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Abstract

We have designed and implemented a new programming language for hard real-time systems. Ciritical timing
constraints are specified within the language, and ensured by the compiler. The main novel feature of the language is
that programs are extensible in two dimensions without changing their timing behavior: new program modules can
be added, and individual program task can be refined. The mechanism that supports time invariance under parallel
composition is that different program modules communicate at specified instances of time. Time invariance under
refinement is achieved by conservative scheduling of the top level. The language, which assembles real-time tasks
within a hierarchical module structure with timing constraints, is called Hierarchical Timing Language (HTL). Itis a
coordination language, in that individual tasks can be implemented in other languages. We present a distributed HTL
implementation of an automotive steer-by-wire controller as a case study.

1 Introduction

Much current real-time programming proceeds by trial and error: if during a program test some task misses its deadline,
then the task priorities are reassigned, and new tests are performed. In rare cases can the timing of a poograd be
correct, by scheduling theory or formal verification. Scheduling analysis becomes difficult when the program structure
is irregular, with branches, exceptions, and dynamic task creation. Formal techniques are difficult due to state space
explosion.

Part of the problem is that design practice refers to time in an indirect way, often through low-level constructs such
as priorities. One of the main challenges in real-time programming, therefore, is lifting the level of abstraction. In

*This work was supported in part by GSRC grant 2003-DT-660 and in part by the Center for Hybrid and Embedded Software Systems (CHESS)
at UC Berkeley, which receives support from the National Science Foundation (NSF award #CCR-0225610), the State of California Micro Program,
and the following companies: Agilent, DGIST, General Motors, Hewlett Packard, Infineon, Microsoft, and Toyota.



this report, we present a new high-level coordination language for interacting hard real-time tasks called Hierarchical
Timing Language (HTL). Like Giotto [1], our language refers directly to real-time instances, but it is more general
than Giotto, in that it offers hierarchical layers of abstraction. Besides adding program structure, a main benefit of the
abstraction hierarchy is that feasible schedules for lower layers can be efficiently constructed from feasible schedules
for higher layers.

HTL permits the composition and refinement of programs without changing their real-time behavior. Parallel program
modules communicate with each other and with the environment through so-caftedunicatorsof which sensors

and actuators are special cases. A communicator defines a sequence of real-time instances of a static variable. Task
reads and writes specify communicator instances. As the read and written time instances of communicators are fixed
by a program, they remain unchanged when the context of the program is modified. In other words, the communicator
instances specifylagical execution timéLET) [1] slot for each task; the actual physical execution of the task must fall

within this slot. As long as physical task execution falls within the LET interval, the functional and timing semantics

of a program is deterministic, independent of the actual task schedule. In particular, individual program modules can
be reused in different contexts without changing their timing behavior, or upgraded without affecting the timing of the
rest of the system.

In HTL, tasks can be refined, in multiple levels, by groups of tasks with precedence relations. Each task refinement
is constrained in such a way that if the task is schedulable, then the more detailed replacement group of tasks is
schedulable as well. As a consequence, schedulability needs to be checked only for the top level of an HTL program.
This avoids a combinatorial explosion, and permits scheduling to be performed by the HTL compiler. The compiler
rejects a program if it cannot guarantee that its timing specification is satisfied on a given platform (which is specified
through worst-case execution times for all tasks).

In addition to module composition (concurrency) and task refinement (hierarchy), HTL supports the collection of tasks
into modeswhich can be composed sequentially. We provide an operational semantics for HTL and define a (simple)
compiler to generate E code (code used by the Embedded Machine). The compiler performs schedulability analysis
and translates HTL programs into code for the Embedded Machine [2]. The HTL compiler can generate E code for
an distributed HTL implementation; we assume that the Embedded Machine has been implemented on each host over
which the HTL implementation is distributed. The semantics of an HTL program remains independent of the number
of hosts, but the analysis and code generation takes into account the distribution.

We present an automotive steer-by-wire controller as a case study. A steer-by-wire system removes the mechanical
linkage between steering wheel and car with a set of sensors, actuators, and a controller distributed over several pro-
cessors. Typically the sensors and actuators are spread over four processors for each of the wheels, and the controller
(along with different functionalities like fault detection, supervisory control, and power coordinator) is implemented

on more than one processor. While the example is particularly useful to show the use of communicators and task
refinement, it also illustrates the need of horizontal and vertical extensions of the software. Horizontally, parallel mod-
ules can be appended to the implementation without changing the timing behavior of the implementation. Vertically,
the refinement concept can be used to provide (temporal) space for future extensions.

Overview. Section 2 presents a brief overview on communication and computation model of HTL and basic program
structures. Section 3 discusses an implementation of the steer-by-wire controller in HTL. Section 4 presents the
abstract syntax for HTL and the restrictions required to ensure race-free execution and schedulable programs. Section
5 presents the operational semantics of the language. Section 6 discusses the compiler for HTL to generate E code.



Section 7 presents an overview of schedulability check for HTL. Section 8 compares HTL with related works. Section
9 concludes the report.

2 Overview

Logical execution time.LET model(Figure 1) decouples the time when a software task reads input and writes output
from the time when the task executes. An LET task is a sequential code operating on memory that has been assigned
to the task upon release (and is not accessible to any other tasksgl@dmeandterminationdecides the LET for the

task; the task iactivebetween the release and termination events which are triggered clock ticks or sensor interrupts.
The input of an LET task is written into its assigned memory when the release event occurs and not when the task
actually startsexecuting. Similarly the output is available to other tasks or actuators at the termination event, even

if the task completes physical execution earlier. In between the start and completion of execution the task may be
preempted and then resume the execution. LET tasks are time and value deterministic, portable and composable. An
LET task istime safeon some given hardware if the tasémplete®xecution on that hardware before the termination

event occurs.

release event termination event

< Logical Execution Time (LET) .z
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completion|event v
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running running
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release start preemption resume completion  termination

Figure 1: Logical Execution Time (LET) Model

Communication and computation model. The communication model for HTL is centered arowmnmunicators

A communicator is a variable (with a structured data type and has values from a set that complies to the data type)
which can be accessed (i.e. read from or write to) only at specific time instances. We specify the time instance through
a communicator period. The computation model for HTL comprises of software tagksk & sequential code
without any internal synchronization point. A task reads from certain instances of some communicators, evaluates a
pre-defined function based on the input and updates certain instances of the same or other communicators.
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Figure 2: Communicators and Tasks

Figure 2 shows the interaction between four communicators and two tasks. The four communigators;s and



cq4 have period®, 3, 4 and3 respectively; the instances of access have been shown along the time line; Tealdls
second instances af andc, and updates fourth instance®f. Taskt, reads second instance®f and updates sixth
instance ot; and fifth instance of,. The read and write instances implicitly specify the LET for the tasks; thus LET
of t1 span from time unit 3 to time unit 9 and LET ©f span from time unit 4 to time unit 10.

Communicators determine the interaction between tasks. While communicators are the key to write HTL programs in
a compositional way, they also ensure deterministic behavior. Determinism implies that given sufficient CPU speed,
the real-time behavior of the program is determined by the input, independent of the host speed and utilization and is
maintained by ensuring no race on communicators and that a communicator is updated before it is read.

HTL allows direct communication between tasks with identical frequencies (tasks with different frequencies can only
communicate via communicators); communication through ports ensure zero latency. Figure 3 shows thtee tasks
t, andts. Taskti reads second instancesqfandc, and taske, reads second instance@f. Completion oft; and

t, are not specified; instead a third taskreads the evaluation af andt, and updates the fifth instance @f. The
communication betweety (andt,) andts occurs through ports. fort is variable with fixed data type but is not
bound to time instances i.e. as soon as the evaluatien isfcomplete, task, can read the output.
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Figure 3: Communicators, Ports and Tasks

Program. An HTL programis a set of communicators and a set of modesnddeis a group of task with identical
frequency (expressed as mode period). Tasks within a mode may interact through ports; however tasks in different
modes can only communicate through communicators. The ports in a mode express the precedence relation between
tasks; if a taslprecedesanother task then the second task must read a port updated by another task. Figure 4 shows
two modesn; andm, with periods 6 and 12 respectively.
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Figure 4: Modes, Tasks and Communicators

In real-time applications a group of tasks get replaced by an alternate group depending on some pre-defined condition
(e.g. change in temperature readings). HTL accommodates this by allowing switching of modes (possible only at end
of mode periods) based on some condition specified as a predicate on communicators and ports. A network of modes
switching between themselves is referred azoaluléFigure 5). In the modified specification model, an HTL program

is a set of modules and a set of communicators. The modules are composed in parallel while modes in a module are
composed sequentially. At any instance, tasks of at most one mode of a module may be executing. One mode in each



module is specified as the start mode and starts executing (before any other modes of the module) when the module is

i
®®

Figure 5: Modules and Modes
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Refinement. Specifying all behaviors through mode switching is cumbersome. To have an efficient and concise
specification we introduce the conceptobde refinement mode in a program can be replaced by an HTL program.

This does not add expressiveness of the model; in fact an HTL program with arbitrary levels of refinement can be
translated into one with no refinement. However the feature allows a compact representation without overloading
analysis; e.g. for schedulability analysis one does not need to consider all possible combinations of refinement modes
and this save subsequent computation effort. In fact for an HTL program (with certain restrictions) schedulability is
ensured if the top-level program (without considering any refinement) is schedulable.
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Figure 6: Refinement

Figure 6 shows a mode and a moder’ (from a program which refines). The tasks im execute in parallel to that
of m’. HTL imposes certain restrictions arto ensure efficient analysis. First, period of madés identical to that

of m. This ensures that whenswitches (which is only possible at the end of period), all tasks in the modes refining
has terminated execution. Second, every tasK maps to an unique task in(shown by grey arrows) e.gz (child)

to ts (parent). HTL considerss as a placeholder (or abstracttask) to that oftg (or anconcretetask); in other
wordsts does not execute at run-time but ensures tias accounted for during schedulability analysis of the top
program. Also, the latest (earliest) communicator read (write}should be equal to or earlier (later) than that gf
dependencies af; should be a subset of dependencieszénd worst-case-execution-time ¢ should be less than
equal to that ots. The constraint ensures thattif can be scheduled in the top progratfcan be scheduled for the
whole program (refer Section 7 for complete analysis).
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Figure 7: Program and Refinement

Refinement allows efficient specification by allowiclypiceandchange of behaviorfThe choice is expressed when an
abstract task in a mode can be parent of several concrete or abstract task in different modes of a refinement program.



By using the hierarchy, the choices can be used in a structured manner. The change of behavior is exploited by having
the child task reading from/ writing to different communicators within the constraints discussed above. Figure 7
shows a diagrammatic view of an HTL program with refinement. The modes shows the tasks with precedences and
the refinement modes show possible orientation of children concrete/ abstract tasks.

Distribution. Many embedded applications are distributed; tasks are distributed on several hosts and interact with
each other through communication channels. In HTL, distribution is specified through a mapping of modules to hosts;
the distribution is implemented by replicating shared communicators on all hosts and then have the tasks (writing to
the shared communicators) broadcast the outputs. The semantics remain the same as if they were running on a single
host; however code generation and analysis take the distribution into account. The LET model is extended to include
both execution and transmission of output (Figure 8).
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Figure 8: Task execution and transmission

3 Steer-By-Wire

A steer-by-wirSBW) control system replaces the mechanical linkage between steering wheel and car wheels by a
set of steering wheel angle sensors, electric motors that control the wheel angle, and a controller that computes the
required wheel motor actuation. To maintain a realistic road condition feel for the driver, a force feedback actuator
is placed on the steering wheel. The specific architecture that has been used here is a simplified steer-by-wire model
used by General Motors for their prototype hydrogen fuel-cell car FX-3. The example is an imitation of the concerns
and requirements and does not represent a real set of control algorithms for an actual product or prototype.

Functionalities

Driver Interface
Desired Steer I:> | Power Unit Co-ordinator | Vehicle Actuation
Desired Torque :>
- ‘ Motor Actuator Controller ‘ Wheel Motor Actuators
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Mgttg'; Tg:ri’: Driver Feedback
Speedq :> | Supervisiory Control | :>
Rolling Friction Fault Handii Steer Feedback
Power ‘ ault Randling ‘ Warning
Pitch/ Yaw/ Roll

Figure 9: Data Flow and Functional Blocks

The sensors (Figure 9) read desired steer/ torque from driver and current vehicle state (wheel angle, motor current,
speed, friction, power, pitch, yaw etc). The system functionality is divided into five parts: computation of wheel



motor actuation and steer feedback, supervisory control, fault handling and power coordinator. Supervisory control co-
ordinates between steering, braking and suspension; for simplicity we are not implementing the braking and suspension
and assume that the interface is being provided as a set of sensor values. The supervisor typically runs in triple-
redundant mode (three copies are executed in three different processors). The fault handling system detects, isolates
and mitigates fault and warns the driver in case of fault. Power coordinator handles the coordination of motor current
computed by the controller with rest of the power grid.

