-Loop applications. Besides
this, CAMeL-View allows to export the model to Matlab/Simulink as an mdl-file
including s-functions [iXtronics, 2006].

3.3 Discrete-event systems
This class of tools focuses on event-triggered dynamic systems. In this category there
are tools both from the control system community as well as from the computer
science community, sometimes allowing limited modeling and analysis of hybrid
systems. There are also related tools developed within the Petri Net community.

The tools typically provide simulation, while some of them also provide facilities for
formal reasoning about so called liveness and safety properties. A liveness property
refers to a condition that will eventually come true. A safety property is a hazardous
condition that is desirable to avoid; formal analysis of safety properties can thus be
very important for systems with strict safety and reliability requirements (this type of
verification is strongly related to analytical verification as disussed in Section 2.3).

There is a multitude of tools supporting discrete-event systems including UML tools
and some control engineering tools (e.g. Stateflow as part of Simulink). Extensions of
pure state machine formalisms to handle time include timed automata. Timed
automata have been used for modeling hybrid systems and real-time systems. It is
possible to use such automata for modeling the environment, the application software
as well as the system platform. Timing analysis problems can be formulated and
solved using model checking [Bouyssounouse and Sifakis, 2005].

Discrete event systems are often used as a basis for developing application specific
modeling and analysis capabilities, for example for analysis of network protocols or
real-time software. In some cases they have also been extended to included
continuous-time modeling capabilities.

3.4 Networking tools
There is a broad range of tools that support modeling and analysis in the area of
networking. One class of such tools is typically built upon discrete event simulators,

 29

making it possible to model and simulate the behavior of communication protocols.
One example of such a tool is NS-2, frequently used in telecommunication
applications.

Networking simulators have been extended to incorporate continuous dynamics (to
model plants), thus effectively reaching into the hybrid systems area. There is a close
relation to the real-time scheduling and computing area; when dealing with distributed
systems the approach taken with resource management (e.g. scheduling) has to cater
for both computing and networking resources. This area covers those approaches with
a starting point from the network.

Other tools under this heading are dedicated to the configuration of communication
systems, including signal interfaces, protocol handling of data and communication
scheduling. Examples in this category include tools from Volcano communication
technologies15, Vector Informatik16 and TT-Tech17.

As an example of tools supporting networks, and in particular distributed systems
design, consider the tool-chain provided by the company TT-Tech. This primarily
targets distributed systems that are based on the so called Time Triggered Protocol
(TTP). The tool-chain also provides an interface to Simulink from the Mathworks.

Once the control application is designed and tasks are assigned to the nodes of the
system, the TTP communication messages that need to be exchanged must be defined.
The designer completes the cluster design process by configuring the communication
system (e.g. TDMA round duration, transmission rate, type of communication
controller). All design data created above can subsequently be used by the cluster
design tool for TTP-based systems. This tool constructs the TDMA communication
schedule and stores it in a message descriptor list which includes the entire
configuration of the communication schedule. This configuration is loaded into the
communication controller in the implementation phase. The node design divides the
application algorithms of the subsystems into tasks and specifies them. Configurations
for certain operating systems can also be defined. It is then possible for the designer to
invoke a Simulink code generator to produce application code for the tasks and to
download it.

3.5 Real-time scheduling and computing
In the real-time research community, a number of tools have been developed for
modeling and analysis purposes. These tools allow multi-tasking systems, and
sometimes distributed systems to be modeled and their timing behavior to simulated,
analytically assessed or schedules to be generated. For early examples of such tools
see Audsley et al. (1994) and Storch and Liu (1996). An example of a more recent
tool from this area that has been extended continuous dynamics capabilities is the
RTSIM tool, described in more detail in section 4.

When dealing with distributed systems, there is also a need to define the allocation of
functions to the nodes of the system and the partitioning of this functionality into

15 http://www.mentor.com/products/sm/volcanoautomotive/
16 http://www.vector-informatik.com/
17 http://www.tttech.com/

 30

tasks. The AIDA tool-set is an example of a tool that supports such architectural
design and that moreover has been integrated with control design tools in order to
evaluate the resulting control performance. The AIDA tool-set is described in section
4.

AIRES18 - Automatic Integration of Real-time Embedded Software – is a tool
prototype developed within the MOBIES project at the University of Michigan.
AIRES was developed to support the analysis of timing and schedulability of
embedded software. The tool also has some synthesis capabilities.

In the AIRES tool, the embedded software under development is represented with a
component, software architecture and run-time model. The AIRES tool can be used
either as a stand-alone analysis and design assistance tool or along with other design
tools. The implementation of AIRES includes a graphical modeling environment, a
meta-model, and analysis packages. The Generic Modeling Environment (GME) was
chosen as the graphic modeling environment for AIRES. The meta-model is
implemented as a modeling paradigm in GME and exported as an XML file for
sharing among different tools. The analysis algorithms perform component allocation,
timing assignment, priority assignment, schedulability, and end-to-end response time
analysis. In the prototype, interfaces to design models in Rational Rose and Matlab
Simulink/Stateflow have been implemented. Two flavors of the AIRES tool have
been implemented: one for avionics applications and one for automotive applications

Another approach to real-time systems programming is represented by Giotto [Giotto,
2003]. Giotto as well as xGiotto have been developed at UC Berkeley from 2000 to
2004, see [Giotto, 2006] for links to a number of papers on Giotto and its tools.

GIOTTO focuses on distributed embedded control systems and as a programming
language has a basis in the notion of logical execution time (LET). Giotto programs
connect periodic software tasks to sensors and actuators, and specify the exact times
when sensors are read and actuators are updated, independently of the number, speed,
and utilization of host computers. The duration from reading a sensor to updating an
actuator is referred to as the LET of a task if the task is connected to that sensor and
actuator. Equivalently, the LET of a task determines the time the task executes
logically, i.e., the time the task takes from reading input to writing output,
independently of the time the task actually computes. The execution of Giotto and
LET programs in general is correct (time-safe) if all tasks compute in real time less or
equal than their LET. The LET semantics explicitly distinguishes logical from
physical task execution in order to trade off average-case performance for
determinism. Even if a task computes in less than its LET, its output is delayed until
its LET has elapsed. In the LET paradigm, more and faster host computers will
provide more resources not to execute existing programs faster but to accommodate
additional computation and programs without changing the real-time behavior of
existing programs. LET programs are thus composable with respect to real-time
behavior even on distributed systems. LET programming also supports model-based
embedded software design in the sense that control models designed in, e.g.,
Simulink, that use LET semantics can be translated into LET programs written in,
e.g., Giotto, and then compiled into executable code that approximates the behavior of
the original models in real time. Giotto and other LET programs have been compiled

18 http://kabru.eecs.umich.edu/aires/

 31

into portable real-time code targeting the Embedded Machine, e.g., to control a model
helicopter, and into so-called schedule-carrying code for increased efficiency.

In Giotto, the LET of a task must be equal to its period, i.e., the task can only read a
sensor at the beginning of its period and update an actuator at the end of its period.
The advantage of this rather restrictive model is that checking time safety of Giotto
programs is fast even in the presence of multiple so-called modes, and precise if all
modes are reachable by mode switching. Giotto programs may specify modes and
when to switch modes. Giotto modes are essentially different configurations of tasks,
sensors, and actuators. Checking time safety of programs with multiple modes is non-
trivial because modes may be switched even before the execution of a mode has been
completed.

More recent work on extending Giotto has essentially focused on two directions.
xGiotto supports mixed sets of time- and event-triggered LET tasks at the expense of
checking time safety fast, [XGiotto, 2004]. HTL supports hierarchical program
composition where task LETs may be different than task periods at the expense of
checking time safety precisely, [HTL, 2006]. In other words, there is an expensive
but precise time safety check for xGiotto, and a fast but imprecise time safety check
for HTL, i.e., if the time safety check of an HTL program fails, the program may still
be time-safe. However, if the time safety check succeeds, tasks in lower levels of the
program's hierarchy may be replaced by other tasks without re-checking time safety.
The ongoing work on HTL is a collaborative effort between UC Berkeley, EPFL in
Switzerland, the University of Salzburg in Austria, and the Technical University of
Timisoara in Romania. A prototype tool chain is available at http://htl.cs.uni-
salzburg.at.

3.6 Safety and reliability
Tools with an origin in the safety community have evolved rather independently of
the other mentioned tools and provide support for example for fault-tree, failure mode
effects and hazard analysis. Tools supporting reliability analysis are on the other hand
related to tools in the discrete-event area (compare for example Markov chains), and
also have a strong connection to formal analysis tools.

There seems to be very few tools that address the intersection between control design
and safety/reliability tools. Some exceptions in this regard include the following:

• Bridges between control design and safety tools were developed in the SETTA
project, allowing failure modes to be defined within Simulink and export for
the generation of fault-trees, [Papadopoulos et al., 2001].

• In work at KTH, based on the experiences with co-simulation [El-khoury,
Törngren, 2001], a Simulink library was developed that supports
fault-injection in terms of bit-flips in all types of blocks, signals and constants.
The library has been used to evaluate the effects of transient hardware faults
on control system robustness and in devising control algorithms that are
resilient to such faults, [Norberg and Törngren, 2003].

However, there exists a lot of related work in industry with proprietary tooling
environments for these purposes.

 32

 33

4 Overview of selected tools
This section is organized as follows. Sub-sections 4.1-4.8 describe the different tools
mentioned previously. Each tool is presented by an introductory overview that
describes the main use and intentions of the tool. Each tool is visualized by a simple
example.

The overview is followed by a more detailed description of various aspects of the tool
used for comparison. The comparative aspects are divided in two main areas; the
context and purpose of the tool and the actual tool technology.

The context and purpose area treats the following aspects:

- Which are the intended scenarios and development stages that the tool is
supporting?

- Which specific activities are supported?
- Which qualities and constraints are addressed?
- Are there any special methodological considerations connected with the tool?

The tool technology area treats

- Description of the tool architecture
- Which inputs does the tool require
- Which outputs are generated
- Modeling content (or semantics)
- Tool automation
- Extensibility
- Availability

4.1 AIDA

Tool Overview
The Aida toolset [Redell et al., 2004] is an environment for model-based design and
analysis of real-time control systems. The most important feature of Aida is that it
allows a user to take implementation effects into consideration when analyzing the
performance of an automatic control system. Considered implementation effects
include delays and time variations in the execution and scheduling of control
functions and communication of data. The toolset also supports timing analysis of the
real-time design such that an implemented solution can be shown to be schedulable
and meet its timing constraints.

The toolset consists of a modelling environment, Aidasign, which interfaces with
MATLAB/Simulink [The Mathworks, 2005], and a response time analysis tool,
Aidalyze. In the toolset, a controller is designed using MATLAB/Simulink, which is
an environment familiar to control engineers that supports simulation based analysis
of control performance. The real-time system design starts with the translation of the
Simulink model to a data-flow diagram (DFD) in Aidasign. The timing aspects of the
controller, such as sampling periods and delays then constitute requirements on the
real-time system design. The functions and communication flows specified in the
data-flow diagram form the basis for all further modelling in Aida. Apart from being

 34

generated from Simulink models, data-flow diagrams can be specified completely or
in parts within Aida. Figure 6 shows an example of a data-flow diagram with four
functions and the related data flows connecting them.

Figure 6. An example of an AIDA data flow Diagram

Another fundamental model in Aida is the hardware structure diagram (HSD), where
the hardware architecture, in terms of processors and their interconnections via
communication links, is designed. In the HSD the functions and data flows in the
associated data-flow diagram(s) are mapped to processors and communication links,
respectively. Figure 7 shows an HSD with two processors (P-1 and P-2) that are
interconnected via a CAN-bus (CAN-1). The mapping of functions and data flows in
Figure 6 is visualised. The utilisation (U) of each component is computed based on
underlying models and the repository is used to temporarily store functions and data-
flows that have not yet been mapped to any component.

Based on these two fundamental models and the mapping between them, a real-time
implementation is designed. The design includes specification of operating system
processes; their inter-communication in terms of messages; mapping of messages to
CAN-frames; and triggering of process executions.

Figure 7. An example of an AIDA hardware structure diagram

When the real-time system design has been completed, upper and lower bounds on the
response times and release/response jitter (variations in release and response times) of
the functions, processes and inter-process communications can be derived using the
Aidalyze tool. These results can then be exported back to the control domain in the
form of a Simulink model augmented with timing and execution order information.
Hence, timing effects due to implementation can be incorporated in the control
performance analysis through simulation of the generated Simulink diagram.

 35

Comparative Aspects
Scenarios Supported. AIDA is intended for one particular development
scenario, but sub-scenarios can be followed as well. The major scenario starts in the
control system design tool MATLAB/Simulink in which the data-flows in the control
system are specified. The Simulink model is then imported to the Aida toolset in
which a data-flow representation of the system is automatically generated. The
data-flow model is augmented by the user with estimates of best- and worst-case
execution times for functions and communication needs for the data-flows. The
resulting model is the base for all other models in the tool-set.

Next, a real-time implementation of the control system is described using the models
available in Aida. Given the model description of the implementation, a response time
analysis is performed producing bounds on the response times of functions and
processes. Finally, a transformed Simulink model can be generated, including delays
according to the response time analysis results. The Simulink model can be used in
simulation to test the control performance given the implementation induced delays.