MCUg, | ECU1 %

e oo L]
T

Sensors: steer anglel torque, wheel angle,
motor torquel current, friction, power, pitch, yaw, roll

. Actuators: rack electric motors

Figure 10: Implementation of SBW system

An architecture for SBW (Figure 10) consists of eight hosts (or processors): four motor control units (MCUs) and
four electronic control units (ECUs). The MCUs are placed near the wheels and detect sensor values related to wheels
and send signals to motor actuator. The ECUs implement rest of the functionalities. All hosts are connected through a
communication link that allows broadcast from any host.

'sensor RR| [actuator RR| [ control Fault
sensor_RL actuator RL Diagnosis
'sensor FR| |actuator FR Steer upervisor.

[sensor FL | [actuator FL | |Feedback Power|  [sypervisor3

Figure 11: Modules for the SBW implementation

Steer-by-wire in HTL. Each of the functional units of the SBW system is represented by a module in the HTL
implementation (Figure 1. There are nine modules: sensor units for each wheel (rear-left: RL, rear-right: RR, front-
left: FL, and front-right: FR), actuator units for each of the four wheels (RL, RR, FL, and FR), and computational
units for control, steer feedback, fault diagnosis, power and supervisor (there are three copies of supervisor).

Each of the above units behave differently under varied conditions. For example, the wheel actuation need to be
done faster over a critical speed; computation of actuation signal at the time of engine start is different from that at

1In the figures program, module and mode will be denoted by an oval box, rectangle and an ellipse respectively.



high speed; supervisor functions differently when the car is running under emergency condition; fault diagnosis uses
a different set of computations at normal driving conditions than when a fault is detected etc. The change in the
behavior is captured by mode switches; Figure 12 shows the different modes of the modules (period of the modes
are in millisecond and are shown in the shaded box). Due to space constraints, we will not present the details of the
modes; refemttp://htl.cs.uni-salzburg.dor full specification. Next we will present a specific scenario of inter-mode

communication.
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Figure 12: Modes for the modules

Angle for rear-left wheel (car is moving at a high speed) is measured by three sensors; the sensor values (after
appropriate modification) are read by a task that mediates on the value to be considered and then pass it onto the
control task. This necessitates communication between rhigie (modulesensor _RL), modehigh (module

steer feedback ) and modehigh (modulecontrol ). The modes and communicators have period 4000 and

500 microseconds respectively. Instances of communicators are referred relative to mode period (0-th instance corre-
sponds to the start of the mode). TaSE&NWheelA3, SENWheelA4, SENWheelA5 (in modehigh of module

sensor _RL) reads three sensors A3, A4, A5 (connected to RL wheel) at the start of the period and update first instance
of three communicatorsA3, cA4 andcA5. TaskMEDANgleRL (in modehigh of modulesteer feedback )

reads the first instance of the above communicators. The program semantics ensure that write precedes read. Task
MEDAnNgleRL write to the second instance of communicatAngleRL . TaskentrlFUN  reads the second instance

of cAngleRL (among other communicators) and computes value of wheel actuation signalRaekRinAct

reads the output port @htrlFUN  and computes the power requirement for the motors.

sensorA3 task: SENWheelA3 .
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task: cntrlFUN
task: RackPinAct

Figure 13: Communication in SBW implementation

Scenario-specific functionalities can be further differentiated. For example, at high speeds control law for computing
the actuation signal differs on the basis of whether the car is driven manually or under cruise. Similarly the tasks exe-
cuted during emergency by the supervisory control are different in the case of under-steering from that of oversteering.
Fault handling functionality depends on whether there is a communication fault or processor fault. If all of these are
expressed in one module, the module size becomes large and unmanageable - refinement allows an efficient solution.
In the SBW program (Figure 14), the mold& (of modulecontrol ) is refined by a program which has one module



with two modeddle andmotion ; the modamotion is further refined by a program with a module with two modes
crawl andaverage . If the modes were not refined then the moduatrol  would have 6 modes and 17 mode
switches; this is not only inefficient but error prone.

sensor_[RR,RL,FR,FL] actuator_[RR,RL,FR,FL] Control Steer Feedback Fault Diagnosis Supervisor[1,2,3] Power
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Figure 14: HTL program for SBW system with all the refinements

Distribution of an HTL program is specified by a mapping of the modules of the top-level program (a program which
does not refine any mode) to hosts; the modes of the module and the corresponding refinements are bound to execute
on the same host. The SBW system is distributed over 8 hosts: sensor and actuator modules for each wheel share one
host; modulegontrol , steer feedback  andfault diagnosis are distributed on three hosts along with

one supervisor module; modypewer is assigned to one host.

Implementation. We have implemented the case study on eight AMD Duron 1.4Ghz machines with 256MB RAM
connected by a 100Mbps Ethernet network. The case study is written in 873 lines of HTL code and compiled to
around 1800 virtual machine instructions per host. The virtual machine [2] is written in C and executes the generated
code with an overhead between 60 and 300 microseconds per time instant for which it is invoked. See Section 6 for
more details on the HTL compiler and runtime system. The tasks are written in C but do not actually implement any
functionality, only bounded empty loops. Our implementation simulates the case study in real time but at a frequency
of 2Hz, which is 1000 times slower than the actual system, and therefore only demonstrates the correctness of the code
generated for the HTL program of the case study.



4 Abstract Syntax

We provide the main components of the HTL language in an abstract way. In practise a concrete syntax can be written
from this abstract syntax (refer Appendix A).

An HTL programP consists of the following components:

e a set ofcommunicator declarationsommdecl. A communicator declaratiofc, type,init, ) consists of a
communicator name, a structured data typecype, an initial valueinit (if different from the default value
of type), and a period of access € N.o. If (c,.,.,.) and(c/,.,.,.) are two distinct communicator decla-
rations thenc # ¢’. The set of declared communicator names for a progtdye comms(P) i.e. comms(P) =
{c|(c,.,.,.,.) € commdecl(P)}. Given a communicatar € comms(P), the typetype[c] denotes the range of val-
ues the communicator can evaluate to angit[c] denotes the initial value of the communicator. The evaluation
of a communicatoralic] is a function that maps to a value intype|c].

e a set ofmodule declarationgsoduledecl. A module declaratioifM, portdecl, taskdecl,modedecl, smode)
consists of a module namg a set of port declarationsrtdecl, a set of task declarationaskdecl, a set of

mode declarationiodedecl, and a mode namemode. If (M,.,.,.,.) and(M,.,.,.,.) are two distinct module
declarations theM # M'. The set of declared module names for a progpamemodules(P) i.e.modules(P) =
{M|(M,.,.,.,.) € moduledecl(P)}.

— aport declaration(p, type,init) consists of a port namg, a structured data typeype, and an initial
valueinit (if different from the default value dfype). If (p,.,.) and(p’, .,.) are two distinct port declara-
tions therp # p’. The set of declared port names for a modubeports(M) i.e.ports(M) = {p|(p,,.) €
portdecl(M). Given a porp € ports(M), the typetype[p| denotes the range of values the port can eval-
uate to andinit[p] denotes the initial value of the port. The evaluation of a patf]p] is a function that
mapsp to a value intype|[p].

— atask declaration(t,filist,folist,fn) consists of a task nameg a list of formal input parameters
filist, a list of formal output parametef®list and an optional task functiof. An element of the
list of formal input parameters is a data type; i.e. forlaff j < |[filist|, filist(]) = type. Similarly
an element of the list of formal output parameters is a data type; i.e. forkall < |folist|, folist(k) =
type. If (t,.,.,.) and(t/,.,.,.) are two distinct task declarations thesz t’. Letval[type] denote the
range of values for a particular data typgpe. The functionfn is defined agn : Ujval[filist(i)] —
Ujval[folist(j)].

— amode declaratiorfm, Tt,, invocs, switches, refprog) consists of a mode nanme a mode periody, €
N.o, a set of task invocationsavocs, a set of mode switchesritches, and an optional program name
refprog. If (m,.,.,.,.) and(w’,.,.,.,.) are two distinct mode declarations theet m’. The set of declared
mode names for a moduleis modes (M) i.e. modes(M) = {m|(m,.,.,.) € modedecl(M).

* atask invocation(t,ailist,aolist,ptask) consists of a task name a list of actual input parame-
tersailist, a list of actual output parametesslist and an optional task nanpeask. An element
of ailist (oraolist) is either a porp or a pair(c,i) with a communicator nameand an instance

2Data type indicates common types like integer, float and boolean. More complex data types like arrays can be defined; however types are not
an integral part of the program definition and a detailed discussion has been left out.
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numberi € N. Task names of the invocations are unique i.étjf, .,.) and(t’, ., .,.) are two different
task invocations then # t’.

* amode switch(cnd,m) consists of a conditiornd (expressed as a predicate on ports and commu-
nicators) and a destination mode name modes(M). If (cnd,.) and(cnd’,.) are two distinct mode
switches, then for all valuations of ports and communicators, eithé¢evaluates tfalse or cnd’
evaluates tfalse i.e. mode switches are deterministic. The set of destination mode names from a
modem bedestmodes(m) i.e.destmodes(m) = {m|(.,m’) € switches(m)}.

4.1 Definitions based on hierarchy

In the section we will relate components e.g. modules or programs or communicator accesses across levels of hierarchy
ina HTL program.

Module types. A moduleM, is asub-modulef a modulay; if there exists € N.; modulesMy, M, .., My such that for
every paimM;j, M1 there exists a mode declaratifn ., .,.,P) € modedecl(M;) andM; 1 € modules(P) for 1< j<n.
The module; is asuper-modul®f M,. A module is a sub-module (and a super-module) of itselfog:level module

is one with no super-module other than itselfeaf moduleis one with no sub-module other than itself. A module
My is animmediate sub-modulef a moduleM; if there exists a mode declaratidm, ., .,.,P) € modedec1(M;) and

Mz € modules(P). The moduleM; is animmediate super-modulef My. An immediate sub (super) module is also a
sub (super) module. The set of all the sub-modules of a matisleubmd1(M). ModuleM is asibling of moduleM’ if
M,M € modules(P) for a progranP. Thesibling setfor moduleM is sibset(M) = modules(P) \ M.

Program types. If M € modules(P’), M € modules(P) andV is a (immediate) sub-module df thenP’ is a (im-
mediate) sub-prograrof P andP is a (immediate) super-prograrmf P’. A programp is both a sub-program and a
super-program to itself. Aop-level progranis one with no super-program than itself. Iéaf-level progranis one
with no sub-program than itself. flat programis one which is both a top-level and leaf-level program.

Abstract programabs(P) for programP is the top-level program with all immediate sub-programs removed, Pe=if
(commdecl,moduledecl) thenabs(P) = (commdecl,moduledecl’) where(M,portdecl, taskdecl, modedecl’,
smode) € moduledecl’ if (M,portdecl,taskdecl,modedecl,smode) € moduledecl where mode declaration
(m,invocs,switches) € modedecl’ for every mode declaratiofm, invocs, switches,.) € modedecl. An abstract
program is always flat.

Mode types. Given a mode declaratiofm, ., .,P), modem is parentof modem’ wheren’ is any mode irP. Modem,

is transitive pareniof modem; if there existsn € N.; modes such that for every paif,mi, 1, wherel <i < n, mj,1

is a parent ofnj;. A (transitive) parent mode is atop-level parenif m is declared in a top-level programncestors
ancestors(m) of modem is a set of modes that includes the parent modesaofd the ancestors of the parent modes;
ancestors for modes of top level program is empty. $tagt modestart[M] of a moduleM is the mode name in
the module declaration i.etart[M] = smode if (14, .,.,.,smode) is the corresponding module declaration. Ehert
setstartSet(m) of a modem is a set that includes modeand start sets of the start modes of all module® in

i.e.startSet(m)={m} U{ J startSet(start(M))} whereP refinesm.
M €modules(P)
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4.2 Communicators and ports access

Accessed by task invocationslnput communicator setcoms(inv,m) for a task invocatiorinv € invocs(m) is the
set of communicators read hiyv, output communicator setcoms(inv,m) is the set of communicators written by
inv, input port setiprts(inv,m) is the set of ports read hynhv andoutput port sebprts(inv,m) is the set of ports
updated byinv. Formally,

- Input communicator sei,coms(inv,m) = {c|3j s.t.ailist[j] =
- Output communicatorseds,coms(inv m) = {c|3j s.t.aolist[]]
- Input port setiprts(inv,m) = {p|3j s.t. ailist[j] = p}.