Development Stages and Activities Supported. The toolset can be used on
different early stages in the development, but to make use of the complete scenario
outlined above it should be used when the control system design is close to finalized
and when the implementation of it is to begin. The hardware architecture could be
fixed beforehand, or its design could also be guided by the results of Aida
simulations. Hence, the toolset could be used to for example:

• compare and evaluate hardware architectures
• compare and evaluate software architectures
• compare and evaluate control system designs

Figure 8. Architectural overview of the Aida toolset, highlighting the three parts: The
interface with MATLAB/Simulink; the real-time system modelling environment
(Aidasign); and the response time analysis tool (Aidalyze).

Qualities/Constraints Addressed. As of today, the timing behaviour of an
implementation is addressed through analysis on a real-time scheduling level. The
qualities that are addressed include response time bounds and schedulability.
Furthermore, using the generated control models augmented with timing information,
the control system performance can be evaluated through simulation.

 36

Methodological Considerations. See Scenarios.

Tool Architecture. The Aida toolset consists of two major parts, Aidasign for
modelling of real-time implementations of control systems, and Aidalyze which is a
stand-alone tool for response time analysis of distributed fixed-priority scheduled
tasks that may be precedence related forming transactions.

Aida interfaces to MATLAB/Simulink, which enables import of control system
models and export of the same models augmented with timing information. The
interfacing activities are completely controlled from Aidasign. Figure 8 gives an
overview of the tool set architecture.

Tool Inputs. The user needs to provide estimates of worst (and possibly best) case
execution times of the modelled functions, when executing on the modelled
processors. Furthermore, the communication needs in each data flow (number of
bytes) must to be specified.

In order to use the tool according to the intended scenario, a control system model
made in Simulink is also needed. If such a model does not exist, the Aida toolset can
be used to bound the response times of a system completely modelled within
Aidasign. However, in that case no export to Simulink can be performed.

Tool Outputs. Aidalyze produces bounds on the worst- and best-case response
times of each function, process and CAN-frame in the system. The Aida tool
computes the utilization of each processor and CAN-bus. If a Simulink model is
imported to Aida, as a base for the implementation model, a Simulink model
augmented with timing information can be generated as an output.

Modeling Content. Apart from the modelling capabilities of Simulink, the Aida
toolset includes the following models:

• Data flow diagram (DFD). Functions are specified and connected by data flow
relations in the DFD. A function is parameterized by its minimum and
maximum execution times while a data flow is simply described with the
number of bytes that it communicates. See Figure 6.

Figure 9. An example of an AIDA function timing and triggering diagram.

 37

Figure 10 Process timing and triggering diagrams for processors P-1 (a) and P-2 (b) of Fig. 7.

• Function timing and triggering diagram (FTTD). The FTTD is used to
describe the sequences of precedence-related functions (the control flow) and
the triggering of such sequences using periodic (time) or aperiodic (event)
triggers. Figure 9 shows an FTTD where the execution sequence of the
functions in the example application of Figure 6 have been specified. The
diagram also shows a time trigger (TT) named sensortimer used to trigger the
execution of the sample function. The parameters of the trigger are: the period
(0.01); the admissible jitter (0.002); and the name of the source clock (CLK).
The FTTD can be interpreted together with the DFD as a way to set the
requirements on the implementation and does not directly specify any part of
the implementation. FTTDs are therefore not necessary for a complete system
description.

• Hardware structure diagram (HSD). As described above, the HSD is used to
specify the hardware architecture as a network of processors interconnected by
CAN buses. Processors are parameterized by a speed factor, used to scale the
execution time of allocated functions. CAN buses are also associated with
speed parameters, defining the communication speed on the bus. Furthermore,
functions and data-flows are mapped to processors and buses in the HSD, as
shown in Figure 7.

• Process timing and triggering diagram (PTTD). For each processor in an HSD
there is a PTTD that describes the triggering of the contained processes'
execution. Process execution may be triggered by a precedence relationship
(completion of another process); by the arrival of a CAN frame; or by time or
event triggers. The PTTD is also used to specify the processes by mapping
functions in a processor to different processes. A process is assigned a fixed
priority for scheduling. Figure 10 shows the PTTDs for the two processors in
Figure 7. The execution of the sample process is triggered by a time trigger
with period 0.01 while the other two processes are triggered by arriving CAN-
frames.

• Process internal timing and triggering diagram (PiTTD). The PiTTD is used
to define the execution sequence of functions within a process. It simply
relates the functions included in a process in precedence order. Figure 11
shows the very simple PiTTD for the Ref and Control process executing in
processor P-1.

 38

Figure 11 The process internal timing and triggering diagram of the Ref and Control
process.

• Process structure diagram (PSD). The PSD is basically an implementation
version of the DFD. It defines how processes communicate via messages. The
messages are composed of data flows that are communicated between
functions in different processes. Many data flows may be included in a single
message, if these data flows have the same sending and receiving processes.
The PSD for the example application is shown in Figure 12. It defines two
inter-process messages: Message_U and Message_Y.

Figure 12 The process structure diagram for the example system.

• Communication link diagram (CLD). In the CLD the messages that were
defined in the PSD are distributed on different CAN frames. One frame may
include more than one message, but no more than 8 bytes in total. Figure 13
shows how the messages defined in Figure 12 are allocated to two different
CAN frames. The arrivals of these frames are used to trigger the execution of
the processes in the PTTDs in Figure 10.

Tool Automation The Simulink models are automatically transformed to Aida
data-flow models when imported, and timing-augmented Simulink models are
automatically generated from the Aida models.

The included tool Aidalyze may be used to perform response time analysis when an
implementation model has been completely specified.

A consistency check, verifying the consistency of the information that is represented
in multiple different Aida models, is performed when the user invokes an “update”
function for either model in Aidasign.

 39

Extensibility Aidasign is completely developed in the Domain Modelling
Environment (DoME) from Honeywell. DoME is a tool for development of new
modelling languages in which new models are easily added. Hence, Aidasign is easily
extended with more models when needed. Furthermore, tools performing automated
tasks on the models, such as for example mapping of functions to processors, can
easily be written in the Alter language which is an integral part of DoME.

Figure 13 A communication link diagram defining the CAN-frames in the system.

Aidalyze is written in C++ for performance reasons. The source code is available and
more algorithms for analysis can be added. Furthermore, other stand-alone tools
written in other languages than Alter, can easily be added and their execution
controlled from Aidasign.

Availability Developed in-house KTH. Available upon request.

4.2 Jitterbug

Tool Overview
Jitterbug [Cervin et al., 2003; Lincoln and Cervin, 2002; Cervin and Lincoln, 2003] is
a MATLAB-based analysis tool that makes it possible to compute a quadratic
performance criterion for a linear control system under various timing conditions. The
tool can also compute the spectral density of the signals in the system. Using the
toolbox, one can easily and quickly assert how sensitive a control system is to delay,
jitter, lost samples, etc., without resorting to simulation. The tool can also be used to
investigate jitter-compensating controllers, aperiodic controllers, and multi-rate
controllers. The main contribution of the toolbox, which is built on well-known theory
(LQG theory and jump linear systems), is to make it easy to apply this type of
stochastic analysis to a wide range of problems.

Jitterbug offers a collection of MATLAB routines that allow the user to build and
analyze simple timing models of computer-controlled systems. A control system is
built by connecting a number of continuous-time and discrete-time systems. For each
subsystem, optional noise and cost specifications may be given. In the simplest case,
the discrete--time systems are assumed to be updated in order during the control
period. For each discrete system, a random delay (described by a discrete probability
density function) can be specified that must elapse before the next system is updated.
The total cost of the system (summed over all subsystems) is computed algebraically
if the timing model system is periodic or iteratively if the timing model is aperiodic.

 40

Comparative Aspects
Scenarios and Development Stages Supported. Jitterbug is intended
mainly as a research tool to evaluate different implementation strategies in terms of
control performance. In that scenario a linear controller has been designed for a linear
system and the tool will be used to evaluate how sensitive the closed-loop system is to
various timing conditions imposed by the implementation.

Figure 14 Alternative execution paths in a Jitterbug execution model: (a) random choice of
path b) choice of path depending on the total delay from the first node.

Activities Supported. Examples of timing conditions that may be evaluated
include, e.g., how sensitive a control loop is to slow sampling and constant or random
delays with jitter compensation. It is also possible to evaluate multi-rate controllers,
overrun handling strategies, sensitivity to lost samples, and more.

Qualities/Constraints Addressed. The main quality being addressed is
control system performance (quantified by evaluating a quadratic cost function) under
various timing conditions.

Methodological Considerations. See above.

Tool Architecture. Jitterbug consists of a collection of MATLAB functions that
interface to the Control Systems Toolbox. These functions provide functionality to
initialize Jitterbug, set up the timing and signal models that define a Jitterbug system,
and to calculate the performance index.

Tool Inputs. In Jitterbug, a control system is described by two parallel models: a
signal model and a timing model. The signal model is given by a number of
connected, linear, continuous- and discrete-time systems. The timing model consists
of a number of timing nodes and describes when the different discrete-time systems
should be updated during the control period. Transitions between states in the timing
model are performed depending on a chosen delay distribution.

The same discrete-time system may be updated in several timing nodes. It is possible
to specify different update equations in the various cases. This can be used to model a
filter where the update equations look different depending on whether or not a
measurement value is available. It is also possible to make the update equations
depend on the time since the first node became active. This can be used to model
jitter-compensating controllers for example.

For some systems, it is desirable to specify alternative execution paths (and thereby
multiple next nodes). In Jitterbug, two such cases can be modeled (see Fig. 9):

 41

(a) A vector n of next nodes can be specified with a probability vector p. After
the delay, execution node n(i) will be activated with probability p(i). This can
be used to model a sample being lost with some probability.

(b) A vector n of next nodes can be specified with a time vector t. If the total
delay in the system since the node exceeds t(i), node n(i) will be activated
next. This can be used to model time-outs and various compensation schemes.

Tool Outputs. A performance index that can be used for relative comparison
between different scenarios. The performance criterion to be evaluated is specified as
a quadratic, stationary cost function.

Modeling Content. As mentioned above, Jitterbug can model most timing related
aspects of real-time control systems, such as constant and random delays, jitter in
delays and sampling periods, and network issues such as lost samples.

However, to make the performance analysis feasible, Jitterbug can only handle a
certain class of systems. The control system is built from linear systems driven by
white noise, and the performance criterion to be evaluated is specified as a quadratic,
stationary cost function. The timing delays in one period are assumed to be
independent from the delays in the previous period. Also, the delay probability
density functions are discretized using a time-grain that is common to the whole
model.

Even though a quadratic cost function can hardly capture all aspects of a control loop,
it can still be useful when one wants to quickly judge several possible controller
implementations against each other. A higher value of the cost function typically
indicates that the closed-loop system is less stable (i.e., more oscillatory), and an
infinite cost means that the control loop is unstable. The cost function can easily be
evaluated for a large set of design parameters and can be used as a basis in the control
and real-time design.

As an illustration, an example of a Jitterbug model is shown in Figure 15, where a
computer-controlled system is modeled by four blocks. The plant is described by the
continuous-time system G, and the controller is described by the three discrete-time
systems H1, H2, and H3. The system H1 could represent a periodic sampler, H2 could
represent the computation of the control signal, and H3 could represent the actuator.
The associated timing model says that, at the beginning of each period, H1 should
first be executed (updated). Then there is a random delay 1τ until H2 is executed, and
another random delay 2τ until H3 is executed. The delays could model computational
delays, scheduling delays, or network transmission delays.

The Jitterbug commands used to define the control system of Figure 15 are given in
Figure 16.

The process is modeled by the continuous-time system

)1(
1000)(

+
=

ss
sG

and the controller is a discrete-time PD-controller implemented as

 42

)11()(2 z
z

h
TdKzH −

+−=

The sampler and the actuator are described by the trivial discrete-time systems

1)()(31 == zHzH .

The delays in the computer systems are modeled by the two (possible random)
variables 1τ and 2τ . The total delay from sampling to actuation is thus given
by 21 τττ +=tot .

Figure 15 A simple Jitterbug model of a computer-controlled system: (a) signal model
and (b) timing model. The process is described by the continuous-time system G(s) and
the controller is described by the three discrete-time systems H1DzE, H2DzE, and
H3DzE, representing the sampler, the control algorithm, and the actuator. The discrete
systems are executed according to the periodic timing model.

 43

Figure 16 This MATLAB script shows the commands needed to compute the performance
index of the control system defined by the timing and signal models in Figure 10.

Using the defined Jitterbug model it is straight-forward to investigate, e.g., how
sensitive the control loop is to slow sampling and constant delays (by sweeping over
suitable ranges for these parameters), and random delays with jitter compensation. For
more details and other illustrative examples (including multi-rate control, overrun
handling, and notch filter implementations), see [Cervin andLincoln, 2003].

Tool Automation. None.

Extensibility . The use of Jitterbug assumes knowledge of sampling period
and latency distributions. This information can be difficult to obtain without access to
measurements from the true target system under implementation. Also, the analysis
cannot capture all the details and nonlinearities (especially in the real-time
scheduling) of the computer system. Therefore, the obvious extension of the analysis
provided by Jitterbug is to resort to simulation. The rest of this report will describe
current simulation tools for integrated control and real-time design.

Availability. Jitterbug is available for download at

http://www.control.lth.se/~lincoln/jitterbug/

 44

4.3 ORCCAD

Tool Overview
Orccad [Simon et al., 1993; Simon et al., 1999; Simon and Girault, 2001; Simon et al.,
1997] is a CAD system and approach aimed at the development of robotic systems
from high-level specifications down to the implementation details. It deals with
hybrid systems where continuous-time aspects relating to control laws, must be
merged with discrete-time aspects related to control switches and exception handling.
The approach taken by Orccad is based on the following considerations:

• A robotic application may be defined as a set of robot actions, the design of
which needs expertise in several domains: knowledge in mechanics, control
theory and computer science.

• Most actions performed by robots can be solved efficiently through control
theory and the use of feedback control loops.

• The system needs to be accessible by users with different competence, from
the end-user, who is mainly concerned with application specification and
verification, to the control engineer, who is concerned with designing actions,
to the computer scientist, who is concerned with implementation details.

• Real-time mechanisms for the execution of the final system need to be
specified and verified since they influence the overall system performance.

• The object-oriented paradigm and code generation need to be used to improve
software reliability and reusability.

The first step in designing a control application is to identify all the necessary
elementary tasks involved. Then, for each of the tasks, issues from automatic control
(such as defining the regulation problem, control law design, design of reactions to
relevant events) and implementation (such as the decomposition of the control law
into real-time tasks, and selection of timing parameters) aspect need to be considered.
Finally, all the real-time tasks should be mapped on a target architecture. During this
design, the control engineer has a lot of degrees of freedom to meet the end-user
requirements and Orccad aims at allowing the designer to exploit these degrees of
freedom. Orccad promotes a controller architecture which is naturally “open” since it
allows access to every level by different users: the “application” layer is accessed by
the end-user, the “control” layer is programmed by the control expert, and the
“system” layer is accessed by the system engineer.

Orccad provides formalised control structures, which are coordinated using the
synchronous paradigm, specifically using the Esterel language (while the control laws
are periodic and can be programmed using tasks and an RTOS, the discrete-event
controller manages these control laws and handles exceptions and mode switching).
The main entities used in the Orccad framework are:

 45

• A robot task (TR), the elementary task representing basic robotic actions
where the control aspects are predominant.

• A module task (MT), a real-time task.
• A robot procedure (RP), a hierarchical composition of RTs and other existing

RPs, forming more complex structures.

The RT characterizes continuous-time closed-loop control laws, along with their
temporal features and the management of associated events. From the application
perspective, the RT's set of signals and associated behaviours represent the external
view of the RT, hiding all specification and implementation details of the control
laws. More complex actions, the RPs, can then be composed from RTs and other RPs
in a hierarchical fashion leading to structures of increasing complexity. RPs can be
used to fulfil a single basic goal through several potential solutions, or to fulfil a full
mission specification.

The Orccad methodology is bottom-up, starting from the design of control laws by
control engineers, to the design of more complex missions.

Comparative Aspects
Development Stages and Activities Supported. Orccad can be used
during the early architectural design stages of robotics mission functionality, followed
by detailed design of the software implementing these functions. Both structural and
behavioural design activities are supported.

Qualities/Constraints Addressed. Orccad is targeted towards hybrid
(continuous-time control with modes of operation) robotic activities implemented on a
computer system. Certain constraints are assumed:

• Basic actions (RT) are performed using periodic control loops;
• Multi-rate control is supported using communicating modules (6 predefined

protocols)
• Higher level actions (RP) run on a discrete events time scale;
• The runtime code is assumed to run on top of a preemptive/ fixed priority

kernel

Methodological Considerations and Scenarios Supported. Orccad suggests
a bottom-up approach starting with specifications and followed by implementation
details and more complex missions:

• The design starts from the end-user specification.
• The control engineer develops control laws in continuous-time that realises the

specified action, in the form of block diagrams where elementary algorithmic
modules are connected through input/output ports.

• Implementation aspects are taken into account by associating temporal
properties to the modules (called module tasks) constituting the control law.

 46

• The run time code is automatically generated as a multi-tasks executive linked
to the RTOS.

• Simulation and formal verification can be performed for validation.

Tool Architecture. The Orccad toolset consist of dedicated human- machine
interfaces (module and RT editor for control laws specification and code generation).
It also contains a HMI and code generator for the application specification (discrete
event based spec. based on Esterel). Run time libraries for several off-the-shelf RTOS
are provided (e.g. Linux/Posixthreads, RTAI...).

Tools based on Petri nets modelling and (max, plus) analysis allow for the structural
and temporal verification of the network of synchronized control modules (assuming
fixed given execution times for the modules) [Simon and Benattar, 2005].

The verification tools associated with the synchronous language Esterel allow for the
formal verification of the system behaviour as well as its crucial properties, such as
liveness and safety properties. Control purpose dedicated GUI have been written to
help the control designer in the verification properties design and diagnosis.

Figure 17 The robotic application: a two degrees of freedom arm.

Tool Inputs System descriptions from specification down to implementation details
are made through a specific human-machine interface.

 47

Tool Outputs. Final C code of the system is generated after the code
generation stage. In addition, analysis results from the formal verification as well as
simulations can be obtained.

Modeling Content. System functionality is described through

• Robot tasks which describe elementary robotic control actions
• Robot procedures describing more complex robotic actions or a complete

robotic application

The software is described through

• Module tasks for real-time tasks implementing parts of a robot task
• Observers checking conditions and generating events
• Signals used to synchronise the operations between robot tasks and robot

procedures

The following example is extracted from "The ArmX Example" given at the Orccad
homepage,

http://www.inrialpes.fr/iramr/pub/Orccad/ExempleArmX/frame-eng.html

The example shows how to design, validate, and execute a robotic application through
the simulation of a two degrees of freedom arm.

The designed application is a target-following task. When the target is in the robot
workspace, the end-effector follows the target and when it is out of the robot
workspace the manipulator points at this target. This application must be safe and
therefore it is performed taking into account exceptions like too high tracking error,
joint limits being reached, or required reconfiguration of the arm. The two-link
manipulator with rotational joints is shown in Figure 18.

In this application, the designer identified three control laws. These three control laws
will be embedded in three robot tasks:

• ArmXjmove : assumes movement in the joint space of the manipulator.
(Further detailed below)

• ArmXcmove : assumes movement in the Cartesian space of the manipulator.
• ArmXfmove : assumes pointing at the target when it is out of the workspace of

the manipulator.

 48

Figure 18 The robotic application: a two degrees of freedom arm.

Considering ArmXjmove as an example, the events which locally control this robot
task are:

• typetraj : Exception T1 to suspend the motion
• outbound : Exception T3 when joint limits are reached
• redbut : Exception T3 of emergency stop when the key 'q' is pressed on

keyboard
• badtraj : Exception T3 when the parameter posd is out of bound
• errtrack : Exception T3 when the joint error is too high
• endtraj : Post-condition when the current position reached posd

The robot task is decomposed with algorithmical modules:

• command: to compute the torque with a proportional corrector with
gravitational compensation,

• error: to compute the joint error.
• jtraj: to compute a joint trajectory from current position to desired position

posd.
• jobs: observers to generate events from observation of the robot (limit) and its

environment (key).

Modules are the elementary entities to construct robot tasks. The design of a robot
task is achieved by connecting modules that exchange data through typed ports. For
this application we must construct:

 49

• The module WinX of Physical Resource class to specify an interface between
robot tasks and the simulator.

• One module of robot task Automaton class to control the robot behavior
locally.

• Modules of the Algorithm class are used to specify the algorithms necessary to
compute the control law. Some modules are reused in the three robot tasks like
command and error. Each piece of code of computation is encapsulated in
these entities.

Each robot task must be independently tested by using a robot procedure. The user
can then write the robot procedure to perform the final application AppliArmX. The
application is specified in Maestro which directly generates Esterel code. The
application consists of a loop sequence starting with the manipulator moving a joint
(ArmXjmove) to a certain position. When this action is performed a sequence of two
actions of pointing task (ArmXfmove) when the target is out of the workspace and a
Cartesian movement when the target is in the workspace (ArmXcmove). The Cartesian
move space should be preempted by a move joint position when the exception T2
reconf occurs.

Figure 19 The ArmXjmove robot task.

 50

Figure 20 Functional and temporal spec. of a control module.

Using the panel of Verification, you could, for example, use the criterion robot task
Level to verify if the nominal specification is correct. You could see the
correspondence with the textual Maestro specification and the automaton visualised.

Through the use of the last panel of Execution, the user is able to produce the code,
compile and execute the application. In the panel Trace, the user can put spies. A
simulation driver simulates the dynamics of the two-link manipulator. The simulation
is animated through a X11 window. This window is interactive and the user can use a
keyboard to give information to the robot, initialize it, put torque, get joint position,
move a target (a white square) with the mouse and so on.

Tool Automation. The automata of the robot tasks and robot procedures are
automatically gathered and translated into Esterel which is then further translated into
C code. Runtime libraries are provided to finally translate the systems calls and link
all the C files (control laws and Esterel control automata) with the target RTOS.

New runtime libs can be rather easily written for preemptive/fixed priority RTOS, in
particular for Posix compliant ones.

Extensibility. Real-time simulation can be provided by calling a numerical
integrator (running the process ODE model) in the control task drivers (but requires
enough computing power to be executed).

Flexible scheduling. During control design one of the module task can be
customized to work as a feedback scheduler [Simon, Robert, 2005]. Its effective use
requires some instrumentation at kernel level (e.g. threads execution on line
measurement).

 51

Availability. Unfortunately not longer freely available.

4.4 Ptolemy II

Tool Overview
Ptolemy II is the third generation of software produced within the Ptolemy project
[Hylands et al., 2003; Ptolemy Project, 2004] at the University of California at
Berkeley. Ptolemy II supports heterogeneous, hierarchical modeling, simulation, and
design of concurrent systems, especially embedded systems. The focus is on complex
systems mixing various technologies and operations.

Simulation models are constructed under models of computation that govern the
interaction of the components in the model. Different models of computation are used
for modeling different types of systems. The abstraction provided by the model of
computation also simplifies code generation from the Ptolemy models.

Ptolemy is component-based and models are constructed by connecting a set of
components and have them interact under the model of computation. Components in
Ptolemy are called actors.

An important feature of Ptolemy is its focus on heterogeneous, hierarchical modeling,
meaning that each system may be composed of a number of subsystems at different
levels where each subsystem can have its own model of computation. This makes it
easier to deal with complexity.

Ptolemy is Java-based and provides graphical user interfaces for model construction
and result visualization. The visual editor framework of Ptolemy is called Vergil, and
an example model is shown in Figure 21.

Actor-based Design. Most models of computation in Ptolemy support actor
oriented design (one exception is finite state machines). Each actor has an interface
that restricts its interaction with other actors. This interface includes ports and
parameters. Ports are used for communication, whereas parameters are used to
configure the actor. Actors primarily interact by sending messages through channels
according to some messaging system. The concepts of models, actors, ports,
parameters, and channels describe the abstract syntax of actor-based design and are
often represented graphically as in Figure 21.

Models of Computation. Ptolemy provides a wide variety of models of
computation that deal with concurrency and time in different ways. Some of the most
important include:

• Continuous Time (CT) - used to model physical systems with linear or nonlinear
differential equation descriptions. The CT model is designed to operate with other
domains, like for example the FSM domain to form hybrid models or the TM model
for real-time control.

• Discrete-Event (DE) - used to model digital hardware (e.g. network
communication) and to simulate telecommunications systems.

 52

• Finite-State Machines (FSM) - here entities represent states instead of actors
and connections represent transitions.

• Giotto – time-triggered domain with periodically triggered actors. Intended for
hard real-time systems. Note that Giotto has evolved as a tool initself (see Section
3.5).

Timed Multi-tasking. The timed multitasking (TM) model of computation [Liu and
Lee, 2003] is intended to support deterministic design of concurrent real-time
software. It assumes an underlying priority-driven preemptive scheduler. In TM each
actor executes as a concurrent task with a fixed execution time and deadline. Actors
are activated by triggering conditions (periodically for controller tasks) and outputs
are delayed until the task has been active (has had access to the virtual CPU) for a
time equal to its execution time.

However, the TM model provides deterministic input-output latency of actors by
always delaying outputs to the deadline of the actor. This is called faster-than-real-
time computing. This way the effects of scheduling on delay and jitter is suppressed,
while on the same time an often unnecessary delay is introduced that reduces the
performance for control tasks. The TM model supports deadline handling to deal with
the fact that the execution has not finished by the task deadline. This is mainly
intended to preserve the timing determinism of other actors.

Comparative Aspects
Scenarios Supported. Ptolemy is directed towards modeling, simulation
(executable models), and design of embedded system software. It emphasizes
methodologies for defining and producing embedded software together with the
systems in which the software is embedded. Ptolemy aims at covering a large area of
scenarios by use of its hierarchical, heterogeneous modeling framework. Each
subsystem may have its own model of computation, different from the systems at
other levels in the hierarchy.

More specifically, the timed multitasking model of computation is to be used
(together with, e.g., the continuous-time and discrete-event models) for integrated
design of real-time control systems. Here the performance of the real-time system
(scheduling mechanisms and communication protocols) may be analyzed and
evaluated against the applications performance.

Development Stages Supported. As indicated by the simulation scenario
described above, the main aim of Ptolemy is to provide a complete modeling and
design framework which is intended to facilitate the use of Ptolemy throughout the
development process, from early conceptual models to implementation and
verification.

 53

Figure 21 An integrated simulation model of an inverted pendulum process in Ptolemy II
(from [Liu et al., 2002]). The top level contains actors for the pendulum process and the
controller and utilizes the continuous-time model of computation. The controller is
implemented as a task in the TM domain (here called RTOS). In addition to that, the
different states of the controller are modeled as synchronous data flows (SDF).

Activities Supported. The supported activities depend mainly on the model of
computation chosen. Within the timed multitasking model, it is possible to do
scheduling analysis, change software architecture, do code generation and hardware-
in-the-loop simulation. Adding discrete-event models, it is possible to simulate
network protocols and distributed control systems.