- Output port sebprts(inv,m) = {p|3j s.t.aolist[j] =p}.

(c; )}
= (¢, )}

Accessed by switchesSwitch communicator setcoms(sw,m) for a switchsw = (cnd,.) € switches(m) is the set
of communicators in predicate of switch conditiond andswitch port setsprts(sw,m) is the set of ports irnd.
Formally,

- Switch communicator setcoms(sw,m) = {c} if there exists communicatarin the conditioncnd.

- Switch port setprts(sw,m) = {p} if there exists porp in the conditioncnd.

Accessed by modulesAn accessible communicator setccommset for a modulet € modules(P) is the set of com-
municators declared by the super-programB.of read setreadset(M) for a moduleM is the set of communicators

read by task invocations and used by mode switches of modesAimwrite setwriteset(M) for a moduleM is the set

of communicators updated by task invocations of modés i hierarchical read sethierreadset(M)) for a module

M is the set of communicators that belongs both to the read-set and accessible communicator set of any sub-module of
M. A hierarchical write setthierwriteset(M)) for a moduleM is the set of communicators that belongs both to the

write set and accessible communicator set of any sub-moduiefadrmally,

- Accessible communicator setccommset (M) = {c|(c,.,.,.) € commdec1(P’)} whereP’ is a super-program d.

- Read seteadset(M), {c|(c € icoms(inv,m) Or ¢ € scoms(sw,m)) andm € modes(M)}.

- Write setwriteset(M), {c|c € ocoms(inv,m) andm € modes(M)}.

- Hierarchical read sehierreadset(M) = U (readset(M)Nacccommset(M)).
M €submdl (M)
- Hierarchical write sethierwriteset(M) = U (writeset(M)Nacccommset(M)).
M €submdl(M)

4.3 Definitions related to tasks

Declaration types.An abstract task declaratiofor a taskt is a task declaration with no function definition i.e. of the
form (t,.,.). A concrete task declaratiois one with function definition i.e. of the forift, ., ., fn).

Relating dependencies.A binary relationprec(m) for modem contains the dependency information of the tasks.
A task invocationinv; precedesanother task invocatioinv, (or (invi,invy) € prec(m)) if there existsn € N- g
different task invocationsnvy, ..., invy such that for each paimv; andinv;1, oprts(invj) Niprts(invj;1) # @
wherel < j < n. Thepreceding invocation setrec(inv,m) is the set of task invocations precedifwgr in modemn
i.e.prec(inv,m) = {inv|(inv/, inv) € prec(m). Thefollowing invocation sefoll(inv,m) is the set of task invoca-
tions followinginv in modem i.e. foll(inv,m) = {inv’|(inv, inv’) € prec(m). A task invocationinv’ immediately
precedesn invocationinv if oprts(inv/,m) Niprts(inv,m) # @ Theimmediately preceding sétmprec(inv,m)
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is the set of task invocation that immediately preceties

Read/ write time. Read timer(inv,m) of a task invocationinv = (.,ailist,aolist,.) in a moden is the latest
communicator instance it reads frolvrite timet(inv,m) for a task invocatiorinv in moden is the earliest commu-
nicator instance to which it writes to. Formally,

- Read timer(inv,m) = max; (Tt - i) whereailist|[j] = (c,i) and(c,.,., ) is the communicator declaration.

- Write timeT(inv,m) = ming(T, - 1) whereaolist[k] = (c,i) and(c,.,.,Tt.) iS the communicator declaration.

For an invocation which does not read any communicaterQ i.e. start of the mode period; for an invocation which
does not write to any communicator= 1im| i.e. end of the mode period.

Transitive read time*(inv,m) of a task invocation in a modeis the latest communicator instance that the invoca-
tion or any of its preceding invocation reads fromansitive write timet*(inv,m) of a task invocation is the earliest
communicator instance that the invocation or any of its following invocation writes to.

- Transitive read time*(inv,m) = max(r(inv,m), max,, (r*(inv’,m))) where(inv’, inv) € prec(inv,m).

- Transitive write timer* (inv,m) = min(t(inv,m), Miny,,(T*(inv’,m))) where(inv, inv’) € prec(m).

For an invocation with no preceding invocatiafi,= r. For an invocation with no following invocatiomn} = 1.

Parent task. Taskt; is parentof task invocationinvy = (t1,.,.,t2) € invocs(m;) where invy = (tg,.,.,.) €
invocs(my). Invocationinvy is the parent invocation afnvi. A tasktnyi is ann-th transitive parenof task invo-
cationinvy = (ty,.,.,t2) € invocs(my) if there existsn € N.; modesn, ..,my such that for any two modes,m; 1,
(tj,-r - tj+1) € invocs(mj) and(tji1,.,.,.) € invocs(mj;1), for all 1 < j < n. The task invocation associated with
tnt1 IS the n-th transitive parent invocation ofivy. A parent task is also a 1-st transitive parent. A tasksk

is atop-level parenof a task invocatiorit, .,.,ptask) if (ptask,.,.) € invocs(m) wherem is one of the modes of
top-level modules angtask is mth transitive parent of for somem € N. Transitive parent and top-level parent has
no definition for task invocations in modes of top-level modules.

Task interface. For each task we will consider a set of local input (output) variables, each with a data type implying

the range of values it can store. At termination the local output variables are updated with the evaluation of task
(specified by the function in task declaration) on the values of local input variable (at the instance of task release). The
local input (output) variable for a pogtbeing read (written) is denoted asv*(p) (Lov®(p)). The local input (output)
variable fori-th instance of & being read (written) i2iv®(c,i) (1ov®*(c,1)). The value of a local input (output)
variable is denoted byal(-).

4.4 Definitions related to distribution

Host map. Given an HTL progranP and a set of hostsset, host mapis a map from hosts ihset to top-level
modules off and denotes the distribution Bf hmap(h) is the set of top-level modules mapped to haost

Partial program. Given a top-level prograrh = (commdecl,moduledecl) and a host mapartial programp,, for a
hosth is the set of communicators and top-level moduleB ofapped tq; formally P, = (commdecl,moduledecl’)
where for every(M,moduledecl,portdecl,modedecl, smode) € moduledecl’, there is a module declaration

(M,moduledecl,portdecl,modedecl,smode) € moduledecl andM € hmap(h).

Worst case mapping. WCET (WCTT) mapwemap, (wtmap,), iS a mapping from tasks to worst-case-execution
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(transmission) times (relative to hasf, wemap, (t) (wtmap, (t)) denotes the wcet (wctt) for taskon hosth. For a
task invocationinv = (t, .,.,.), wcet(inv) = wemap, (t) andwctt(inv) = wtmap, (t).

Task interface. Communicators of top-level program are shared across all hosts. Each host maintain a local output
variable for tasks writing to these communicators. If tasfexecuting on hosh;) writes to a communicatoe of
the top-level program, then a local output variabieyflj [c,i] is maintained for the task on all hogis other than

hosth;. On completion of execution af onh;, the output is transmitted to hasf and stored inivy [c,i]. When
communicator write is due; is updated from the local variable.

4.5 Well-formed HTL program.

A HTL program iswell-formedif it conforms to the following restrictions on program, communicators, task invoca-
tions and refinements.

Constraints on programs.

C1.1There is only one top-level program.

C1.2For each program (other than top-level program) there is only one immediate super-program.
C1.3For each module (other than top-level module) there is only one immediate super-module.

C1.4 A program cannot refine more than one mode of a module i.e. if there exists two mode decldation®;)
and(my, ., .,P2) wherem;, my € modes(M) thenP; # Pa.

C1.5The start mode of a module should belong to the mode set of a module i.e. for a module dedrationsmode),
smode € modes(M).

C1.6The set of destination modes from mode switches should be from the set of modes of the corresponding module
i.e.ifm € modes(M) thendestmodes(m) € modes(M).

Constraints on communicators.

C2.11f a communicator has been declared in progkathen it cannot be redeclared in any sub-program otherkhan
i.e.if (c,.,.,.) € commdecl(P) then(c,.,.,.) & commdecl(P’) for all sub-progran?’ of P other tharp itself.

C2.2If acommunicator is accessed by a task invocation or switch in moH€inforogramp) then the communicator
must be declared in one of the super-progrants o&. read and write set should be subset of accessible communicator

set ffeadset(M) C acccommset(M) andwriteset(M) C acccommset(M)).

C2.3If a communicator is (hierarchically) written by a module then none of the sibling modules can (hierarchi-
cally) write toc, i.e. if c € hierwriteset(M), then for all moduled’ € sibset(M), c € hierwriteset(M').
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Constraints on task invocations.
C3.1For a task invocatioinv in modem read time should be earlier than write tim¢jinv,m) < T(inv,m).

C3.2For a task invocatioinv in moden transitive read time should be earlier than transitive write tithginv,m) <

T*(inv,m).
C3.3Precedences between tasks should be acfilic, invj) € prec(m), invj # invj.

C3.41If a task invocationinv (in @ modem) reads or writes a port, the port must be declared in moHdulghere
m € modes(M); formally, if p € iprts(inv) (or in oprts(inv)) there must be declaratidp, .,.) € portdecl(M).

C3.5 Two task invocationdnv = (.,.,aolist,.) andinv’ = (.,.,aolist’,.) of a modem cannot write to the same
port or to same instance of a communicator; égrts(inv,m) Noprts(inv’,m) = @ and if (c,i) € aolist then
(c,i) € aolist’.

C3.6 A task can be invoked in a mode if it has a declaration in the corresponding module and the size of the input
(output) parameter list for the invocation is of the same size as that of the declaratiorrifiist,aolist,.) €
invocs(m) andm € modes(M) then(t,filist,folist,.) € taskdecl(M) with |ailist| = |filist| and|aolist|=
|folist|.

If the j-th element of the input (output) ligtilist (aolist) is a communicator-instance pdic,i) and the cor-
responding communicator declaration(éstype, ., T.) then the following should hold: (1) mode period is multiple

of communicator access period i.e. r‘(lﬁy) =0, (2) task invocation cannot read from an instance corresponding to
the end of the period . < i < % (similarly it cannot write to an communicator instance at the start of the period
ie.0<i< %) and (3) type of the communicator should match the corresponding element of the formal input (output)
listi.e.filist[j] =type (folist[j] =type). Atask invocation cannot write to the same instance of a communicator
more than once i.edli,k s.t. aolist[i] = aolist[k] = (c,1).

If the j-th element of input (output) list of a task invocation is a port then the j-th element of the input (output) list
of the corresponding task declaration should be the same type as the portikidt|j] = p (aolist[j] = p) then
filist[j] = type (folist[j] = type) where(p,type,.) is the corresponding port declaration. A task invocation
cannot write to the same port more than once fliek such thatolist[i] = aolist[k] = p.

Constraints on refinement.

C4.1Period of mode and all modes in programrefiningm should be identical; formally if there is a mode declaration

(m, T, ., .,P) then for all mode declaration®’, ', .,.,.) € modedecl(M), T, = T, whereM € modules(P). Mode

switches of a program being checked in top-down way, the constraint ensures that there is no unsafe termination of
tasks in refinement modes.

C4.2 Every task invocation of a modein a moduleM other than the top-level modules should have a parent task; the
parent task should have an abstract declaration in the immediate super-module and should be invoked in the parent
of m. Formally, a task invocation should be of the fotmv = (t,.,.,ptask) € invocs(m) wherem € modes(M)

(andM is not top-level module). The parent task should have an abstract declaratigrt i€k, .,.) € taskdecl(M)
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andinvp = (ptask,.,.,.) € invocs(m’) wheren' is parent mode of andM’ is immediate super module &if The
constraint ensures that the parent task is not executed during the execution of the program but acts as placeholder for
the children during program analysis.

C4.3 A task invocation (in a mode of a moduig should have an unique parent task relative to all task invocations
in the same mode and to task invocations in modes of sibling moduleskgrmally if t, (in mp) is the parent task
invocation forinv (in m of moduleM) then no other task invocation of moder any moden’ (wherem' € modes (M)

andM is a sibling module off) should havet, as parent. The constraint ensures that all tasks that can potentially
execute in parallel have an unique top-level parent.

C4.41f inv’ is the parent task invocation afv then the read time afnv should be no later than that ofiv’ and the
write time of inv should be no earlier than that div’ i.e. r(inv,m) < r(inv/,m’) andt(inv,m) > 1(inv’,n’) where

inv € invocs(m) andm’ is the parent mode af. The constraint ensures that the parent invocation is more constraint
in time than child task.