 54

Qualities/Constraints Addressed. The timed multitasking model considers
concurrent tasks (actors), each characterized by trigger conditions, computation times,
and deadlines. Task execution is started by the trigger conditions and outputs are not
produced until the actor has have access to the CPU for a time specified by its
computation time. Overrun handling is available if the task exceeds its deadline. CPU
access is granted based on the actor priority within the simulated real-time scheduling
scheme.

However, outputs are not produced until the task deadline even if they are computed
earlier. This has the benefit of guaranteeing a constant and known input-output
latency, but many applications exist for which this design choice is undesirable. Since
all task outputs are delayed one period, the effects of the real-time scheduling are of
less importance, and jitter, delay, and compensation schemes can, consequently, not
be simulated.

Methodological Considerations. See above.

Tool Architecture. Ptolemy is written in Java, and highly modularized. The
architecture consists of two sets of packages; one that provides generic support for all
models of computation, and one that provides more specialized support for particular
models of computation. The latter includes domains which are Java packages that
implement particular models of computation.

The packages structure is divided in core packages, UI packages, and library
packages. The core packages support abstract syntax and semantics of Ptolemy. The
UI packages contain support for the XML _le format and the visual interface for
graphical model construction, called Vergil. The library packages provide domain
polymorphic actor libraries, i.e., actors that can operate in a variety of domains. See
[Hylands et al., 2003] for a more detailed architecture description.

Tool Inputs. The simulation model is defined graphically by connecting actors in a
fashion similar to Simulink. The inputs for the timed multitasking model include
trigger conditions, deadlines, execution times, and priorities of the various tasks.
Priorities can be automatically computed using schedulability analysis for the given
task parameters.

Tool Outputs. Relevant outputs can be found on different levels of the simulation
hierarchy. Within the TM model it is possible to see the activations of the various
tasks, and within, e.g., the CT model it is possible to obtain time domain plots of the
physical processes being controlled.

Modeling Content. Ptolemy is a large modeling and design framework for
embedded system design. However, the support for integrated real-time control
system design is quite limited due to the restrictions imposed by the timed
multitasking model of computation. It only facilitates simulation of fixed priority
scheduling of tasks with constant execution times. Also, input-output latencies are
forced to be constant and well-known.

Tool Automation. Ptolemy contains many library objects that simplify the
building of models. This includes actors for continuous processes and real-time tasks.
However, no support for automatic model generation is provided.

 55

Extensibility. Being developed in Java and because of its high modular properties, it
is, in theory, straight-forward to extend the Ptolemy libraries with new actors and also
new or modified models of computation.

Availability. Ptolemy II 4.0 is available for download at

 http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII4.0/index.htm

4.5 RTSIM

Tool Overview
RTSIM [Palopoli et al., 2002; Lipari, 2003b] is a tool that is aimed at simulating real-
time embedded control systems. The main goal is to facilitate co-simulation of real-
time controllers and controlled plants in order to evaluate the timing properties of the
architecture in terms of control performance.

The tool consists of a collection of C++ libraries and uses the mathematical library
OCTAVE [Eaton, 1998] for the continuous plant simulation. The libraries allow the
user to specify; a set of plants, the functional controller behavior, the implementation
architecture, and a mapping of functional behavior onto the architectural components.
The simulation model is constructed based on this separation between functional
behavior and the HWSW architecture, see Figure 22.

The functional design involves controller operations such as extracting sensor data
and computing control signals. It also produces timing constraints based on the
closed-loop dynamics. The architectural design involves specifying a model of entities
such as software tasks, schedulers and network protocols. The functional design is
mapped onto the architectural design and the timing constraints are translated into
real-time constraints.

Figure 22 The design of a real-time control simulation using RTSIM.

The simulation produces results related both to the real-time performance and the
control performance. This includes the generation of execution traces, real-time
statistics (e.g., delays and jitter), and control performance metrics such as time
responses and quadratic costs.

 56

Functional Behavior. RTSIM exploits a data flow approach for the functional
modeling based on two types of functional abstractions; the computing unit and the
storage unit. Figure 23 shows an example of functional model of an inverted
pendulum control system.

Figure 23 Example taken from [Palopoli et al., 2002] of a functional design for an
inverted pendulum system. Input buffers are used to model sensors and output buffers to
model actuators. Computing units exist for filtering and derivative actions and to compute
the control signal.

Each computing unit has a number of input and output ports that must be connected to
storage units. The requirement on the computing units is furthermore that they should
be able to respond to three different external commands; read, execute, and write. The
execute command can implement an arbitrary control algorithm and the computing
units may also have internal states. Pre-defined computing unit library objects are
provided for many existing controller structures.

Storage units are of three types; input buffers, memory buffers, and output buffers.
Input and output buffers model I/O between computing units and the environment and
can be thought of as sensors and actuators, respectively. Memory buffers are used for
communication between different computing units. No assumptions are made in the
functional model regarding hardware implementations of the I/O or how to deal with
concurrent access requests.

System Architecture . In the architectural model, a task is a finite or infinite
sequence of jobs (requests for execution). Each job implements some functional
behavior and may be periodic, sporadic or aperiodic. The jobs execute a sequence of
instructions, each modeled by a constant or stochastic execution time and associated
with a read, execute, or write operation of a computing unit.

 57

Tasks are assigned to nodes, each consisting of one or more processors and a real-time
kernel. The kernel is assigned a scheduling policy and a synchronization protocol. The
state of the art scheduling algorithms as well as many aperiodic server schemes
developed in Pisa are provided by the tool.

The system may also be built up as a number of nodes connected by network links,
where the nodes communicate using real-time messages over a physical link using a
certain access protocol.

Figure 24 Example of an architectural design for the system from Figure 23. Here it is
assumed that the horizontal position of the cart is obtained from camera images, whereas
a potentiometer is used to acquire the angle. Therefore, the architecture uses two tasks for
the controller computations.

Performance Evaluation. A RTSIM simulation is based on events (e.g., task
arrivals, task terminations and task deadlines). The events are associated with
situations in the architectural model and will subsequently trigger actions in the
functional model.

 58

All events of a simulation may be recorded in a trace file and displayed using the
Java-based utility RTTracer provided in the RTSIM distribution. This is used for
classical real-time schedulability analysis of the simulation in terms of task activations
and deadline misses. It is also possible to use statistical probes to measure, e.g., jitter
and delay distributions over multiple runs.

Finally, for control performance evaluation, special buffers may be used to record
time responses of certain plant variables and to compute quadratic performance
indices.

Comparative Aspects
Scenarios Supported. The main scenario intended to be supported is integrated
real-time control system design. The functional behavior of the system is the result of
classical control system design for the continuous-time plant based on the
specifications of the closed-loop performance. The architectural model can be
developed in complete separation and involves specifying hardware and software
components of the implementation.

The functional model is then mapped onto the architectural model and the integrated
system can be simulated. Based on the simulation results it is then possible to
iteratively update the functional and/or architectural models to obtain the results that
best fits the requirements of the project.

Development Stages Supported. As indicated by the simulation scenario
described above, the tool can be used at any time of the development process as long
as an functional and architectural model of the control system exist. This can be
anytime from early development to the verification stage. The tool is, however,
mainly used as a research tool to evaluate novel scheduling algorithms in terms of
both real-time and control performance.

Activities Supported. RTSIM supports simulation of various hardware and
software aspects when implementing real-time control systems. This involves real-
time task scheduling, synchronization protocols and network communication. All
these aspects may be evaluated against the control performance of the physical plant
under control.

Qualities/Constraints Addressed. The RTSIM tool addresses various types
of evaluation qualities. The tool was initially a pure real-time scheduling tool (without
support for continuous-time dynamics simulation) and advanced scheduling schemes
may be simulated and evaluated in terms of pure timing behavior. It contains, already
implemented, most of the scheduling algorithms developed at Retis Lab as well as
many other state of the art scheduling schemes.

However, using the OCTAVE library for physical plant modeling the evaluation can
be taken one step further. Consequently, the main quality being addressed is that of
the control performance as a result of the complete functional/architectural model.
This can be quantified either in terms of time responses such as the overshoot or rise
times or using quadratic performance metrics. However, the plant modeling is still
limited and lacks the graphical features of, e.g., Simulink.

 59

Methodological Considerations. See above.

Tool Architecture. RTSIM consists of a collection of C++ libraries that contain
three types of objects, namely continuous-time plants, functional components, and
architectural components.

The main package of RTSIM is RTLIB that is used to describe the architectural
components. This is based on the MetaSim [Lipari, 2003a] library for simulation of
discrete event systems. RTLIB may be used on its own (for real-time simulation) or
together with CTRLIB for complete real-time control systems simulation. RTLIB
models architectural entities such as real-time tasks, scheduling algorithms, single-
and multi-processor nodes, and network links. These will be described in some more
detail below.

CTRLIB provides a hierarchy of classes that implement various computing and
storage units.

Tool Inputs. Apart from providing the functional and architectural models the user
needs to provide a number of parameters for the simulation. This includes relative and
absolute deadlines of tasks, task periods, and instruction execution times for
individual jobs. Depending on the scheduling algorithm a number of associated
parameters can be set and changed between simulations. This includes, e.g.,
bandwidth assignments between tasks when using the Constant Bandwidth Server.

Tool Outputs. The simulation generates execution traces and statistical timing
measures of jitter and latencies. It also returns quantities related to the control
performance, such as time responses and quadratic performance metrics.

Modeling Content. In terms of scheduling the RTSIM tool is very general. It
contains library object for many existing policies and provides support for easy
modeling of schemes not provided in the libraries. It supports both single and
multiprocessor scheduling.

RTSIM also supports many existing synchronization protocols to avoid priority
inversion. Again, defining and implementing your own protocol is straightforward.

The network support, however, is quite limited and in the current version only
Ethernet and CAN bus networks are provided. The main drawback of the tool lies in
its plant modeling environment that lacks the graphical drag-and-drop features of
Simulink. This also limits the possibilities to analyze the simulation results on a more
detailed level.

Tool Automation. RTSIM contains library objects for standard control algorithms
(computing units), scheduling algorithms, and synchronization protocols. This
facilitates the construction of the functional and architectural models of the system.
However, no support for automatic generation of these models is provided.

Extensibility. Being developed in C++, the RTSIM libraries should be easily
extensible and modular. For example, it should be straightforward to use other
numerical packages for the plant modeling as well as adding more scheduling
schemes, synchronization protocols, or network protocols.

 60

Availability. RTSIM is available for download at http://rtsim.sssup.it/

4.6 SynDEx

Tool Overview
The SynDEx tool supports rapid prototyping of reactive application algorithms
implemented on distributed heterogeneous hardware architectures [Pernet and Sorel,
2003; Grandpierre et al., 1999; Lavarenne et al., 1991; Forget et al., 2004]. SynDEx,
based on the AAA methodology [Sorel 1994], lets the designer specify both the
application algorithm and the distributed hardware architecture in a graphical
environment, and then automates the mapping and scheduling of functions (called
operations) and data-dependences between functions (called data-dependences) on the
processors (called operators) and communication media (bus, link, crossbar, etc).
During the mapping and scheduling process, which can also be manual, the hardware
architecture as well as the application algorithm can be modified to better match the
timing and resources constraints. When a sufficiently good solution has been found,
SynDEx generates, using executive kernels depending on the processor type,
executable codes that can be downloaded and run in real-time onto the distributed
target.

Algorithms are specified in SynDEx as conditioned data-flow graphs that are
indefinitely repeated. The graphs describe directed data-dependences (edges) between
operations (vertices), and thus forms a directed acyclic graph. The graphs are
conditioned because there may be sub-graphs of operations that are only executed
when some value occurs on a specific conditioning input of the sub-graph. This
mechanism is equivalent in the data-flow model to the control structure If...Then...Else
or Case...Of.... In addition some sub-graphs of operations may be finitely repeated a
certain number of times. This mechanism is equivalent in the data-flow model to For
i=1 to N Do.... An operation can be hierarchically decomposed into sub-graph of
operations. Non decomposable operations are called atomic. The algorithm model has
a formal semantics equivalent to synchronous language Signal semantics, and can
therefore be verified with tools for this purpose.

Figure 25 shows the specification of a very simple algorithm, algobasic, that contains
two constant operations (cste1 and cste2) that represent constant integers. Two
sensors produce constant data for two operations (add and mul) that perform addition
and multiply, each of them produces a data for an actuator operation (visuadd and
visumul).

Hardware architectures are also specified as graphs but that are not directed. Each
architecture graph consists of two types of components interconnected via edges
representing bi-directionnal connections. A component may be either an operator
(processor, FPGA, ASIC), which sequences operations, or a communication medium,
which sequences data-dependences. Figure 26 shows an architecture example, biProc,
that consists of two processors (root and pc1) interconnected via a communication
medium (link(u/TCP)).

 61

Figure 25 The algorithm graph algoBasic.

Figure 26 The architecture graph biProc.