C4.5 Every relation in precedence set of a madshould be preserved in the parent madgi.e. for all pairs of

task invocationginvy,invy) € prec(m), there should béinv),inv}) € prec(m’) whereinv) andinv), are parent

task invocations ofinvy; and invy. The constraint ensures that the parent task invocation is more constrained in
dependencies than child invocation.

4.6 Well-timed HTL program

The notion of well-formedness of a program is independent of the run-time system. To ensure that schedulability
analysis can be performed only on the top-level program, a task (in refinement) should use less resources than its
parent task. Anvell-formedHTL program iswell-timedif wcet and wctt of task invocation is not greater than the wcet

and wectt of the parent task invocation iwemap, (inv) < wemap, (inv’) andwtmap, (inv) < wtmap, (inv’) where

inv’ is the parent invocation afnv and they run on host. The constrained ensures that resources used by a parent
invocation is at least same as that of the child invocation.

4.7 Claims on well-formed HTL program

Claim 1 Parent mode of a modeis unique.The claim can be proved by contradiction. Consider a niogleodes (M)

whereM € modules(P). Assume there are two mode declaratigns .,.,P) and(mp, ., .,P) with m; # mp i.e. program

P refines bothm; andm,. Modesm; andmy cannot be in different programs as theibe would have more than one
immediate super program (constraint C1.2). Mageandmy cannot be in different modules of same program as then

M would have more than one immediate super module (constraint C1.3). If mp@esim, are in the same module
thenP cannot refine both the modes (constraint C1.3). Hence the initial assumption cannot hold. It can be similarly
proved that top-level parent of a mode is unique.

Claim 2 Every task invocation other than in the top-level program has a top-level pagemsider a task invocation
inv € invocs(m); if m is @ mode in a refinement program thiaty has a parent in parent moderofconstraint C4.2).
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If parent ofm, mp is in top-level module then the claim holds. Otherwise the claim can be proved by induction. Let
j-th (j € Ny ) transitive pareninv’ of inv is inm’; inv’ must have a top-level parent (inductive assumption) which is
also a top-level parent famv (definition).

Claim 3 j-th transitive parents for all task invocations in a matiebelongs to the same modg for somej € N-.
The proof is by induction. Parent mode of a modem; is unique (claim 1); hence (1-st transitive) parent of all task
invocations belong ta, (constraint C4.2). This is the base case. Congiaér transitive parents of task invocations
belongs tan; (inductive assumption). The parent modenpis unique i.e. parents of all task invocationipbelongs

to the same mode; these are the 1-th transitive parents of invocationsin (definition). Hencej + 1-th transitive
parents of task invocations iy belong to an unique mode.

Claim 4 Top-level parents for all task invocations in a magebelongs to the same modg in top-level program.

From claim 2, every task invocation in a refinement program has a top-level parent which is also j-th transitive parent
for somej € N. o (definition) andj-th transitive parents for all task invocations in a madebelongs to the same

mode (claim 3).

Claim 5 Every task invocation has a unique top-level parent relative to all task invocations that can be invoked in
parallel. Let there be a task invocatiamv = (t,.,.,ptask) € invocs(m) wherem € modes(M) (M is not a top-level
module) and the top-level parent task ber’ = (t',.,.) € invocs(m’) wherem' € modes(M') andM' is a top-level
module. LetP’ refinesm’. Consider a task invocatiaimv” = (t”,.,.,ptask”) € invocs(m”) wherem” € modes(M")

andM” is not a top-level module. We will provinv andinv” have either different top-level parents or they do not
execute in parallel (or they are identical).

BothM andM” has to be sub-modules ®f; otherwiset’ cannot be parent far”” (from program structure). Botihand
M” should be sub-modules of modulespin otherwiseM” cannot execute in parallel.

If M,M” € modules(P’) we have the following cases:

(i) M £ M" theninv andinv” have different parent task (from constraint 4.3) which are also the top-level parents.

(i) M =M" butm # m” theninv andinv” cannot be invoked in parallel.

(i) M=M" andm = m’ butt # t”. Then task invocationsnv andinv” should have different parent tasksnh(from
constraint 4.3) which are also the top-level parents.

(iv) M=M",m=n' andt = t”. then the invocations are identical (there cannot be two invocations with identical tasks).
If P’ is leaf-level program then no further analysis is required.

If

- M € modules(P’) andM” is a sub-program for any sibling moduié of M, then there exists some integer n such that

n-th transitive parent afnv” is invoked in some mode of

-M” € modules(P’) andM is a sub-module for any sibling moduté of M” then there exists some integer m such that

m-th transitive parent ofnv is invoked in some mode of*

- M andM” are sub-modules of different modules®f then there exists some integensn such that m-th and n-th
transitive parents afnv andinv” respectively are invoked in different modulespof

All of the above three situations are special instances of case (i) analyzed earlier and thus the top-level parent must be
different for the two task invocations.
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If M € modules(P’) andM” is a sub-module dff (other thart) we have:

- there exists integer m such thatv is m-th transitive parent afnv”

- there exists integer m such thiatv; € invocs(m) is the m-th transitive parent ahv”.

In first caset should have an abstract declaration and does not get executed. In seconicheas®] inv; should
have different parents i’ (which are also their top-level parents). This in turn implies different top-level parent of

inv andinv”.

The case wher#’ € modules(P’) andM is a sub-module af” (other thant”) has a symmetric analysis to the last one
(by interchangingt andM”).

The last analysis deals with bathand” being sub-module of a modulg in P’. Both the modules should belong to
refinement prograrg; of a moden; in M; (otherwise the tasks cannot be invoked in parallel). The subsequent analysis
can be done in a similar way we did fef (by replacingp’ with p;).

Claim 6 If inv’ is the parent task invocation ahv then the transitive read time ahv should be no later than that
of inv’ and the transitive write time afnv should be no earlier than that dfv’ i.e. r*(inv,m) < r*(inv’,n’) and
T"(inv,m) > T*(inv/,m’) whereinv € invocs(m) andn’ is the parent mode aof.

From well-formedness criterion, period afandm’ are identical and modes switches at period boundaries; hence
matching a period of with that ofm’ is sufficient for the claim. The read time, transitive read time, write time and

transitive write time foinv ber, r*, T andt* respectively. The read time, transitive read time, write time and transitive
write time forinv’ ber’, r’*, T andt”* respectively. By induction we will show* < r™* andt* > 17*.

Release timeFrom definitionsy™ = max(xr, max (r;')) whereinv; € prec(inv,m) andr; is the transitive release time
of invj. Again,r™ = max(r’,max(r};’)) wherer}’ is the transitive release time ofiv; andinv, € prec(inv’,m’).
From well-formedness constraints precedencesare contained im’. So parents of the setrec(inv,m) should be
a subset oprec(inv’,m’). If inv] (in the sefprec(inv’,n’)) is the parent ofnv; (in the setprec(inv,m)) then from
inductive assumptiom; < r{*. This impliesmax (r;) < max(r}") in the above definitions. We hawe< r’ from
well-formedness constraints. From the last two conditions we haver’*.

Termination time From definitions,T* = min(t, min;(t}")) whereinv; € foll(inv,m) and T} is the transitive ter-
mination time ofinv;. Again, T = min(t’,min(t}’)) wheret;’ is the transitive termination time afnv, and
inv, € foll(inv’,m’). From well-formedness constraints, precedences @fe contained im’. So parents of the
setfoll(inv,m) should be a subset @b11(inv’,n’). If inv] (in the setprec(inv’,n’)) is the parent ofinv; (in the
setprec(inv,m)) then from inductive assumptiari > t/*. This impliesmin;(t;") > min,(t)’) in the above definitions.
We havet > 1’ from well-formedness constraints. From the last two conditions we tiaver’*.

Base Caself task invocationinv does not follow any task* = r. For parent task invocatiomv’: r* = maxt’,-).
From constraints < r’. Hencer* < r’*. If inv does not precede any task= 1. For parent task invocatiomv’:
T* = min(t’,-). From constraints > v'. Hencet* > 7.

18



5 Operational Semantics

The execution of a TSL program yields a (possibly infinite) sequence of configurations. Each configuration consists of
values of all program variables (ports and communicators), a set of triggers (where triggers are of type write, switch,
read or release), and a set of released tasks. A trigger defines an action to be taken at an event which is specified
as a combination of time ticks and a set of completion events (of tasks). An event is enabled when the number of
time ticks to wait is zero and all the completion events have occurred. When a trigger is handled, action associated
with the trigger is carried out. An action may be communicator write (handled by write triggers), communicator read
(handled by read triggers), task release (handled by release triggers) or mode switch check and subsequent invocation
of modes (handled by switch triggers). A configuration is waiting if there are no enabled triggers in trigger set; any
other configuration is non-waiting. A time tick or a completion event is handled only if a configuration is non-waiting.

For a non-waiting configuration there are four possible transitions: write, switch, read and release transition. A write
transition occurs if there is at least one enabled write trigger. A switch transition occurs if no write trigger is enabled
and at least one switch trigger is enabled. A read transition occurs if no write or switch triggers are enabled and at
least one read trigger is enabled. A release transition occurs if no write, switch or read triggers are enabled and at least
one release trigger is enabled.

Configuration. Let P® be an HTL program distributed on host sgtet. The execution trace df is a (possibly
infinite) sequence of configuration. éonfigurationu is a tuple(statecol,trgscol, taskscol) where variable
state collectiorstatecol is a set of variable states for each host, trigger set collectigyzcol is a set of trig-
ger sets for each host and task set collectiankscol is a set of task sets for each host. Formadlyatecol =
{statey,.,statej, .statepg; } Wherestatej is a function from communicators and ports to values for hpst
trgscol = {trgs;,., trgs;, trgs ys.y } Wheretrgs; is set of triggers for host andtaskscol = {tasksa, ., tasks;,
-taskspyse|} Wheretasks; is a set of released tasks for hast Given a configuration and a hosh;, the variable
state, trigger set and task set fgiis denoted astate;(u), trgs;(u) andtasks;j(u).

Variable state. A variable statestate; (for hosth;) is a valuation of communicators and ports (accessed by the
partial progranPy, on hosth;) to values. The set of communicators consists of those accessed by the sub-modules of
the top-level modules (mappedidi.e. Uycnnap(n) (hierreadset(M) U hierwriteset(M)). The set of ports consists

of those used by sub-modules of top-level modules (mappeYite. Uncnnap(n) U esubmar ) POTtS ().

Events. An eventis an interrupt raised by the host on which the program executes. We will consider two type of
events: time tick event and task completion event. fiime tick events bound to the system clock. The resolution

of the clock is assumed to be the highest common factor of all communicator and mode periods. The clocks of all
hosts are assumed to be in synch. Tdsk completion evelid generated internally by the program and are similar to
software interrupts. To generate a completion event the program bind it to a specific task invocation at run-time. When
the task terminates, a completion event is raised. For attask will denote the completion event asmplt). A
completion event can occur simultaneously with a time tick event; however for any host only one completion event can
occur at any instance. Formally, an everis a pair(t,uv) wheret is a tag and) is a value assigned to the event. For

time tick eventt € N and the value isrue (implying that the clock is consistent and present at uniformly separated
points). For completion evente R andv is a set of task names (implying the completion of task;) for hosth;.

3We will assume all task invocations have unique task names i.e. a task name uniquely identifies an invocation; let task invocatiort for a task
beinv.
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Trigger. A trigger g is a tuple(gtyp, e,a) wheregtyp € {w,s,d,r} denotes write, switch, read and release trigger
respectivelye is an event instance ards action to be carried out when the trigger is handled efent instances a
pair (n, complete) wheren € N represents number of time tick events andplete = {complti),...,compltn)}

is a set of completion events for tasks. A triggegigbledvhenn = 0 andcomplete = @for the corresponding event
instance. A configuration iwaiting if none of the triggers in any trigger set is enabled; otherwise the configuration is
non-waiting The four types of triggers are:

e awrite trigger is a trigger(gtyp, e,a) wheregtyp = w, e is an event instance and actians a tuple €,1,t)
wherec is a communicatori € N.g andt is a task.

e aswitch triggeris a trigger(gtyp, e,a) wheregtyp = s, e is an event instance, and actians a pair §w,m)
wheresw is a mode switch in mode.

e aread triggeris a trigger(gtyp, e,a) wheregtyp = 4, e is an event instance, and actians a tuple €, c,1i)
wheret is a taskc is a communicator antl € N>o.

e arelease triggelis a trigger(gtyp, e, a) with gtyp = r, e is an event instance and actiars a tasket.