The automated adequation supported by SynDEx is performed by a heuristic, because
the corresponding problem is of NP-hard complexity, that both maps operations (resp.
data dependences) to operators (resp. to communication media), and schedules the
operations and data-dependences on their respective components. It is based on a
multi-periodic scheduling and mapping analysis which aims on the one hand at
satisfying the real-time constraint, that is for each operation a deadline equal to its
period, and on the other hand at minimizing the global execution time of the algorithm
onto the distributed architecture. This heuristic utilizes the worst execution times
(WCET) of operations and data-dependences, onto the operators and the
communications media. Both types of executions are assumed to be indivisible. An
operation may have several WCETs due to the different types of operator it may be
mapped onto, it is the same for data-dependences (heterogeneous architecture). The
multi-periodic scheduling and mapping analysis guarantees that the resulting
implementation will maintain the partial order associated to the data-dependences of
the initial algorithm graph leading to a distributed code executed in real-time without
any deadlock. The result of the adequation heuristic, called an implementation model,
is also a graph. It is visualized in a timing diagram that shows the parallel execution

 62

and data transmission on all components in the system. Figure 27 shows a timing
diagram of the schedule generated by the adequation heuristic when the operation add
has been constrained to execute on the root operator and the visuadd operation has
been constrained to execute on the pc1 operator. These mapping constraints, that the
designer may impose, were included to force some communication via the TCP
communication medium in the simple example. Note that the constants do not appear
in the timing diagram since they do not take any execution time.

Given the implementation model, SynDEx is able to automatically generate a macro-
code independent of the architecture. The distributed executable code is built by the
Gm4 macroprocessor from this macro-code and libraries of architecture-dependent
primitives that compose executive kernels. One such kernel is needed for each
supported processor type.

Figure 27 Timing diagram generated by the adequation algorithm.

Comparative Aspects
Scenarios Supported. SynDEx is intended to be used for rapid prototyping of
application algorithms such as control, signal and image processing algorithms. The
graphical interface is used to specify the algorithm and the distributed hardware.
Then, when the automated mapping and scheduling has been performed, the designer
has the possibility to modify the algorithm and hardware descriptions to better take
advantage of the resources and thus reduce cost. The automated mapping and
scheduling is performed after each modification and when the implementation has
converged to a satisfactory result, executable code can be generated. The algorithm
can also be formally verified using other tools suited for that purpose.

Development Stages and Activities Supported. The toolset is intended to be
used in early stages when the application algorithm and the hardware architecture has
not yet been finally selected. The tool gives good support for comparing different
hardware architectures for the implementation of a given algorithm. Due to the rapid
prototyping functionalities, the tool is also valuable for the implementation of early
test systems in which different algorithms can be implemented and compared on the
same architecture.

 63

Qualities/Constraints Addressed. The automated mapping and scheduling step
is mainly focused on finding a solution that optimizes the usage of available resources
taking into account the timing constraints and the mapping constraints of operations
and data-dependences to components that have been specified by the designer.

Methodological Considerations. The methodology supported by SynDEx is
called AAA - Algorithm Architecture Adequation - and it follows the steps outlined
above. These include: specification of the algorithm possibly through interfaces with
domain oriented languages such as the synchronous languages (Esterel/SyncCharts,
Lustre/Scade, Signal/Polychrony), Scilab/Scicos for modelling and simulation of
hybrid dynamic control systems, and model driven graphical tools based on UML2.0 ;
specification of the heterogeneous target hardware architecture ; and automated
implementation of the algorithm onto the architecture, using the adequation process
which involves spatial mapping and scheduling in time. Finally, an executable code
may be generated, loaded and executed on the target hardware. This methodology on
the one hand allows top-down or bottom-up approaches, and on the other hand to
refine progressively the different prototypes to the final product. The formal
semantics guarantees the distributed implementation is compliant to the algorithm
specification, and possibly its previous simulations. These issues associated with
automatic code generation decreases significantly the development life cycle of safety
critical applications.

Tool Architecture. The tool uses a graphical interface in which algorithms and
architectures are described. Different types of objects can be specified and instantiated
directly as locally defined operations, operators, etc. It is also possible to use and
instantiate pre-defined types from libraries of operations, operators (processors, ASIC,
FPGA) and communication media, including types for, e.g., mathematical operations
and TCP communication links. The different steps : specifications, adequation
(mapping and scheduling) and code generation are performed in the same
environment, including a specific editor for creating new executive kernel dependent
of the processor and communication media types. When an implementation has been
fully completed the results of the different steps can be saved in a file which can be
used as an input for a new implementation.

 These issues guarantee consistency of the development life cycle.

Tool Inputs. The toolset needs the designer to describe the algorithm in terms of a
directed acyclic graph containing operations that are to be executed, and data-
dependences to be procuced and consumed by the operations. The designer also needs
to describe the target hardware including the processors and the interconnecting
communication media. Each operation and data-dependence is given a duration
(execution/transmission time) for each operator or communication medium available
in the system. In addition for each operation a period is possibly given, presently the
periods must be in geometric relation. When none operation has a period the heuristic
aims at only minimizing the global execution time of the algorithm onto the target
architecture.

Tool Outputs. The tool derives a mapping of operations and data-dependences as
well as a schedule for each operator and communincation medium presented as a
timing diagram. Furthermore, executable code can be generated given that specific
executive kernels have been developed for the different processors of the architecture.

 64

Modeling Content. The algorithm is described as a directed acyclic graph that is
executed repeatedly with a period equal to the least common multiple of the operation
periods. The operations in the graph have input and output ports that are typed and
can represent integers, floats or boolean variables, or arrays thereof. The ports are
connected to corresponding ports of other operations in the graph. There are two types
of edges between operations: a strong data communication and execution precedence
or execution precedence only. Operations in an algorithm graph can be hierarchically
decomposed into sub-graphs. An operation may have several parallel sub-graphs and
the selection of the sub-graph to execute for any given invocation, is controlled by a
conditioning-dependence associated to the corresponding sub-graph of operations.
Hence, a data flow graph can conditionally execute different sub-graphs on different
repetitions. Also an operation may be repeated several time according to ratio between
the dimensions of the inputs and their corresponding outputs. Furthermore, each
operation and data-dependence is associated with one duration parameter for each
possible operator or communication medium in the system. A period may also be
associated to each operation.

SyncCharts a state diagram language that is similar to Statecharts but with a stronger
semantics compliant with the deterministic real-time scheduling of SynDEx may
generate algorithm graph representing the state diagrams specified and simuled with
SyncCharts [Pernet and Sorel, 2003]. Thereby a SyncChart diagram after translation
can be connected to a SynDEx algorithm graph already specified.

Scilab/Scicos a hybrid dynamic control system modeller and simulator, a free
software similar to Matlab/Simulink, may generate a SynDEx algorithm graph for the
specified models [Sorel 2005]. This allows to execute the hybrid dynamic models in
real-time on a distributed architecture described with SynDEx being consistent with
the corresponding simulation made with Scilab/Scicos on a working-station.

The architecture model is a non-directed graph of operators and communication media
interconnected by edges describing the topology of the architecture. The
communication media may be e.g. Ethernet, CAN or RS232 and the operators may be
micro-controllers, DSPs or FPGAs of various types.

Tool Automation. The tool automates the mapping and scheduling of the
algorithm to the specified hardware. It also automates the distributed code generation
code for various types of processors.

Extensibility. The code generation can be extended to support more operator
(processors and communication media) types through the inclusion of more executive
kernels.

Availability. SynDEx is available, with a comlete documentation including user and
reference manuals and tutorials, for download at http://www.syndex.org

4.7 TORSCHE

Tool Overview
TORSCHE (Time Optimisation of Resources, SCHEduling) is a MATLAB-based
toolbox including various scheduling algorithms, that are used for various applications
as high level synthesis of parallel algorithms, optimized production of manufacturing

 65

lines, etc. Using the toolbox, one can easily and quickly obtain an optimal code of
computing intensive applications running on specific hardware architectures. The tool
can also be used to investigate application performance prior to its implementation
and to use these valeus (e.g. the shortest achievable sampling period of the filter
implemented on given set of processors) in the control system design process
performed in Matlab/Simulink. The main contribution of the toolbox, which is built
on well-known disciplines of the graph theory and operation research, is to make it
easy to apply this type of reasoning to a wide range of problems. Many of them are
combinatorial optimisation problems, and as such they are challenging from the
theoretical point of view.

TORSCHE offers a collection of MATLAB routines that allow the user to formalize
the scheduling problem, while considering appropriate configuration of resources (e.g.
HW architecture performing filter algorithm), task parameters (e.g. deadlines, release
dates, preemption) and optimisation criterion (e.g. makespawn minimisation,
maximum lateness minimisation). The toolbox enables to solve these problems by
their reformulation or to solve them directly while choosing appropriate scheduling
algorithm. The input data of the problem instance are typically represented by an
oriented graph and the output data are represented by a Gantt chart. The input data
might be automatically generated from the problem description (e.g. equations of the
filter algorithm) and output data, the schedule, may be used to automatically generate
an implementation of embedded system (e.g. parallel code for dedicated processing
units).

Comparative Aspects
Scenarios and Development Stages Supported. TORSCHE is intended
mainly as a research tool to design and evaluate different off-line scheduling
algorithms. Use of this toolbox is double, first it can be used as it is to schedule
instances of different problems, second the toolbox objects may be used to design new
scheduling and optimisation algorithms. Further the toolbox may be used for more
tailored applications of embedded systems that are interfaced to third party
development tools (e.g. FPGA development tool chain).

Activities Supported. TORSCHE makes it possible to synthesize a schedule under
various resource constraints, task parameters and optimisation criterions. The tool can
also be used to perform response time analysis of fixed-priority scheduled tasks.

Qualities/Constraints Addressed. The task is given by the following parameters:

• Processing time, jp , is time necessary for task execution. (called also
Computation time)

• Release date, jr , is the moment at which a task becomes ready for execution
(called also Arrival time, Ready time, Request time).

• Deadline, jd~ , specifies a time limit by which the task has to be completed,
otherwise the scheduling is assumed to fail.

• Due date, jd , specifies a time limit by which the task should be completed,
otherwise the criterion function is charged by penalty.

 66

• Weight expresses the priority of the task with respect to other tasks (called
also Priority).

• Processor specifies dedicated processor at which the task must be executed.

Methodological Considerations. See scenarios.

Figure 28 Task parameters

Tool Architecture. TORSCHE is written in Matlab object oriented programming
language and it is used in Matlab environment as a toolbox. Main objects are Task,
TaskSet and Problem. Object Task is a data structure including all parameters of the
task as processing time, release date, deadline etc. Objects of a type Task can be
grouped into a set of tasks and other related information as precedence constrains can
be added. Object Problem is a small structure describing classification of
deterministic scheduling problems in Graham and Blazewicz notation [Blazewicz,
2001]. These objects are used as a kernel providing general functions and graphical
interface, making the toolbox easily extensible by other scheduling algorithms.

Tool Inputs. The task is represented by the object data structure with the name task
in Matlab. This object is created by the command with the following syntax rule:

t1 =
task([Name,]ProcTime[,ReleaseTime[,Deadline[,DueDate[,Weight[,Processor]]]]])

Command task is a constructor for object of type task whose output is stored into a
variable (in the syntax rule above it is variable 1t). Properties contained inside the
square brackets are optional.

The object problem is a small structure describing the classification of deterministic
scheduling problems in the notation proposed by Blazewicz et al. [Blazewicz, 2001].
An example of its usage is shown in the following code.

p = problem(’P|prec|Cmax’)

This notation consists of the three parts. The first part describes the processor
environment, the second part describes the task characteristics of the scheduling

 67

problem as the precedence constrains, or the release time. The last part denotes an
optimality criterion.

Most of all algorithms use the following syntax:

tasksetWS = name(taskset,problem,procesors[,parameters])

Where

• tasksetWS is the input taskset with an added schedule
• name is the algorithm command name
• taskset is the set of tasks to be scheduled
• problem is the object of type problem
• procesors is the number of processors to be used
• parameters denotes additional parameters, e.g. algorithm strategy etc.

Tool Outputs. The schedule, assignment of tasks to processors in time, is generated
as basic output of the tool. It might be displayed by simple plot function.

Modeling Content. As an illustration, an example application of RLS (Recursive
Least Squares) filter for active noise cancellation is shown in Figure 29. The filter
uses FP32, a library of arithmetic floating point modules for FPGA (for logathmic
arithmetic based solution see [P. Šůcha, Z. Pohl, and Z. Hanz´alek, 2004]). Addition,
substraction, multiplication, division and square root are executed by separate
pipelined modules that require more hardware elements on FPGA, hence only one
module of each kind is usually available for a given application.

RLS filter algorithm is a set of equations (see the inner loop in Figure 30) solved in an
inner and an outer loop. The outer loop is repeated for each input data sample each
1/44100 seconds. The inner loop iteratively processes the sample up to the N-th
iteration (N is the filer order). The quality of filtering increases with increasing
number of filter iterations. N iterations of the inner loop need to be finished before the
end of the sampling period when output data sample is generated and new input data
sample starts to be processed.

The time optimal synthesis of RLS filter design on FPGA with FP32 is formulated as
cyclic scheduling on the set of dedicated processors (like separate modules of FP32).
The tasks are constrained by precedence relations corresponding to the algorithm data
dependencies. The optimization criterion is related to the minimization of the cyclic
scheduling period w(like in an RLS filter application the execution of the maximum
number of the inner loop periods w within a given sampling period increases the
filter quality).

 68

voice

filter

reconstructed
sound
to GSM

noise

corrupted
sound

estimated

channel

soundnoise

corrupted sound

reconstructed
sound to GSM

-

+

+

+

Figure 29 An illustration of active noise cancellation – an adaptive RLS filter estimates
parameters of changing channel in order to reconstruct original clear sound.

Operations in a computation loop can be considered as a set of n generic tasks
{ }nTTT ,...,, 21=Τ to be performed N times where N is usually very large. One

execution of T labelled with integer index 1≥k is called an iteration. Let us denote
by ki, the thk occurrence of the generic task Ti, which corresponds to the execution
of statement i in iteration k. The scheduling problem is to find a start time si(k) of
every occurrence ki, . Figure 30(a) shows the inner loop of RLS algorithm.

Data dependencies of this problem can be modelled by a directed graph G, see Figure
30(b). ip associated to node i is the processing time of task Ti. Edge ije from the
node i to j is weighted by a couple of integer constants ijl and ijh . In fact, ijl
represents minimal distance in clock cycles from a start time of task Ti to a start time
of Tj and it is always greater than zero. On the other hand, the height ijh specifies a
shift of the iteration index related to the data produced by Ti and consumed by Tj.
Therefore, each edge ije represents the set of N relation constraints of the type

() ()ijhkjiji slks +≤+ .

In this model, the length of edge ije is greater or equal to processing time pi assigned
to node Ti. Therefore, the processor is occupied by the task Ti during processing
time ip , but the task Tj may start at least ijl time units after the start time of Ti.
Therefore, related length ijl specifies the precedence delay from task Ti to task Tj (for
more details on this issue see [Přemysl Šůcha and Zdeněk Hanzálek, 2006]).

The precedence delays are useful when we consider pipelined processors. The
processing time ip represents the time to feed the processor and length ijl represents
the time of computation. Therefore, the result of a computation is available after ijl
time units.

The corresponding task labels are indicated above each arithmetic operation in Figure
30(a). Figure 30(b) shows corresponding directed graph G. The schedule presented in
Figure 31 was found by the cyclic scheduling algorithm based on iterative calls of ILP
solver.

 69

Figure 32 shows results of spectral analysis of the optimized RLS filter. The
horizontal axis of each diagram represents the running time (corresponding to a time
interval of 5s), the vertical axis represents the signal frequencies (up to 22kHz) and
the colour represents the signal amplitude. The lower–right diagram presents the
original sound, the upper–left diagram presents the noise, the upper–right diagram
presents corrupted sound assuming sinusoidal changes of the estimated channel
parameters, and finally the lower–left diagram presents reconstructed sound.

Tool Automation. Depending on the application scenario, the schedule can be
automatically translated to the application formalism. Therefore TORSCHE
automatically generates for example Handel–C code [Handel-C, 2005] in the case of
FPGA design. Fig. 33 shows a piece of Handel–C code for the example shown above.

(8,0)
(11,1)

(11,1)

(11,0)

(8,0)

(8,0)

(11,1)

(11,1)

(11,0)

(8,0)

(8,0)

(11,0)

(8,0)

(8,0)

(8,0)(11,0)

(11,0)

(8,0)

(8,0) (11,0)

(11,0)

(28,0)

(28,0)

(28,0)

(8,0) (8,0)(8,0)
(11,1)

*T1

1

+T2
1

*T3
1

*T4
1

+T5
1

*T6
1

*T7
1

+T8
1

*T9
1

+T10
1

*T11
1

*T12
1

+T13
1

+T14
1

*T15
1

*T16
1

+T17
1

+T18
1

/T19
1

/T20
1

*T21
1

+T22
1

*T23
1

+T24
1

*T25
1

+T26
1

Figure 30 a) The inner loop of RLS filter. Constant N determines the filter order. b)
Corresponding graph G.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

ADD

MUL

DIV

T
1

T
3

T
4

T
6

T
7

T
9

T
11

T
12

T
15

T
16

T
21

T
23

T
25

T
2

T
5

T
8

T
10

T
13

T
14

T
17

T
18

T
22

T
24

T
26

T
19

T
20

140 150 t

T
1

T
3

T
4

T
6

T
7

T
9

T
11

T
12

T
15

T
16

T
23

T
25

T
2

T
5

T
8

T
10

T
13

T
14

T
17

T
18

T
24

T
26

T
19

T
20

iteration: 1
st

2
nd

execution period 2execution period 1

iteration length

Figure 31 The schedule of the RLS filter inner loop (the period is 74).

 70

Extensibility. Using predefined objects, the toolbox is easily extensible by various
off-line scheduling algorithms implemented as Matlab functions/objects or C/C++
code.

Figure 32 Spectral analysis of input and output signals of the optimized RLS filter.

Availability. TORSCHE is available for download at
http://rtime.felk.cvut.cz/scheduling-toolbox/

 71

Figure 33 Generated Handel–C code

4.8 TrueTime

Tool Overview
TrueTime [Cervin et al., 2003; Henriksson et al., 2003; Henriksson and Cervin, 2003;
Henriksson et al., 2002b] is a MATLAB/Simulink-based tool that facilitates
simulation of the temporal behaviour of a multitasking real-time kernel executing
controller tasks. The tasks are controlling processes that are modelled as ordinary
continuous-time Simulink blocks. TrueTime also makes it possible to simulate models
of standard MAC layer network protocols, and their influence on networked control
loops.

In TrueTime, kernel and network Simulink blocks are introduced, the interfaces of
which are shown in Figure 34. The kernel blocks are event-driven and execute code
that models, e.g., I/O tasks, control algorithms, and network interfaces. The
scheduling policy of the individual kernel blocks is arbitrary and decided by the user.
Likewise, in the network, messages are sent and received according to the chosen
network model.

 72

Figure 34 The TrueTime block library. The Schedule and Monitor outputs display the
allocation of common resources (CPU, monitors, network) during the simulation.

The level of simulation detail is also chosen by the user-it is often neither necessary
nor desirable to simulate code execution on instruction level or network transmissions
on bit level. TrueTime allows the execution time of tasks and the transmission times
of messages to be modeled as constant, random, or data-dependent. Furthermore,
TrueTime allows simulation of context switching and task synchronization using
events or monitors.

In addition to the block library in Figure 34, TrueTime provides a collection of C++
functions with corresponding MATLAB MEX-interfaces. Some functions are used to
configure the simulation by creating tasks, interrupt handlers, monitors, timers, etc.
The remaining functions are real-time primitives that are called from the task code
during execution. These include functions for AD-DA conversion, changing task
attributes, entering and leaving monitors, sending and receiving network messages,
and more.

TrueTime is configured in a C++ or MATLAB m-file, called an initialization script.
Likewise, task and interrupt handler code is defined by C++ functions or MATLAB
m-files according to a pre-specified format. The possibility for graphical modeling has
been avoided to make the tool more general and more connected to the real
implementation code.

The Kernel Block. The kernel block is a MATLAB S-function that simulates a
computer with a simple but flexible real-time kernel, A/D and D/A converters, a
network interface, and external interrupt channels. The kernel executes user-defined
tasks and interrupt handlers. Internally, the kernel maintains several data structures
that are commonly found in a real-time kernel: a ready queue, a time queue, and
records for tasks, interrupt handlers, monitors and timers that have been created for
the simulation.

An arbitrary number of tasks can be created to run in the TrueTime kernel. Tasks may
also be created dynamically as the simulation progresses. Tasks are used to simulate
both periodic activities, such as controller and I/O tasks, and aperiodic activities, such

 73

as communication tasks and event-driven controllers. Aperiodic tasks are executed by
the creation of task instances (jobs).

Each task is characterized by a number of static (e.g., relative deadline, period, and
priority) and dynamic (e.g., absolute deadline and release time) attributes. In
accordance with the Real-Time Specification for Java (RTSJ) [Bollella et al., 2000], it
is furthermore possible to attach two overrun handlers to each task: a deadline overrun
handler (triggered if the task misses its deadline) and an execution time overrun
handler (triggered if the task executes longer than its worst-case execution time).

Interrupts may be generated in two ways: externally (associated with the external
interrupt channel of the kernel block) or internally (triggered by user-defined timers).
When an external or internal interrupt occurs, a user-defined interrupt handler is
scheduled to serve the interrupt.

The execution of tasks and interrupt handlers is defined by user-written code
functions. These functions can be written either in C++ (for speed) or as MATLAB
m-files (for ease of use). Control algorithms may also be defined graphically using
ordinary discrete Simulink block diagrams.

Simulated execution occurs at three distinct priority levels: the interrupt level (highest
priority), the kernel level, and the task level (lowest priority). The execution may be
preemptive or non-preemptive; this can be specified individually for each task and
interrupt handler.

At the interrupt level, interrupt handlers are scheduled according to fixed priorities. At
the task level, dynamic-priority scheduling may be used. At each scheduling point, the
priority of a task is given by a user-defined priority function, which is a function of
the task attributes. This makes it easy to simulate different scheduling policies. For
instance, a priority function that returns a priority number implies fixed-priority
scheduling, whereas a priority function that returns the absolute deadline implies
earliest-deadline-first scheduling. Predefined priority functions exist for rate-
monotonic, deadline-monotonic, fixed-priority, and earliest-deadline-first scheduling.

The Network Block. The network block is event-driven and executes when
messages enter or leave the network. When a node tries to transmit a message, a
triggering signal is sent to the network block on the corresponding input channel.
When the simulated transmission of the message is finished, the network block sends
a new triggering signal on the outport channel corresponding to the receiving node.
The transmitted message is put in a buffer at the receiving computer node.

A message contains information about the sending and the receiving computer node,
arbitrary user data (typically measurement signals or control signals), the length of the
message, and optional real-time attributes such as a priority or a deadline.

The network block simulates medium access and packet transmission in a local area
network. Six simple models of networks are currently supported: CSMA/CD (e.g.
Ethernet), CSMA/AMP (e.g. CAN), Round Robin (e.g. Token Bus), FDMA, TDMA
(e.g. TTP), and Switched Ethernet. The propagation delay is ignored, since it is
typically very small in a local area network. Only packet-level simulation is
supported, i.e., it is assumed that higher protocol levels in the kernel nodes have
divided long messages into packets.

 74

Configuring the network block involves specifying a number of general parameters,
such as transmission rate, network model, and probability for packet loss. Protocol-
specific parameters that need to be supplied include, e.g., the time slot and cyclic
schedule in the case of TDMA.

Comparative Aspects
Scenarios and Development Stages Supported. The main use of TrueTime is
for simultaneous simulation of all aspects of distributed real-time control applications.
By co-simulation of continuous process dynamics, task execution in real-time kernels,
and network communication, it is possible to evaluate the performance of control
loops subject to the constraints of the target system.

In a typical scenario, a controller design has been performed (without considering
implementation constraints) and is about to be implemented on the target system. In
this scenario, TrueTime can be used to evaluate different real-time implementations,
and the effects of CPU and network scheduling, task attributes, etc, on the control
performance.

For a given implementation architecture, TrueTime may also be used to obtain
temporal statistics that can be used as constraints in the design of the controller. In the
optimal scenario, however, the controller and architectural designs are performed at
the same time. Here, TrueTime provides a convenient framework for integrated
control and real-time design.

TrueTime is also used as an experimental platform for research on flexible approaches
to real-time implementation and scheduling of controller tasks. One example is
feedback scheduling [Cervin et al., 2002; Henriksson et al.2002a], where feedback is
used in the real-time system to dynamically distribute resources according to the
current situation in the system.

TrueTime may be used in all stages of the development process, from the early stages
and system specifications, during the actual system construction, and finally for
testing and validation.

Activities Supported. TrueTime makes it possible to simulate the temporal
behavior of the computer architecture (e.g., scheduling policies and network
protocols) and its effect on the control performance. Standard scheduling policies may
be used, e.g., priority-based preemptive scheduling and earliest-deadline-first
scheduling, but it is also straight-forward to define arbitrary user-defined policies.
Task overrun strategies may be evaluated and easily implemented using the TrueTime
overrun handlers.

TrueTime can also be used as an experimental platform for research on co-design of
control algorithms and computer resource scheduling mechanism. It is possible to
study dynamic compensation schemes that adjust the controller on-line based on
measurements of actual timing variations, i.e., treat the temporal uncertainty as a
disturbance and manage it with feed-forward or gain scheduling. It is also easy to
implement new more flexible approaches to dynamic scheduling, e.g., feedback

 75

scheduling [Cervin et al., 2002] of CPU time and communication bandwidth and
quality-of-service (QoS) based scheduling, in the TrueTime CPU kernel.

TrueTime may also be used only as a scheduling simulator, without being connected
to any continuous-time processes. This can be used to get information of the timing of
the real-time system, and various scheduling policies can be evaluated in terms of
deadline misses and response times.

Qualities/Constraints Addressed. Being developed in Simulink, TrueTime
allows for traditional control system assessment in terms of performance, stability and
robustness. Compared to normal control system development in Simulink, TrueTime
also considers the constraints imposed by the implementation platform.

Methodological Considerations. See above.

Tool Architecture. TrueTime is primarily intended to be used together with
MATLAB/Simulink. However, the TrueTime kernel actually implements a complete
event-based kernel and Simulink is only used to interface the kernel and the tasks with
the continuous-time processes.

TrueTime is written in C++ and consists of two Simulink S-functions for the kernel
and network block, and a collection of C++ functions for the initialization commands
and real-time primitives. All TrueTime objects, such as tasks, interrupt handlers,
monitors, timers, and events, are defined by C++ classes. These classes as well as the
real-time primitives may easily be extended by the user to add more functionality. The
Simulink engine is used only for timing and interfacing with the rest of the model (the
continuous dynamics). Since it is written in C++, it should thus be easy to port the
block code to other simulation environments, provided these environments support
event detection (zero-crossing detection).

Tool Inputs. TrueTime is initialized in a script for each kernel block (node). In this
script, the user specifies the scheduling policy of the kernel, creates tasks and assigns
task attributes (period, priority, deadlines, etc), and creates any other objects for the
simulation (interrupt handlers, timers, monitors, mailboxes, etc). The execution of
each task and handler is defined by a code function (see Modeling Content below)
with constant or random execution time. It is also possible to specify a simulated time
associated with context switches.