SuccessorA configurationu’ is asuccessopf configurationu if u is waiting and a completion event or time event
occurs, ornu is hon-waiting and a write/ switch/ read/ release trigger is handled. There are five types of successors:
event / write/ switch/ read and release successor; next we will define each of the above successors.

Event successor.Configurationu’ is anevent successdf configurationu is waiting and an event occurs. Three
possible scenarios are:

e a task completion event occur3rigger set for each host;, is updated. Let the completion event figrbe
complt;) (@if no completion event occurred for the host). The output ports afe updated from local output
variables of the task i.e. for all porgsc iprts(invi), val[p] = val[lov®i(p)]|. Triggers whose event depends
oncomplt;) are updated; rest of the triggers remain the same. For all triggefs, e, .) € trgs;(u) there exists
atriggerg = (.,€',.) € trgs;(v’). If e = (.,complete) andcomplt;) € complete thene’ = (.,complete’)
with complete’ = complete/complt;); otherwisee’ = e. Taskt; is removed from task set i.easks;j(u) =
tasksi(u')/ti.

e atime tick event occurg-or each trigger setrgs;, all triggers are updated. For all triggeys= (., e,.) € trgs;
there exists a triggeg’ = (.,¢’,.) € trgs'. If e = (n,.) withn > Othene’ = (n— 1,.); otherwisee’ = e. The
variable state and task set remains samestetej(u’) = statej(u) andtasksj(u’) = tasksij(u).

e atime tick event and a task completion event occurs simultaneduglger set for each hogf is updated. Let
the completion event fdr; becomplt;) (@if no completion event occurred for the host). The output ports of
are updated from local output variables of the task i.e. for all goesiprts(invi), val[p] = val[lov® (p)].
Triggers whose event depends complti) and/or have a non-zero time tick count are updated; rest of the
triggers remain the same. For all triggers: (., e,.) € trgs;(u) there exists a triggey’ = (.,¢’,.) € trgs;(v').
If e = (n,complete) and
- complti) € complete andn # Othene’ = (n,complete’) with complete’ = complete/complt;),
- complti) € complete andn > Othene’ = (n— 1, complete),
- complt;) € complete andn > Othene’ = (n— 1, complete’) with complete’ = complete/complti);
otherwisee’ = e. Taskt; is removed from task set i.easksj(u) = tasks;j(uv’)/ti.
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If a completion event occurs without a simultaneous time tick, tfiémacompletion event successany other event
successor is ime event successor

Write successor. Configurationu’ is awrite successoof non-waiting configuration if an enabled write trigger is
handled ati.

Without loss of generality, say the write trigger Be= (w,e,a) € trgs;(u) with e = (0,¢) anda = (c,i,t). The
trigger is handled as follows. Value of communicatois updated. If task is executed on hosf;, thenvalc] =
val[lov®(c,1i)]; otherwisevallc] = val[lov} (c,i)]. Values for rest of the communicators and ports remain the
same. Triggelg is removed from trigger setrgs;(v') = trgs;(u)/g and task set remains samessks;j(v') =
tasksi(u). For all other hosts;j € hset /hj, the variable state, trigger set and task set remains the samesite. (v’) =
statej(u), trgsj(u’) = trgsj(u) andtasks;j(v’) = tasksj(u).

Switch successorConfigurationu’ is aswitch successaof non-waiting configuration if an enabled switch trigger
is handled. An enabled switch trigger can be handled if no write triggers are enabled and no switch triggers of the
ancestors are enabled.

Without loss of generality, the enabled switch triggergbe trgs;(u). No write trigger is enabled i.e. there exist
no trigger(w,e,.) € trgs,(u) with e = (0,@) for all hostshy € hset. Let triggerg = (s,e,a) € trgs;(u) where

e =(0,¢), a= (sw,m) andsw = (cnd,m’) and there is no trigget” = (s,e,a) € trgs;(u) such that = (0,¢) and
a=(.,m") wheren” € ancestors(m). There are three possible scenarios:

e condition cnd evaluates to false and there exists enabled switch triggers drem- trigger g is removed.
Formally, if there existg’ = (s,e’,a’) € trgs;(u) with e’ = (0,¢) anda’ = (.,m), thentrgs;(v') = trgs;(u)/g.

e conditioncnd evaluates to false and there exists no other enabled switch triggenfremtriggerg is removed
and moden is invoked. Formally, if there does not exist a triggér= (s,e’,a’) € trgs;(u) with ¢’ = (0,¢) and
a’ = (.,m), then i.etrgs;(v') = trgs;(u)/g; invoking of moden (see below) may add more triggers to trigger
settrgs;(v').

e conditioncnd evaluates to true— all enabled switch triggers correspondingmt@nd descendants af are
removed from the trigger set and all modestrartSet(m’) are invoked. Let all such triggers lggrpi.e.g’ €
ggrp if g’ = (s,€',a’) € trgs;(u) with ¢’ = (0,¢) anda’ = (.,m”") where eithen” =m orm € ancestors(m”).
The group of triggers are removed itecgs; (u') = trgs’(u’)/ggrp; iNvoking of modes may add more triggers
to trgs;(u').

The variable state and task set remains samestete;(u’') = statej(u) and tasksj(v') = tasksj(u). For all
other host&j € hset/h;, the variable state, trigger set and task set remains the samsedj(u’) = statej(u),
trgsj(u) = trgs;(u) andtasksj(u’) = tasksj(u).

Invocationof mode am adds a read trigger for every communicator instance read by a task invocatipa inrite

trigger for every communicator instance written by a task invocation anrelease trigger for every task invokednn
and a switch trigger for every mode switchninFormally, it involves the following steps:
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o for all task invocationinv = (t,ailist,aolist,.) € invocs(m) wheret has a concrete declaratfon
- if Ik such thatailist[k] = (c,i) and(c,.,.,Tt) is the communicator declaration, then trigget (d,e, a)
with e = i-T anda = (t,c,i) is added tetrgs; (v').
- if 3j such thatolist[j] = (c,i) and(c,.,.,T¢) is the communicator declaration, then triggee (w,e, a)
with e = i-T anda = (c, i,t) is added ttrgs; (v').
- triggerg = (z,e,a) with e = (n, complete) (defined below) and = t is added tacrgs;(u’). The time tick
count is set to transitive read time ofiv i.e.n = r*(inv) and complete is the set of completion events of
preceding task invocations with concrete declarationcoeplt’) € complete if (t,.,.,.) € prec(inv) and
t’ has a concrete declaration.

o for each mode switchw = (cnd,m’) € switchesm], trigger(s, e, a) with e = (Tm|, @) anda = (sw,m) is added
to trgs;(u').

Read successor.Configurationu’ is aread successoof non-waiting configuratioru if an enabled read trigger is
handled; an enabled read trigger can be handled if no write/ switch trigger is enabled for any host.

Without loss of generality let the enabled read triggegbe (d,e,a) € trgs;(u) with e = (0,¢) anda = (t,c, i).

No write or switch trigger are enabled i.e. for all triggégsyp, e,.) € trgs,(u') with gtyp = w|s, e # (0, @) for all
hostshy € hset. Local input oft is loaded with the value of communicatoi.e. val[liv®(c,i)] = val[c]. Trigger

g is removed from trigger setrgs;(u') = trgs;(u)/g; variable state and task set remains samesiate;(u') =
statej(u) andtasksj(u’) = tasksj(u). For all other hosta; € hset /h;, the variable state, trigger set and task set
remains the same i.etatej(u’) = statej(u), trgs;(v’) = trgs;(u) andtasks;(u’) = tasksj(u).

Release successotonfigurationt’ is arelease successaf non-waiting configuration if an enabled release trigger
is handled; an enabled release trigger can be handled if no write/ switch/ read trigger is enabled for any host.

Without loss of generality let the enabled release triggeg be(r,e,a) € trgs;(u) with e = (0,¢) anda =t. No
write/ switch/ read trigger are enabled i.e. for all triggéssyp, e,.) € trgs(v') with gtyp # r, e # (0, ¢) for all
hostshy € hset. Triggerg is removed from trigger seti.ergs;(v’) = trgs;(u)/g. Input ports of the task invocation
are copied to local input variables i.e. for all poptg iprts(inv), val[liv®(p)] = val[p]. Taskt is added to task
seti.e.tasksi(u') = tasksi(u) U{t}. Variable state and task set remains the samet#te;(u’) = statej(u). For
all other hosts; € hset /hj, the variable state, trigger set and task set remains the samedte(u') = state;(u),
trgs;(v') = trgs;(u) andtasksj(u’) = tasksj(u).

Trace. Theinitial configuration of a program is as follows; the variable states consists of the initial values of ports
and communicators, trigger sets consists of triggers by invoking start set for each of the start modes for all top-level
modules and the task sets being empty. frhee of a program is a sequence of configuratiapgus, ... whereug is

the initial configuration and for any two consecutive configuratigng, u; (wherei € N ), configurationy; is a valid

time event/ completion event/ write/ switch/ read/ release successpriothe configuration paird_1,y;) is referred

as a time event/ completion event/ write/ switch/ read/ relassitionrespectively.

Configuration graph. In an HTL program there are finitely many communicators, ports, task invocations, modes,
modules and programs. If the communicators and ports have finitely many values then the HTL prqgaposs
tional. A propositional HTL program has finitely many configurations. The relation between the configurations and

4In the case of abstract program both abstract and concrete declarations are considered.
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the transitions of a propositional HTL program can be represented by a labeled transition gtapéled transition

graph G = (V,V° 3. o) consists of a finite set of verticas, a setv® C V of initial vertices, a sek of labels and

a relationo C 'V x V of edges, such that all the relatioosare labeled by a label(a € ¥). The labeled transition

graph for configurations is referred esnfiguration graph A configuration graphgs, of an HTL programp, is a

labeled transition grapmvp,VIP,Zp,op), where 1\ is the set of all possible configurations ﬂarZ,VPO is the start-

ing configuration, 3% is the set of all possible completion event transitions, time tick transitions, write transitions,
read transitions, switch transitions and release transitiong éod 4,0 C Vb x Vp such that(ve,V;,) € 05 iff ¢ is a

valid completion event successor, time event successor, write successor, read successor, switch successor or releas
successor of, wherevs, v, denotes the configuratioesc’ respectively.

Properties of well-formed program. The following are some of the interesting properties of the execution trace for
well-formed HTL programs. The effect of well-timedness will be discussed in Section 7.

Mode switches for a mode (and the respective ancestors and descendant modes) are enabled simultaneously; the
triggers are handled in order from top-level modé&%eriod of a mode and its ancestors are identical which implies

that the respective switch triggers will be enabled simultaneously. Constraint on trigger handling ensures that switch
triggers ofm are handled only if no switch triggers of ancestors is enabled. If switch of an ancestewvaluates to

true, then all switch triggers relateddiare removed from the trigger set, thus prioritizing the switches of parents over
refinement modes. Mode switching for a well-formed program is explained through an example in Figure 15.

M possible switches:
m11 || m21 - m12 || m21
—> m11 || m21 - m12 || m22
m11 || m21 —- m11'|| m21'

joac] jeucl|gonc] kouc

Figure 15: Mode switching through hierarchy

Modesm andm’ are refined by prograntsandp’ respectively. Consider a scenario whem;; andmy; are executing;

from well-formedness constraints periods of all three are identical. At the end of the period mode switches of all the
three modes would be checked; there are four possible scenarios:

- switch condition fom is true (the switch condition of refined modes are not checked). The scenario switches to
parallel execution of’, m}; andm’,; (assumingn}, andm’, are start modes of respective moduleg’ln

- switch condition fotn andmy; are false and switch condition fafg; is true; the scenario switches to parallel execution

of m, mi2 andm21.

- switch condition fotn andms; are false and switch condition fag; is true; the scenario switches to parallel execution

of m, mp1 andmyo.

- switch condition fom is false; and switch condition far 1 andm;» is true; the scenario switches to parallel execution

of m, mi2 andmzz.

The only source of non-determinism is the sensor communicaEsucept the sensor communicators, which are up-
dated by the environment (through device drivers), the communicators and ports are updated by tasks. For well-formed
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HTL program, tasks of only one module can write to a communicator and only one task in a mode (of the module) can
write to a communicator instance and to a port. In other words, there is no race on communicator instances and ports.
The semantics ensures that communicator updates are done before mode switch checks/ communicator reads and tasl|
releases. The switch/ read/ release triggers can update trigger sets and task sets but cannot modify the variable state
this ensures that values of ports and communicators are consistent after all write trigger have been handled until a new
event arrives.