Furthermore, to facilitate arbitrary dynamic scheduling mechanisms, it is possible to
attach small pieces of code (hooks) to each task. These hooks are executed at different
stages during the simulation, as shown in Figure 35.

 Figure 35 TrueTime scheduling hooks.

 76

The network block is configured through the block mask dialog, see Figure 36. The
following network parameters are common to all models; number of nodes in the
network, data rate (bits/s), minimum frame size (bytes), pre- and post-processing
delay, and loss probability. Protocol-specific attributes include slot sizes for TDMA,
and buffer size and buffer type for switched Ethernet.

Figure 36 The dialog of the TrueTime Network block.

Tool Outputs. Depending on the simulation a number of different output graphs are
generated by the TrueTime blocks. Each kernel block will produce two graphs; a
computer schedule and a monitor graph, and the network block will produce a
network schedule. The computer schedule will display the execution trace of each task
and interrupt handler during the course of the simulation. If context switching is
simulated, the graph will also display the execution of the kernel.

There will be one execution trace for each task and handler. If the signal is high this
means that the task is running. A medium signal indicates that the task is ready but not
running (preempted), whereas a low signal means that the task is idle. In an analogous
way the network schedule shows the transmission of messages over the network, with

 77

the states representing sending (high), waiting (medium), and idle (low). The monitor
graph shows which tasks that have been holding the different monitors during the
simulation.

It is also possible to create logs for each task. These will log arbitrary task attributes,
such as response times and latencies, during the simulation and write them to the
MATLAB workspace after the simulation.

Plant and controller outputs are conveniently displayed and evaluated using the
Simulink built-in outputs. It is also possible to dynamically evaluate for example
quadratic performance functions, within Simulink.

Modeling Content. The TrueTime blocks are connected with ordinary Simulink
blocks to form a real-time control system, see Figure 37.

Before a simulation can be run it is necessary to initialize the individual kernel blocks.
Initialization of a TrueTime kernel block involves specifying the number of inputs
and outputs of the block, defining the scheduling policy, and creating tasks, interrupt
handlers, events, monitors, etc for the simulation. This is done in an initialization
script for each kernel block.

Figure 37 A TrueTime computer block connected to a continuous pendulum process.

The initialization code in Listing 1 shows the minimum of initialization needed for a
TrueTime simulation (e.g., corresponding to the simple simulation model in Figure
37). The kernel is initialized by providing the number of inputs and outputs and the
scheduling policy using the function ttInitKernel. A periodic task is then created by
the function ttCreatePeriodicTask. The execution of the task is given by the code
function Pcontroller, described below.

 78

Listing 1 Example of a simple TrueTime initialization function

function example-init

ttInitKernel(2, 1, 'prioFP');

name = 'ctrl';

offset = 0;

period = 0.005;

prio = 2;

data.u = 0;

data.K = 2;

ttCreatePeriodicTask(name, offset, period, prio, 'Pcontroller', data);

The execution of tasks and interrupt handlers is defined by code functions. A code
function is further divided into code segments according to the execution model in
Figure 38. The code can interact with other tasks and with the environment at the
beginning of each code segment. This execution model makes it possible to model
input-output latencies, blocking when accessing shared resources, etc. The number of
segments can be chosen to simulate an arbitrary time granularity of the code
execution. Technically it would, e.g., be possible to simulate very fine-grained details
occurring at the machine instruction level, such as race conditions. However, that
would require a large number of code segments.

1 2 3

Simulated execution time

Execution of user code

Figure 38 The execution of the code associated with tasks and interrupt handlers is
modeled by a number of code segments with different execution times. Execution of user

code occurs at the beginning of each code segment.

The simulated execution time of each segment is returned by the code function, and
can be modeled as constant, random, or even data-dependent. The kernel keeps track
of the current segment and calls the code functions with the proper argument during
the simulation. Execution resumes in the next segment when the task has been
running for the time associated with the previous segment. This means that

 79

preemption by higher-priority activities and interrupts may cause the actual delay
between executions of segments to be longer than the execution time.

Listing 2 shows an example of a code function corresponding to the time line in
Figure 38. The function implements a standard P-controller. In the first segment, the
plant is sampled and the control signal is computed. In the second segment, the
control signal is actuated and the controller states are updated. The third segment
indicates the end of execution by returning a negative execution time. The data
structure data represents the local memory of the task and is used to store the control
signal and measured variable between calls to the different segments. A/D and D/A
conversion is performed using the kernel primitives ttAnalogIn and ttAnalogOut.

Listing 2 Example of a standard code function written in MATLAB code. The local
memory of the controller task is represented by the data structure data. This stores the
controller gain and the control signal between invocations of different code segments.

Note that the input-output latency of this controller will be at least 2 ms (i.e., the
execution time of the first segment). However, if there is preemption from other high-
priority tasks, the actual input-output latency will be longer.

TrueTime interrupt handlers is used to model code that is executed in response to
interrupts. Interrupt handlers are scheduled with fixed priorities on a higher priority
level than tasks. Interrupt handlers may be associated with timers, the network receive
channel, external interrupt channels, or attached to tasks as overrun handlers. Timers
can be one-shot or periodic.

TrueTime monitors are used to provide mutual exclusion and synchronization
between tasks. Tasks waiting for monitor access are sorted according to their priority
under the given scheduling policy. Standard priority inheritance is implemented as
resource access policy. TrueTime events may be free or associated with monitors as
condition variables. The event waiting queues are also priority-sorted.

Tool Automation. MATLAB scripts can be used to run sequences of simulations
with different input parameters. Other than that, no automation is provided.

Extensibility. Several possible extensions to the simulation environment exist.

Some important issues include

 80

• increased support for using legacy code directly in the simulator (e.g., by
adhering to the POSIX standard and providing special wrapper functions that
translates POSIX-code to the TrueTime environment)

• extensions of the network simulation (e.g. by adding support for simulation of
wire-less and ad-hoc networks)

• connections with worst-case execution time analysis tools to come up with
reasonable code execution times

Availability. TrueTime is available for download at

http://www.control.lth.se/~dan/truetime/

 81

5 Discussion: trends and challenges
To cope with the system complexity efficiently there has over the years been a
constant trend to raise the abstraction levels at which the systems are being
programmed and modeled. More than 20 years ago the programming of ECS was
predominantly carried out using assembly languages. Then the paradigm shifted to
high-level programming languages with the idea to provide programmers with more
powerful tools. These tools would relieve the programmers of the burden of knowing
the implementation hardware in detail, thus giving them the possibility to work more
efficiently by focusing on the applications (a kind of separation of concerns). During
this paradigm shift, concerns were raised whether the compilers would be able to
produce efficient and reliable code. Entering the paradigm of model based
development (MBD) the same concerns are now being raised with regards to code
generation from models.

MBD related trends in embedded control systems include the incorporation of formal
methods in tools, development of modeling guidelines, increased tool support for
distributed systems and function/platform integration, and standardization of
modeling languages, platforms and architectures.

Considering the requirements on embedded systems many efforts aim at improving
the dependability of these systems. One way of reducing the probabilities for faults in
a complex system is to reduce the manual labour and individual freedom included in
the development chain. Manual labour is known to be error prone. This means that
different initiatives to increase formalization are ongoing. For example, guidelines for
C-coding have been issued by the automotive software organization, Misra19, and
guidelines for modelling are being developed [Mathworks, 2004]. MBD has an
important role in this dependability effort; code generation from models is seen as one
way to improve software quality [Shigematsu, 2002]. Synthesis can be expected to be
introduced at all levels (from drivers over RTOS to applications). The integration of
application code generation with RTOS configuration is another closely related issue.

Contemporary computer aided control engineering (CACE) tools support a large body
of control theoretical approaches for analysis and synthesis of dynamical systems
(both continuous and discrete-time). In addition, because of the hybrid nature of
control systems, computer science techniques for formal verification such as model
checking are also emerging in CACE tools [Ranville 2004].

MBD tool support for ECS is today mainly limited to single processor systems,
however support for distributed systems in model based environments is on its way as
indicated by several research and industrial efforts. Such tools enable functions to be
co-designed with the distributed computer platforms they are implemented on.

In general, supporting distributed systems development is a complex task where there
are many challenges; still only partially tool support exists. Many of those challenges
are less of a technical nature; not only are many protocols in use, but nodes part of a
distributed system are developed by many different companies. Standardization and
appropriate processes, including agreements between system integrators and
subsystem suppliers are very important.

19 http://www.misra.org.uk/

 82

Contemplating on the surveyed tools, the tools from related areas as well as the
industrial tools, it does seem that extremely capable tool-sets could be formed by
integrating many pieces of functionality available in the different tools. This would
provide a range of capabilities with respect to modeling, analysis and synthesis,
covering a large number of aspects (safety, control performance, power consumption
etc.).

One approach to support co-design is that of formulating it as a synthesis problem,
where, given design constraints, a solution is synthesized satisfying these constraints.
This corresponds to a top-down approach. However, if the approach fails to find a
solution for the given constraints, an iteration loop is required where some of the
constraints (e.g. the control performance specification) are changed. Another more
basic approach is to provide support for what-if type analysis where, for example, the
control performance for a particular type of implementation can be evaluated, thus
supporting solution space exploration. Of course, the approaches are complementary
in that more advanced optimization approaches can be built on-top of the basic
approach. It is perhaps representative that there are still few synthesis tools – this is a
new research area.

There are several challenges facing the further development of the type of co-design
studies in this report. One area for further research is that of filling in the theoretical
gaps that today hamper co-design. Another area is that of providing support for the
integration and management of all the different types of models being used in
development.

Finally, the introduction of tool chains supporting model based control engineering is
not unproblematic and is strongly related to and by affected by organizational, process
and technology constraints. Introducing tool chains causes a reliance and dependence
on particular tool vendors and requires training of personnel.

6 Conclusions
Designing a real-time control system is essentially a co-design problem. Choices
made in the real-time computer system design will affect the control design and vice
versa. For instance, deciding on a particular network protocol will give rise to certain
delay distributions that must be taken into account in the controller design. On the
other hand, bandwidth requirements in the control loops will influence the choice of
CPU and network speed. The need for a co-design approach is further accentuated in
embedded control systems with limited computing and communication resources.

In order to simplify the design process for this type of systems it is important with
tool support. Unfortunately the tools that allow a co-design approach are quite few.
Instead most tools specialize on a single domain, e.g., control design, schedulability
analysis or UML-type software modeling and code generation.

The aim of this survey has been to identify and summarize important co-design tools
available while at the same time characterizing the state of practice for industrial tools
and tools in related areas.

The tools presented are in general specialized on a certain aspect of the co-design
problem. For example, Jitterbug support statistical control performance analysis
taking computing and communication effects into account whereas TrueTime and

 83

RTSIM are tools for co-simulation of networked embedded control systems. The tools
AIDA, Orccad, Ptolemy II, and SynDEx all aim at providing environments for
model-based developed of real-time control systems. What so far mainly is lacking is
tools that focus on the actual design part of co-design, i.e., which aid the designer with
the development of the actual embedded control algorithms taking the control and
communication aspects into account. The reason for the lack of this type of tool is the
lack of theory and methods in the field. Co-design of embedded control system is a
fairly new area and most of the methods and theory developed so far are aimed at
analysis rather than design and synthesis.

7 Acknowledgements
This work has been supported to a large extent by the European Commission through
the ARTIST2 Network of Excellence.

The authors would like acknowledge inputs and comments from the developers of the
tools mentioned in this report. Additional inputs by Joachim Stroop for chapter 2, and
by Achim Rettberg for a description of the CAMeL-View tool are acknowledged.
Jianlin Shi, KTH, is acknowledged for providing feedback on and assisting in the
editing of the manuscript.

 84

8 References
AADL – 2004. Architecture Analysis Description Language – SAE Standard AS-5506, Nov. 2004
(http://www.aadl.info/)

ARTIST roadmaps – 2005. B Bouyssounouse,; J Sifakis, (Eds.). Embedded Systems Design - The ARTIST
Roadmap for Research and Development Series: LNCS, Vol. 3436 2005, Springer.

ARTIST2 – 2006. The ARTIST2 Network of Excellence on Embedded Systems Design. http://www.artist-
embedded.org/FP6/

ARTIST2 Control cluster roadmaps, 2006. Roadmaps produced by the Control for Embedded Systems Cluster
within the ARTIST2 network of excellence. http://www.md.kth.se/RTC/ARTIST2/publications.html

Audsley, N., A. Burns, M. Richardson, and A. Wellings (1994): STRESS.A simulator for hard real-time systems..
Software. Practice and Experience, 24:6, pp. 543.564.

Bass, J. M., A. R. Browne, M. S. Hajji, D. G. Marriott, P. R. Croll, and P. J. Fleming (1994). Automating the
development of distributed control software. IEEE Parallel and Distributed Technology: Systems and Technology,
2.

Bhatt, D., V. Thomas, and J. Shackleton (1996): A methodology and toolset for the design of parallel embedded
systems.. ACM SIGPLAN OOPS Messenger, 7.

Blazewicz J., K. Ecker, G. Schmidt, and J. Weglarz (2001). Scheduling Computer and Manufacturing Processes.
Springer, second edition, 2001.

Bollella, G., B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull (2000): The Real- Time
Speci_cation for Java. Addison-Wesley.