Any execution trace from a non-waiting configuratiorwith no enabled write triggers will converge at an unique
waiting configurationa’. Once the write triggers have been handled, communicators and ports cannot be modified
before the next event transition. Mode switches being deterministic (at most one switch can be enabled at a given
instance) mode invocations are deterministic. In other words, irrespective of the order of handling of switch triggers,
the path would lead to an unique configurationwithout any enabled switch triggers. Handling of read triggers do

not add new triggers, modify existing triggers (other than removing the trigger being handled) or update the variable
states. This ensures that irrespective of the order of handling read triggers;frimare exists an unique configuration

up without any enabled read triggers. Similarly handling of release triggers do not add new triggers, modify existing
triggers (other than removing the trigger being handled) or update the variable states. This ensures that irrespective
of the order of handling release triggers fram there exists an unique configuratianwithout any enabled release
triggers. Configurations being uniqgue must be sames

6 HTL-E code Compiler
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Figure 16: Structure of compiler and target

We have designed and implemented a compiler for full, distributed HTL in Java. The compiler checks well-formedness,
well-timedness, and schedulability of a given HTL program, flattens the program into a semantically equivalent HTL
program with only top-level modules, and then generates so-cBlleddefor the flattened program targeting the
(E)mbedded Maching]. In our experiments, we have used an existing implementation of the E machine written in

C running on Linux. E code specifies the exact real-time instants when port and communicator values are exchanged
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and when tasks are released and terminated. E code neither implements the actual tasks’ functionality nor specifies
when released tasks actually execute. Task functionality must be implemented in some other programming language

and compiled separately using an appropriate compiler. Here, we have chosen C for implementing tasks since the

E machine is written in C as well. Released tasks are dispatched for execution by an EDF scheduler that is external to

the E machine and also implemented in C. Figure 16 depicts the structure of the compiler and the target architecture.

The compiler generates E code for each host separately, i.e., each host runs its own E machine. In our experiments, the
hosts communicate via sockets and standard Ethernet. In the following, we explain each phase of the HTL compiler.

Checking well-formedness and well-timedness as well as schedulabilitgefore flattening the input program, the
compiler first checks the well-formedness and well-timedness of the program. In particular, the compiler verifies that
any concrete task indeed refines its parent task in order to make sure that the subsequent top-level scheduling test
guarantees overall schedulability. The compiler performs an EDF-scheduling test on the abstract, top-level portion of
the input program only. If the test succeeds it follows from our result in Section 7 that the whole input program is
schedulable. This result also applies to distributed HTL programs as long as the worst-case latency for broadcasting
all output ports of each task has been added to the worst-case execution time of the task, and the worst-case latency
includes the time it takes to resolve any collisions even when all hosts try to broadcast at the same time. In our current
implementation, all output ports of each task are always broadcast to all other hosts as soon as the task completes
execution. Communication and scheduling techniques that may utilize the network more efficiently, e.g., [5], can also
be used but are not implemented.

Flattening. The HTL compiler flattens a given well-formed and well-timed HTL program into a semantically equiv-
alent flat HTL program that only contains modules on the top level in a straightforward way. A module of a flat HTL
program may only contain modes that do not contain a refining program. Flattening works by essentially computing
the product of all modes in the refinement of each top-level module. This is easy because these modes all have the
same period. Only modes in different top-level modules may have different periods. In order to maintain semantical
equivalence, flattening needs to prioritize mode switch checking, i.e., mode switches in more abstract modules need
to be checked before mode switches in more concrete modules. Refer Appendix C for details on algorithms used for
flattening.

Flattening an HTL program may in theory result in generated code that is exponentially larger with respect to the size
of the input program (i.e., number of refinement levels). However, execution of the generated code is very efficient
and is readily supported by existing versions of the E machine. An HTL compiler that may shift the trade-off between
code size and execution efficiency more towards smaller code size by generating code directly from the unflattened
input program is future work. Note that for such a compiler the design of the E machine may have to be modified as
well.

Target machine. The HTL compiler generates E code, which has a semantics that is designed to simplify code
generation and can be executed very efficiently [6]. Besides releasing tasks, E code also controls when port and
communicator values are copied (or initialized) using so-caliegers which are implemented in C, one for each

data type. E code consists of the following instructionscall(d) instruction executes the drivel, a releaset)
instruction releases the taskor execution by the EDF schedulerfuture(g,a) instruction marks the E code at the
address for future execution when the predicafevaluates to true, i.e., wheris enabled We callg atrigger, which

observes events such as time ticks and the completion of tasks. Here, we only use triggers that are enabled when all
observed events have occurred. We assume that completion events only occur strictly between time ticks, i.e., not at
time ticks. An extension of the original trigger implementation to handle completion events in addition to time ticks
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has been done. The original E machine implementation itself was not affected. The E machine maintains a FIFO queue
of trigger-address pairs. If multiple triggers in the queue are enabled at the same instant, the corresponding E code
is executed in FIFO order, i.e., in the order in which fhture instructions that created the triggers were executed.

An if (cnd,a) instruction branches to the E code at the addagfshe predicatecnd evaluates to true. We cathd a

condition which observes port or communicator states such as sensor readings and task oytpugsa)Anstruction

is an absolute jump to the E code addrassd areturninstruction completes the execution of an E code sequence.

E code generation. For a given HTL program and a mapping of its top-level modules to hosts, the HTL compiler
generates E code for each host separately. The idea is to compile repeatedly the whole program for each host and
generate E code that implements the whole program except that the tasks of the modules not mapped to a host are
not released on that host. In other words, the generated E code is identical on all hosts except for the instructions that
release the tasks. This also means that each host has copies of all communicators and ports. In order to make sure
that the distributed system maintains a consistent state of all communicators and ports, each task broadcasts the values
of its output ports as soon as the task completes an invocation, i.e., communication is done by the tasks, not by the
E code. Therefore, for a schedulability analysis, the communication latency needs to be part of the WCET of each
task as we have mentioned earlier. More efficient approaches are possible but have not been implemented such as
broadcasting only those output ports of a task that are actually written to communicators that are read by tasks running
on other hosts.

The compiler conceptually divides each mode into uniform temporal segments called unitmifldfea mode is the

smallest time interval at which any two consecutive communicator instances are accessed in that mode. Given a mode
m, we denote the duration of its unit lgjm], which is the gcd of all access periods of all communicators accessed in

The total number of units af is T{m]/y[m], whererm| is the period ofn. The compiler generates separate E code
blocks for each unit of a mode. The address of an E code block corresponding tmfiaitmoden is denoted by
unit_addresén,i]. This is a symbolic address to which instructions may forward reference and therefore may need fix
up during compilation. We use similar notation for other symbolic addresses.

The compiler generates E code for the flattened input program by invoking Algorithm 1 for each host, which in turn
invokes Algorithm 2 to generate E code for each module of the program, which finally invokes Algorithm 3 to generate
E code for each mode of each module. The following is a set of auxiliary operators used for code generation:

e init(X) is the driver that initializes the communicator or port

e readDrivers(m,u) is the set of drivers that load the tasks in madeith values of the communicators that are
read by these tasks at unit

e writeDrivers(m,u) is the set of drivers that load the communicators with the output of the tasks inmnode
that write to these communicators at umit

e portDrivers(t) is the set of drivers that load taskwvith the values of the ports of the tasks on whictlepends

e complete(t) is the set of events that signal the completion of the tasks on which sgends and that signal
the time instants at which communicators are read by

e releasedTasks(m,u) is the set of tasks in modewith no precedences that are released atwnit

e precedenceTasks(m) is the set of tasks in modewith precedences
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Algorithm 1 generates instructions to initialize all communicators and modules. Here, we use instructions of the
form future(0, moduleaddresf]), which effectively execute the E code at the addressluleaddres§] similar to

a jump-to-subroutine instruction. However, the actual mechanism is more complicateduforef, a) instruction

the E machine appends the already enabled trigger-addregspair a) to the trigger queue and then proceeds to the
next instruction. Only when the E machine reachestarn instruction, the machine checks the trigger queue again
and eventually removes the pditrue,a) from the trigger queue and executes the E code at the adaltasisnot

before it executed the E code of all other enabled trigger-address pairs occurring(befer®) in the queue.

Algorithm 1 GenerateECodeForProgramOnHBsi)
[l 'initialize communicators
Ve € comms(P):emif(call(init(c)))
/l'initialize and start each module
VM € modules(P):emit(future(0, moduleaddresf]))
/l end initialization phase
emit(return)
/I generate code for each module
VM € modules(P):GenerateECodeForModuleOnH@sih)

Algorithm 2 generates instructions to initialize all ports of a module and to start the execution of the module by
jumping to the E code of the first unit of the start mode of the module. We denote the compiler’s program counter
by PC.

Algorithm 2 GenerateECodeForModuleOnHasH)
setmoduleaddres§1] to PC and fix up
[/ initialize ports
Vp € ports(M):emit(call(init(p)))
// jump to the start mode at unit 0
emitjump unit.addres§smode[V], 0])
/I generate code for each mode
Vm € modes(M):GenerateECodeForModeOnH¢sth)

Algorithm 3 generates the E code for all units of a mode. Only @eibntains instructions to check mode switching
because mode switching may only occur at the beginning of a mode. When a mode switch occurs, E code execution
continues at thenodeaddresgn’] of the target mode’, not theunit addres&’, 0], since only at most one mode

switch per time instant may occur. At each time instant, the generated E codiiuse®, a) instructions to write
communicators always before any communicators are read making sure that the latest communicator values are used
across all modules. Communicator and port values do not need to be buffered since tasks are invoked at most once
per mode period and communicator-to-port transactions are done as soon as possible while port-to-communicator
transactions are done as late as possible. Itis therefore sufficient to have a single copy of each communicator and port
on each host. Additional memory is not required.
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Algorithm 3 GenerateECodeForModeOnHasH)

u:=0
while u < Tm|/y[m] do
setunit_addresgn, u] to PC and fix up
// update communicators with task output
Vd € writeDrivers(m,u):emitcall(d))
if (w=0)
// begin mode after other modules updated communicators
emit(future(0,PC+ 2))
emit(return)
/I check mode switches
V(cnd,m') € switches(m):emit(if (cnd, modeaddres&n’]))
setmodeaddresén] to PC and fix up
else
/I continue mode after other modules updated communicators
emit{future(0,PC+ 2))
emit{return)
end if
if (modem is contained in a module on hask
/l read communicators into tasks
Vd € readDrivers(m,u):emitcall(d))
/l release tasks with no precedences
Vt € releasedTasks(m,u):emifreleasét))
if (u=0)
/I release tasks with precedences
Vt € precedenceTasks(m):
[/ wait for tasks on whick depends to complete
emit{future(complete(t),PC+ 2))
emitjump(PC+ 6))
I releaset after other modules updated communicators
emif(future(0,PC+ 2))
emitreturn)
I/l read ports of tasks on whiaghdepends, then release
Vd € portDrivers(t):emitcall(d))
emitreleasét))
emitreturn)
end if
end if
Il continue mode afteyfm| time
emit(future(y[m], unit.addresgn, u + 1 mod1im] /y[m]]))
emitreturn)
u=u+1l
end while
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7 Schedulability

An execution trace of an HTL program is a (possibly infinite) sequence of configurations. The schedulability analysis
for HTL checks that traces generated from an HTL program has three properties: 1, a task writing to a communicator
must have terminated before the communicator update, 2, two instances of the same task do not overlap and 3, if
an host is transmitting all other hosts are listening (i.e. neither executing nor transmitting¢heflulerdecides

which task to be executed on each host. The scheduler may decide to keep the host idle (no task is chosen from the
task set), execute a task (from the task set) or transmit the output of the task. The scheduler is a discrete-time one
i.e. it takes decisions at a periodic event. The periodic event is assumed to be a global clock tick (i.e. clocks of all
the hosts are synchronized). The clock is harmonic to the program clock (which is the minimum interval at which
any communicator is accessed i.e. the highest common factor for all communicators and mode periods). The worst
case execution and transmission times for tasks are specified as multiple of clock ticks. Under this assumption, a
task completion event occurs simultaneously at a host clock tick; in other words, without loss of generality all event
successors in the execution trace are time event successors. In the analysis below, a time tick will refer to clock
advancement of the global clotklf the trace generated by a scheduler maintains the first two properties mentioned
above then it is time safe and if the third property is maintained then it is transmission safe. A scheduler is safe if it is
both time and transmission safe.

Ready set.Given a configuratiom and an hosh;, ready setready(u,h;) (or ready,(u) in short) is a set of tasks for
which the corresponding release triggers has been enabled i.e. the tasks would be added to task set before the nex
waiting configuration; formallyt; € ready(u,by) if there exists trigge(s, (0,9), ti) € trgs;(u).

Time-on-host set.Given a configuration and an hosk;, time-on-host setoh(u, h;) (or toh;(u) in short) maps each
released task to the amount of cpu time allocated for the execution and transmission of output (of the task); formally,
settoh(u,hj) consists of triplegt;,ne,n,) wheret; € tasks;j(u) andn, € N>g andn, € N>q denote the remaining
execution and transmission time (fg) respectively.

The time-on-host set is updated as follows. teindu’ be consecutive configurations.ufis a write/read/switch suc-
cessor of, thentohj(u’') = toh;(u). If u’ is a release successor and the release trigger being han¢ietisp), t) €
trgs;) thentohj(u') = tohj(u) U (t,wcet(t),wctt(t)). If v’ is a time event successor and the scheduler decides to
schedule task; on hosth; then:

- for all tuples(t’,ne,n,) € tohj(u) wheret’ # t there exists tuplét’,n.,n,) € toh;j(u').

- for tuple (t,ne,ny) € tohj(u) if

—if n, > 0then(t,n. — 1,n,) € tohj(u).

—if n, = 0andn, > 1then(t,n.,n, — 1) € tohj(v).

—if n, = 0andn, = 1, then tuple(t, .,.) & toh;i(1).

Scheduler. Let y be a non-empty finite trace for HTL prograPn(on a set of hostaset) andu be the last con-
figuration ofy. Given a non-empty finite trace such thatu is waiting®, scheduleris a function that returns a
mappingtmap from hosth; to @ or a taskt; € tasksj(u). An infinite tracey = up,u1,... (whereyg is the ini-
tial configuration) is said to be generated by schedstgr if for every non-empty finite prefixeg = ug,uy, ..., u;
of y whereu; is waiting, sch(y) = tmap such thattmap(h;j) = t;i (or @), wheret; € tasksi(u) andt; has not

SWe will also assume each task invocation has an unique task name i.e. a task name uniquely identifies the task invocation.
6The successor afis a always a time event successor under the initial assumption that execution and transmission times are provided in multiple
of clock ticks.
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completed execution (i.€tj,n.,n,) € tohj(u) withn, > 0) or t; has completed execution but not transmission

(i.e. (ti,ne,ny) € tohj(u) with n, = 0andn, > 0). If (t;,0,1) € toh;j(u) then a completion everwomplt;) is raised

at the next time tick event. Intuitively, at each time step the scheduler decides which task to be executed/ transmitted
on each host (it may also decide to keep the host idle).

Time safety. An HTL program executes as intended if taskon hosth;) completes execution before a communicator

is updated by the output (af) or another instance af is scheduled; an execution trace satisfying the above behavior

is atime safetrace. A time safe trace is generated by time safe configurations. A configuration is time safe (1) if

a communicator is being updated by the evaluation of a task then the task and all the predecessor tasks must have
completed execution and, (2) if a task is being released then any other instance of the task must have terminated. A
configurationu is time safdf there exists a configurationf such that

e if W' is a write successor af and the write trigger being handled (8, (0,9),(c,t)) € trgs;(u), thent’ &
tasksi(u) andt’ ¢ ready;(u) wheret’ =t or t’ is a predecessor af and

e if u’ is a release successor wfand the release trigger being handled#s(0,9),t) € trgs;(u), thent ¢
tasksi(u).

A schedulersch is time saféf all traces generated by the scheduler is time-safe.

Transmission safety.An HTL program transmits as intended if when an host is transmitting the output of a task, no
other host is executing or transmitting; an execution trace satisfying the above behavi@nisnaission saferace.
Consider a finite prefiy* = ug,u,...,u; (for infinite tracey) whereu; is waiting andsch(y*) = tmap. The scheduler

is transmission safé there exists hosij such thatmap(h;) = tj and(tj,0,n,) € toh;(uj) thentmap(h;j) = @for all
hostshj € hset/h;.

Definition 1 A schedulesch is safe if the scheduler is both time safe and transmission safe.

Definition 2 Given an HTL progran®, a set of hostaset and a host mapmap (from top-level modules to hosts), the
schedulability problem foP returnstrue if there exists a safe scheduler forfalse otherwiself the schedulability
problem returns true, then the progrars schedulable

Theorem 1 Given a well-formed prograrm, if abstract programabs(P) is schedulable theRh is schedulable.

Proof. Assume there exists no safe schedulerbfot et the safe scheduler fabs(P) be sch’. We will construct a
schedulesch for P as follows. Consider non-empty finite prefix andy* for infinite tracesy (for abs(P)) andy (for
P) respectively. Ley/* = ug,uj,...,u; whereu] is waiting,n € N..o time transitions preced€¢ andsch’(y ) = tmap'.
Lety* = up,us, ..., ux Whereuy is waiting,n time transitions precedg andsch(y™) = tmap; task mapemap is defined
as follows:

(a) tmap(hi) = t if tmap'(hj) = t wheret is a concrete task of top-level modulespgf,
(b) tmap(hi) = @if tmap’(hj) = @,
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(c) tmap(hj) = @if tmap’(hj) = t’ and there exists no taske tasksi(uk) such that’ is top-level parent of.
(d) tmap(hj) = t if tmap’(hj) = t’ and there exists taske tasks;(uk) such that’ is top-level parent of.

Let task(t,.,.,.) € invocs(m) andm is defined in a program other than the top-level program; under the assumption
that every task invocation has unique task name and program structure of well-formed progiamsique fort.

Let the last activation of: is at a configuratiom,, and there ar@, (wheren, € N and0 < n, < n) time transitions
betweenuy,, andug on tracey* and switch triggers for current invocation efare enabled aftemns time transitions.
Considert’, the top-level parent of is invoked in modex’. Let the last activation af’ is at a configuration;, and

there aren, (wheren;, € N and0 < nj, < n) time transitions betweeu(, andu; on tracey™ and switch triggers for
current invocation oft’ are enabled after; time transitions.

Observation 1 Invocation ofm coincides with the invocation of modé The environment behavior is identical for
tracesy andy and period of a mode is same as that of its ancestors. This impliesgthat, andn; = ns. In other
words period oft in y and period oft’ in y overlaps.

Observation 2 For all modes active ati, the corresponding top-level parent mode is active at configuratjoithe

proof is by contradiction. Let mode; be enabled aty while the corresponding top-level modg has not been
enabled atj. There are two possibilities. First, top-level pargpis not inP. This is not possible as for well-formed
programs there is only one top-level program (constraint C1.1). Segphds terminated while modeis active. This

is also not feasible: (1) modeg has an unique top-level parent, (2) when magéerminates all modes in subsequent
refinements terminate and (3) whep switches, switch triggers for all modes in refinements are removed and thus
eliminating the possibility of modes in refinement programs switching between themselves when the top-level parent
in not active.

From the above observations, period for each taslkirks(ui) on tracey coincides with the period of the correspond-
ing top-level parent task iyl.

Observation 3 For each task’ € tasks](uj) there exists at most one task tasks;(uk) such thatt’ is a top-level

parent oft. In other words, a task has an unique top-level parent task relative to all tasks that can execute in parallel.
Progran® being well-formed task has an unique parent relative to all other tasksamd tasks in all modes of sibling
modules of1 (wherem € modes(M)). Using the above constraint and program structure of well-formed programs, it
can be proved that for any two tasks either they have different top-level parents or they cannot execute in parallel; refer
Section 4.7 for the complete proof.

Observation 4 If (t,ne,n,) € ready;(uk), and(t’,n.’,n,") € ready;(uj) thenn, <n.” andn, <n,’. Lett does not
have preceding tasks i.e. the release depends only on the transitive read tim8ayft has been releasad time
transitions earlier (wheng € N andn; < no) in y*, andt’ must have been releasg( time transitions earlier (where
n, € Nandn{, <no) iny". From from well-formedness;* (t) < r*(t’) which implies(no—n) < (no—n/,) orn/, <n.
Given the definition of schedulech and well-timedness constraintscet(t) < wcet(t') andwett(t) < wett(t')),
observation 2 holds for andt’. This also implies that completes execution beforé

If £ has precedences, then the claim can be proved by induction. The release eventdef be (n, complete) and
(n’,complete’). The time ticksn < n’ (from constraint of transitive release time). For eaomplt;) € complete,
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there is acomplt]) € complete’ in the release trigger fot’ wheret is parent oft;. By inductive hypothesis,
completion event for eacty cannot be later than that ef (the base case of the argument has been discussed above).
In other words all of the completion events éemplete’ should have occurred before the completion events in
complete which implies that’ must have been released later than

The observation also argues the necessity of four cases in definitixthofa) t is a concrete task of the top-level
mode and hence is executing in both abstract and concrete programhdb)not been released,may (or may not)
have been released, (chas been released but not terminatédas been released and terminated and (d) baihd
t’ have been released but neither have terminated.

Claim 7 Schedulesch is time safe.

Lett’ updates a communicatef at com‘iguratiom’p and taske updates a communicatorat ug.

Observation 5 Taskt or none of its preceding tasks aretasks;(uq) or ready;(uq). Let no other communicator is
updated byt’ or no switch trigger for mode’ is handled betweeﬂ’j andu’p. Similarly, let no other communicator

is updated byt and no switch trigger for mode is handled in betweeny andug. Let there ben), € N time
transitions betweeu’j andu’p andnc € N.o time transitions betweety andug. Tracey is time safe; s&’ or no

task preceding’ in tasksi(uj) or ready;(up). Without loss of generality, let’ terminates aften;, time transitions

(n, e Nandn;, < ). If t terminates aften; time transitionsi; € N) thenn, < nj, (from discussion of observation

1). Alsonj, < nc ast*(t’) < 1*(t). From above we havey <, <n, <nc which implies thatt ¢ tasks;(uq) and

t ¢ tasksj(uq). If taskt has been terminated all the preceding tasks must have terminated. There is a special case
whenn; = nj, = n}, = nc = n (i.e. the communicator update and mode switch check would be enabled simultaneously).
However from operational semantics, the communicator update would be handled before switch check; thus excluding
the possibility of adding in task set by new mode invocations. Thuygsis time safe.

Observation 6 Two invocations of cannot overlap.There are two possibilities - t, writes to a communicator at

the end of mode period and 2 writes to a port (but not any communicator). The first case has been discussed above.
Time-safety ofy ensures that execution of (irrespective of whether it writes to a communicator or not) is complete
aftern{, < ng time event transitions. We knowy < n{,. If ny = n{, = ns the operational semantics ensure that task is
removed from task set before modés invoked i.e. another instance ofs invoked.

Claim 8 Schedulesch is transmission safe.

Let hosth; be transmitting the evaluation. Smap’(hj) = t’ with (t/,0,n,’) € tok; (u’]-). Schedulersch’ being
transmission safe, for all hosit§ € hset /hj, tmap’(hj) = ¢. From definition ofsch, tmap(hj) = @. The last proof

shows that cannot complete execution later theln This along with the definition afch implies that the transmission

for the two tasks start at the same instance from the start of program execution. From well-formedness constraints
wett(t) <wctt(t’). Thus eithett & tasksi(uk) or (t,0,n,) € toh;(ux) withn, <n,’. In the first casetmap(h;j) = @,

in the second casanap(hj) = t. The observation implies that wheris being transmitted, all other hosts are idle. In

other wordssch is transmission safe.

Observation 3 and 4 proves Claim 1 which along with Claim 2 shows that schedulés safe. This contradicts the
initial assumption and concludes the proof.
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8 Related Works

Timed languages. HTL builds on the LET concept pioneered by the Giotto language [1]. LET-based languages
include TDL [7], which like Giotto is restricted to periodic tasks; Timed Multitasking (TM) [8], which defines LET
properties through deadlines; and xGiotto [9], an event-triggered LET language. HTL differs in that logical execution
times are defined through the reading and writing of communicator instances. This adds considerable flexibility,
and naturally supports aperiodic tasks and hierarchical refinement. In periodic languages such as Giotto, only very
restricted forms of refinement are possible, and in event-triggered languages, such as xGiotto, scheduling quickly
becomes intractable. Refer Appendix B for a detailed comparison between Giotto and HTL.

Synchronous languagesEsterel [10], Lustre [11], and Signal [12] are based on the synchrony assumption that the
execution platform is sufficiently fast as to complete the execution before the arrival of the next environment event
occurs. Similar to timed languages, the resulting behavior of synchronous languages is highly deterministic, and hence
amenable to efficient formal verification. HTL differs from synchronous languages in the program structure, which
supports the refinement of tasks into task groups with precedences.