Carloni Luca, Maria D. Di Bebedetto, Alessandro Pinto and Albert Sangiovanni-Vincentelli (2004). Modeling
Techniques, Programming Languages Design Toolsets and Interchange Formats for Hybrid Systems. Deliverable
of the Project IST-2001-38314 COLUMBUS - Design of Embedded Controllers for Safety Critical Systems.
http://www.columbus.gr/documents_public.htm

Cervin, A., J. Eker, B. Bernhardsson, and K.-E. Årzén (2002): Feedback-feedforward scheduling of control tasks..
Real- Time Systems, 23:1.2, pp. 25-53.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén (2003): How does control timing affect
performance?. IEEE Control Systems Magazine, 23:3, pp. 16.30.

Cervin, A. and B. Lincoln (2003): Jitterbug 1.1.Reference manual.. Technical Report ISRN
LUTFD2TFRT--7604--SE. Department of Automatic Control, Lund Institute of Technology, Sweden.

Chen et al. (2006). DeJiu Chen, Martin Törngren, Jianlin Shin, Henrik Lönn, Sebastien Gerard, Mikael Strömberg,
Karl-Erik Årzén. Model Based Integration in the Development of Embedded Control Systems – A Characterization
of Current Research Efforts. In Proceedings of the 2006 IEEE Computer Aided Control Systems Design
Symposium, October 2006. Accepted for publication.

Control Systems Society (2004): CACSD history. Home page: http:www.robotic.dlr.decontrolcacsdcacsdhistory.shtml

Crnkovic I., U Asklund. and DA Persson (2003), Implementing and integrating product data management and
software configuration management, Artech House Publishers, 2003.

EAST-ADL, 2004: Freund U., O Gurrieri, J Küster, H Lonn, J Migge, M-O Reiser, T Wierczoch and M. Weber
(2004). An Architecture Description Language for developing Automotive ECUSoftware. INCOSE 2004.

El-khoury Jad, Ola Redell, Martin Törngren (2005). A Model and Tool Integration Platform for Multidisciplinary
Development. 31st Euromicro Conf. On Software Engineering and Advanced Applications
(http://www.idt.mdh.se/euromicro-2005), Porto, Portugal, August 30th - September 3rd, 2005.

Eaton, J. W. (1998): .OCTAVE. Home page, http:www.octave.org.

El-Khoury, J. and M. Törngren (2001): Towards a toolset for architectural design of distributed real-time control
systems.. In Proceedings of the 22nd IEEE Real- Time Systems Symposium. London, England.

 85

ETAS (2004): .Engineering products and services. Home page, http:www.etasgroup.com.

Forget, J., C. Lavarenne, and Y. Sorel (2004): SynDEx v6 - user manual. Technical Report.

Gomaa, H. (1993): Software Design Methods for Concurrent and Real- Time Systems. Addison-Wesley.

Grandpierre, T., C. Lavarenne, and Y. Sorel (1999): Optimized rapid prototyping for real-time embedded
heterogeneous multiprocessors. In Proceedings of the 7th International Workshop on Hardware/ Software Co-
design. Rome, Italy.

Handel-C. Language reference manual. http://www.celoxica.com/, 2005.

Hristu-Varsakelis, Dimitrios; Levine, William S. (2005). Handbook of Networked and Embedded Control
Systems. 2005, ISBN: 0-8176-3239-5.

Henriksson, D. and A. Cervin (2003): TrueTime 1.1.Reference manual. Technical Report ISRN
LUTFD2TFRT--7605--SE. Department of Automatic Control, Lund Institute of Technology.

Henriksson, D., A. Cervin, J. Åkesson, and K.-E. Årzén (2002a): Feedback scheduling of model predictive
controllers.. In Proceedings of the 8th IEEE Real- Time and Embedded Technology and Applications Symposium.
San Jose, CA.

Henriksson, D., A. Cervin, and K.-E. Årzén (2002b): TrueTime: Simulation of control loops under shared
computer resources.. In Proceedings of the 15th IFAC World Congress on Automatic Control. Barcelona, Spain.

Henriksson, D., A. Cervin, and K.-E. Årzén (2003): TrueTime: Real-time control system simulation with
MATLABSimulink.. In Proceedings of the Nordic MATLAB Conference. Copenhagen, Denmark.

HTL (2006). A. Ghosal, T.A. Henzinger, D. Iercan, C.M. Kirsch and A.L. Sangiovanni-Vincentelli. A Hierarchical
Coordination Language for Interacting Real-Time Tasks. Proc. ACM International Conference on Embedded
Software (EMSOFT), ACM Press, 2006.

Hylands, C., E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao, and H. Zheng (2003): Overview of the
Ptolemy project.. Technical Report UCBERL M0325. Department of Electrical Engineering and Computer
Science, University of California Berkeley, CA.

Giotto (2003). T.A. Henzinger, C.M. Kirsch and B. Horowitz. Giotto: A Time-triggered Language for Embedded
Programming. Proceedings of the IEEE, Vol. 91, No. 1, pages 84--99, Jan. 2003.

Giotto, 2006. http://embedded.eecs.berkeley.edu/giotto.

iXtronics (2006). www.ixtronics.de

Jeutter, R. and B. Heppner (2004): Model-based system development.is it the solution to control the expanding
system complexity in the vehicle?. In Proceedings of the SAE World Congress. Detroit, USA.

Lauwereins, R., M. Engels, M. Adé, and J. a. Peperstraete (1995): Grape-II: A system-level prototyping
environment for dsp applications.. IEEE Computer, 28, pp. 35.43.

Lavarenne, C., O. Seghrouchni, Y. Sorel, and M. Sorine (1991): The SynDEx software environment for real-time
distributed systems design and implementation.. In Proceedings of the European Control Conference. Grenoble,
France.

Lincoln, B. and A. Cervin (2002): Jitterbug: A tool for analysis of real-time control performance.. In Proceedings
of the 41st IEEE Conference on Decision and Control. Las Vegas, NV.

Lipari, G. (2003a): .MetaSim.. Home page, http:metasim.sssup.it.

Lipari, G. (2003b): .RTSIM. Home page, http:rtsim.sssup.it.

Liu, J., J. Eker, J. W. Janneck, and E. A. Lee (2002): Realistic simulation of embedded control systems.. In
Proceedings of the 15th IFAC World Congress on Automatic Control. Barcelona, Spain.

Liu, J. and E. Lee (2003): Timed multitasking for real-time embedded software. IEEE Control Systems Magazine,
23:1, pp. 65.75.

MathWorks (2004). The MathWorks Automotive Advisory Board,

 86

http://www.mathworks.com/industries/auto/maab.html, accessed Sept. 2005.

Motus L. and Rodd M. (1994). Timing analysis of real-time software. Pergamon Press. ISBN 0 08 0420257

Norberg, J. and M. Törngren (2003): Fault injection into control algorithms.. Technical Report TRITA.MMK
2003:37, ISSN 1400.1179, ISRN KTHMMKR-0311-SE. Department of Machine Design, KTH, Sweden.

Papadopoulos Y., McDermid J. A., Sasse R., Heiner G. (2001). Analysis and Synthesis of the Behaviour of
Complex Programmable Electronic Systems in Conditions of Failure, Reliability Engineering and System Safety,
71(3):229-247, Elsevier Science, 2001.

Palopoli, L., G. Lipari, G. Lamastra, and L. Abeni (2002): An object-oriented tool for simulating distributed
real-time control systems.. Software. Practice and Experience, 32, pp. 907.932.

Pernet, N. and Y. Sorel (2003): .Optimized implementation of distributed real-time embedded systems mixing
control and data processing.. In Proceedings of the ISCA 16th International Conference: Computer Applications in
Industry and Engineering(CAINE- 2003). Las Vegas, USA.

Ptolemy Project (2004): Ptolemy II. Home page, http:ptolemy.eecs.berkeley.edu.

P. Šůcha, Z. Pohl, and Z. Hanz´alek. Scheduling of iterative algorithms on FPGA with pipelined arithmetic unit. In
10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2004), Toronto, Canada,
2004.

Přemysl Šůcha and Zdeněk Hanzálek. Scheduling with start time related deadlines. In IEEE Conference on
Computer Aided Control Systems Design, Taipei, September 2004.

Ranville S. 2004. Case Study of Commercially Available Tools that Apply Formal Methods to a
Matlab/Simulink/Stateflow Model. SAE World Congress 2004. Detroit, MI. March 8-11. 2004. SAE 2004-01-
1765.

Reuter J. Analysis and Comparison of 3 Code Generation Tools. SAE World Congress 2004. Detroit, MI. March 8-
11. 2004. SAE 2004-01-0702.

Redell, O. (1998): Modelling of distributed real-time control systems, an approach for design and early analysis..
Licentiate thesis TRITA-MMK 1998:9, ISSN 1400.1179, ISRN KTHMMK.989.SE. Department of Machine
Design, KTH, Stockholm, Sweden.

Redell, O., J. El-Khoury, and M. Törngren (2004): The AIDA tool-set for design and implementation analysis of
distributed real-time control systems. Journal of Microprocessors and Microsystems, 28:4, pp. 163.182.

Redell, O. and M. Törngren (1998): A modelling framework for design and analysis of distributed real-time
control implementations. In Proceedings of the 6th UK Mechatronics Forum. Skövde, Sweden.

Shigematsu T. (2002). Software Quality Management Applied to Automotive Embedded Systems. SAE
Convergence 2002. Transportation Electronics. Detroit, MI. October 21-23. 2002. SAE 2002-21-0017.

Simon D. and Benattar F. (2005), Design of real-time periodic control systems through synchronisation and fixed
priorities. Int. Journal of Systems Science, Feb. 2005, Vol. 36, no. 2, p. 57-76.

Simon D., Robert D., Sename O. (2005), Robust control/scheduling co-design: application to robot control.
RTAS'05 11th IEEE Real-Time and Embedded Technology and Applications Symposium, March 2005, San
Francisco.

Simon, D., B. Espiau, E. Castillo, and K. Kapellos (1993): Computer-aided design of a generic robot controller
handling reactivity and real-time control issues.. IEEE Transactions on Control Systems Technology, 1:4.

Simon, D., B. Espiau, K. Kapellos, and R. Pissard-Gibollet (1997): Orccad: Software engineering for real-time
robotics. A Technical Insight, Robotica, Special Issues on Languages and Software in Robotics, 15:1, pp. 111.116.

Simon, D. and A. Girault (2001): Synchronous programming of automatic control applications using Orccad and
Esterel.. In Proceedings of the 40th IEEE Conference on Decision and Control, CDC'01. Orlando, USA.

Simon, D., R. Pissard-Gibollet, K. Kapellos, and B. Espiau (1999): Synchronous composition of discretized
control actions: Design, veri_cation, and implementation with Orccad. In Proceedings of the 6th International
Conference on Real- Time Control Systems and Applications.

 87

 Sorel, Y. (1994): Massively Parallel Systems with Real Time Constraints, the Algorithm Architecture Adequation
Methodology}. In Proceedings of Conference on Massively Parallel Computing Systems, MPCS'94. Ischia, Italy.

Sorel, Y. (2005): From modeling/simulation with Scilab/Scicos to optimized distributed embedded real-time
implementation with SynDEx. In Proceedings of the International Workshop On Scilab and Open Source Software
Engineering, SOSSE'05. Wuhan, China.

Storch, M. F. and J. W.-S. Liu (1996): DRTSS: A simulation framework for complex real-time systems.. In
Proceedings of the 2nd IEEE Real- Time Technology and Applications Symposium, pp. 160.169.

Premysl Sucha, Zdenek Hanzalek (2006). Scheduling of Tasks with Precedence Delays and Relative Deadlines,
Framework for Time optimal Dynamic Reconfiguration of FPGAs. In IEEE International Parallel & Distributed
Processing Symposium. New York: IEEE Press, 2006, s. 170. ISBN 1,4244,0054,6

Törngren Martin, Mats Andersson, Björn Wittenmark, Jan Torin and Jan Wikander (2001). Integrated Real-time
Computer and Control System Architectures - DICOSMOS2 - final report. Internal report, Department of Machine
Design, KTH, 2001.

Törngren, M., and Larses, O. (2005). Maturity of model driven engineering for embedded control systems from a
mechatronic perspective. In Model Driven Engineering for Distributed Real-time Embedded Systems. Edited by:
Sébastien Gérard, CEA, France Jean-Philippe Babau, INSA Lyon, Lyon, France Joel Champeau, ENSIETA,
France. ISBN: 1905209320. Publication Date: August 2005.

Törngren Martin, DeJiu Chen, Ivica Crnkovic, (2005). Component based vs. Model based development: A
comparison in the context of Vehicular Embedded Systems. 31st Euromicro Conf. On Software Engineering and
Advanced Applications (http://www.idt.mdh.se/euromicro-2005), Porto, Portugal, August 30th - September 3rd,
2005.

Martin Törngren, Dan Henriksson, Karl-Erik Årzén, Anton Cervin, Zdenek Hanzalek (2006). Tools Supporting
the Co-Design of Control Systems and Their Real-Time Implementation; Current Status and Future Directions. In
Proceedings of the 2006 IEEE Computer Aided Control Systems Design Symposium, October 2006.

Vestal, S. (1994). Integrating control and software views in a cace/case toolset. In Proceedings of the IEEE/ IFAC
Joint Symposium on Computer- Aided Control System Design, pp. 353.358. Tucson, Arizona.

XGiotto (2004). A. Ghosal, T.A. Henzinger, C.M. Kirsch and M.A.A. Sanvido. Event-driven Programming with
Logical Execution Times, Proc. International Workshop on Hybrid Systems: Computation and Control (HSCC),
Springer, LNCS series, Vol. 2993, pages 357--371, 2004.