Real-time languages for specialized domainsiesC [13] is targeted towards network-based applications for small,
distributed sensor devices. Erlang [14] is a concurrent functional programming language for real-time systems, specif-
ically for telephony and telecommunication. Flex [15] extends C++ by introducing explicit real-time constraints and
offers flexible trade-offs between time, resources and precision. Timber [16] is a programming language for imple-
menting event-driven real-time systems. nesC and Erlang are targeted toward soft real-time requirements, while HTL
is targeted toward hard real-time. Unlike in HTL, program execution in nesC and Timber is not schedule independent.
Flex allows tasks to miss a deadline (in which case it provides an imprecise computation); in HTL this is a run-time
error. None of the above languages supports a compositional communicator model and hierarchical task refinement.

9 Conclusion

In this report we present HTL, a hierarchical coordination language for safety critical hard real-time applications. HTL
is built upon the LET model of task execution and allows parallel composition of modules and horizontal refinement
of tasks without modifying the timing behavior. The hierarchical layers of abstraction allows efficient and concise
specification without overloading program analysis. We present the restrictions on a general HTL program to guarantee
schedulability of lower levels if higher levels of abstraction are schedulable. The report presents the operational
semantics for HTL and discusses the implementation of an HTL compiler to generate code for the Embedded Machine.
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A Concrete Syntax
Package htlc;

Helpers

all = [0 .. OXFFFF];

lowercase = [a’ .. 'Z;

uppercase = [A’ .. 'Z7;

digit =[o .. 97

hex_digit = [digit + [[a’ .. '] + [A" .. 'F1;

tab = 9;
cr = 13;
If = 10;

eol = cr If | cr | If; // This takes care of different platforms

not_cr_|If = [all -[cr + If]];
not_star = [all -™*T;
not_star_slash = [not_star -'/7;

blank = ( ' | tab | eol)+;

short_comment = '/ not_cr_If* eol;

long_comment = '/* not_star* ¥+ (not_star_slash not_star* *'+)* '/;
comment = short_comment | long_comment;

letter = lowercase | uppercase | '_;

name = letter (letter | digit)*;
ident = name (." name)*;
Tokens

program = 'program’;
communicator = 'communicator’;
sensor = ’sensor’;
actuator = ’actuator’;
general = ’general’;
period = ’period’;

uses = 'uses’;
module = 'module’;
start = ‘start’;

import = 'import’;
export = ’export’;

task = 'task’;

output = ’output’;

input = input’;
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state = ’state’;

parent = ’parent’;
function = function’;
update = ’update’;
port = 'port;
mode = 'mode’;
invoke = 'invoke’;
switch = ’switch’;
wcet = 'wcet’;
init = init’;
host = 'host’;
ident = ident;

number = digit+;
semicolon = '}
comma ="
dot ="
colon ="

greater_than = ">
less_or_equal = <=
assign = "=

|_par =0
r_par =
|_brace =7
r_brace ="
|_bracket = ;
r_bracket = T;

blank = blank;
comment = comment;

Ignored Tokens

blank, comment;

Productions

program_declaration_list = program_declaration*;
program_declaration = program [program_name]:ident
|_brace
communicator_declaration_list?
module_declaration_list
r_brace;
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communicator_declaration_list = communicator communicator_declaration* ;
communicator_declaration = [type_name]:ident
[communicator_name]:ident
period [communicator_period]:number
init [init_driver]:ident
semicolon;

module_declaration_list = module_declaration*;
module_declaration = module [module_name]:ident
host_declaration?
start [start_mode]:ident
|_brace
port_declaration_list?
task_declaration_list
mode_declaration_list
r_brace;

host_declaration = I_bracket
[host_name]:ident
[host_ip]:ip_declaration colon
[host_port]:number
r_bracket;
[a]:number [d1]:dot
[b]:number [d2]:dot
[c]:number [d3]:dot
[d]:number;

ip_declaration

port_declaration_list = port port_declaration*;
port_declaration = [port_type]:ident
[port_name]:ident assign [init_driver]:ident semicolon;

task_declaration_list = task_declaration®*;

task_declaration = task [task_name]:ident
input [input_formal_ports]:formal_ports
state [state_formal_ports]:state_ports
output [output_formal_ports].formal_ports
task_function?
task_wcet?
semicolon;

task_function = function [function_name]:ident;
task_wcet = wecet [wcet_map]:number;

formal_ports = |_par formal_port_list? r_par ;
formal_port_list = concrete formal_port formal_port_tail* | (formal_port+) ;
formal_port_tail = comma formal_port ;

formal_port = [type_name]:ident [port_name]:ident ;

state_ports = |_par state_port_list? r_par ;
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state_port_list = concrete state_port state_port_tail* | (state_port+) ;
state_port_tail = comma state_port ;
state_port = [type_name]:ident [state_name]:.ident

assign [init_driver]:ident ;

mode_declaration_list = mode_declaration*;
mode_declaration = mode [mode_name]:ident
period [mode_period]:number
refine_program?
|_brace
task_invocation_list
mode_switch_list
r_brace;

refine_program = program [program_name]:ident;

task_invocation_list = task_invocation®*;

task_invocation = invoke [task_name]:ident
input [input_actual_ports]:actual_ports
output [output_actual_ports]:actual_ports
parent_task?

semicolon;
parent_task = parent [task_name]:ident;
actual_ports = |_par actual_port_list? r_par ;

actual_port_list = concrete actual_port actual_port_tail* | (actual_port+) ;
actual_port_tail = comma actual_port ;
actual_port = concrete [port_name]:ident | communicator_instance ;

communicator_instance = |_par
[communicator_port_name]:ident comma
[communicator_instance_number]:number
r_par ;

mode_switch_list = mode_switch*;
mode_switch = switch
|_par
[condition_function]:ident
switch_ports
r_par
[destination_mode]:ident
semicolon;

switch_ports = |_par switch_port_list? r_par ;

switch_port_list = concrete switch_port switch_port_tail* | (switch_port+) ;
switch_port_tail = comma switch_port ;

switch_port = [port_namel:ident;
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B Giottovs. HTL

B.1 Comparison

The difference between Giotto and HTL is discussed based on the following example. There are three sensors
(s1,s2,s3), two actuatorsd;,ap) and four taskst(1,t2,ts,ts). The intended execution starts with tasksty, t4;
upon some predefined condition taskis replaced byts (the reverse switch is also possible). The data flow between
tasks, sensors, and actuators is as followssreads fromsi, t» reads the output of; and sensoe,, and updates
actuatoray, t4 (ts) reads sensasz and updates actuatap. Taskst; andt, should be executed every 10 ms, while
taskst4 andts should be executed every 5 ms. Figure 17 and Figure 18 shows (simplified) Giotto and HTL code.

mode ml1() period 10 {

actfreq 1 do al(al  _drv);
actfreq 2 do a2(a2  _drv);

mode m2() period 10  {
actfreq 1 do al(al  -drv);
actfreq 2 do a2(a2  _drv);

exitfreq 2 do m2(sw  _drv); exitfreq 2 do ml(sw  _drv);
taskfreq 1 do ti(drvl); taskfreq 1 do ti(drvl);
taskfreq 1 do t2(drv2); taskfreq 1 do t2(drv2);
taskfreq 2 do t4(drv4); taskfreq 2 do t5(drv5);

} }

Figure 17: Giotto modes

HTL implementation reduces latency than an equivalent Giotto implementéii@iotto codet, can read the output
of t1 only at period boundaries (eventf terminates earlier than the period). In other words, there is a delay of one
period. On the other hand; reads the output af; in HTL implementation as soon ag completes.

program P {
communicator
sl, s2, s3, al, a2
module M10 start m10  {
port pl
task t1 // concrete decl.
task t2 // concrete decl.
mode m10 period 10 {
invoke tl1 input (s1,0)

program refP  {
module refM start refml {
task t4 // concrete decl.
task t5 // concrete decl.
mode refml period 5  {
invoke t4 input (s3,0)
output (a2,5) parent t3;

output (pl) switch (cond, refm2);
invoke t2 input (s2,0) }
output (al,10) mode refm2 period 5 {
} invoke t5 input (s3,0)

output (a2,5) parent t3;

module M5 start m5  { switch (cond, refml);

task t3 // concrete decl. }
mode m5 period 5 program refP {
invoke t3 input (s3,0) }

output (a2,5)

Figure 18: HTL code fragements

HTL implementation reduces latency for sensor readingsGiotto, the sensors are read at the start of task periods;
thuss; is read once every 10 ms. In HTL, the sensors can be read in the middle of task periods. For example, the
communicator instance of communicaigr can be set to a number betwed®and9 to indicate which sensor instance
should be read within the period. If need be, the task can read multiple sensor instances within the period.
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Figure 19: Giotto (a) and HTL (b) implementation diagrams;

HTL allows more structure than Giotto specificatidrhe Giotto modes are different by only one task; maglavokes
t5 in place oft,4 (both of period 5). In HTL, the tasks are partitioned for efficient handling; modléinvoked tasks
t1 andt, and modan5invokes an abstract task (to be used a placeholder for both andts). Modemb5is then
refined by programefP which consists of two modes switching between themselves; meddel invokest, and
moderefm2 invokests. This helps in code reduction and better structure with increase in choices.

B.2 Giotto-to-HTL

As we showed previously HTL is more powerful then Giotto, this means that there should be an algorithm which
converts a Giotto program to an HTL program. In this subsection we present the conversion of a Giotto program to an
HTL program based on three examples.

In the first example (Figure 20) we consider a Giotto program which consists of two mad@sdm,). Modem; has

a period of 6 and invokes two tasks; with a frequency of 3 (a period of 2), angd with a frequency of 1 (a period

of 6). Modem; is similar to moden;, the only difference being the fact that in magletasktask is replaced byts,

which has a frequency of 2 (a period of 3). Magiecan switch to mode; with a frequency of 3, the revers switch

is also possible but with a frequency of 2. The corresponding HTL program will have three modules one for each
frequency group that exists in Giotto program,(M3, andMg). As it can be seen in Figure 20, modudgis straight
forward, since it corresponds to the group of frequency 1, which is represented by only ong)askich is invoked

in both Giotto modes (it is not influenced by the mode switch); modgileontains only one mode which invokes only

one task €g), and there is no switch. On the other hand moduleand¥; are much more complex, this is because

the frequency groups represented by two modules are influenced by the mode switch. The two HTL modules have to
express all possible states in which Giotto program can get due to the non-trivial mode switch. In order to accomplish
this goal there has to be introduced empty modes (modes that do not invoke any task).

In the second example (Figure 21) the only difference is that a third majlevas added to the Giotto program, the

following switches were added compare to the first case: mgdan switch to modes, and modens can switch to
modem;. Regarding the corresponding HTL program, it can be seen that a new muglweas added, since there is
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Figure 20: Example 1

41




a new frequency group, modulig is unchanged since it is not affected by the new added mode, while motidesl
M3 have become more complex, since they have to express more possible states.

In the third example (Figure 22) we can see that there are two groups of frequency (representedtqy tasks)
which are not influenced by the mode switch, they will be express in HTL by simple modylasdM,, respectively),
while the other two groups of frequency (represented by tagkandt,s) being influenced by the mode switch will
lead to complex module#i§ andM, respectively) in the HTL program.

In conclusion when converting a Giotto program to an HTL program, for each group of frequency in Giotto program

there has to be a module in the top-level program of the HTL program, the complexity of a module depends on how
the mode switches from Giotto program affect the corresponding group of frequency.
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C Flattening

Given a well-timed HTL progran®, the program can be converted into a prog®irwith same number of modules

as inP but with all mode declaration of the forifm, .,.); in other words all modes in the top-level program with
refinement are replaced by modes with no refinement. Instead of presenting a formal translation algorithm we will
motivate the case through examples.

o ee)le?e) | ||_a—— =

(a) Replacing a mode (b) Multiple modules to single module ( c) Flattening mode switches

Figure 23: Flattening HTL program

If the top level program is a leaf program, no further flattening is required; otherwise each mode is replaced by
(recursively flattened) refinement program as in Figure 23. Renaming of all communicators, modules, modes, ports,
task declarations, task invocations are to be performed first. Next the prodddtiemTopLevelPrograns invoked

on the top-level program. If the program is a leaf program then no further action is necessary. Otherwise each mode of
the modules which has a refinement has to be flattened. This is carried in two steps. For a mode deelaratity

first the program is flattened (recursive invocation), second, converting the set of modules to one module and third,
merging the single module program with made

Algorithm 4 FlattenTopLevelProgranp)
/I P is a non-leaf program
for each modulé@! € modules(P)
for each(m, .,.,P’) € modedecl(M)
invoke FlattenAndConvertToSingleModuba P’
invoke MergeModeWithPrograron m, P’

If a programP’ is not top-level and it is a leaf program the modules can be converted into one single module (Figure 23).
This is possible because all modes have identical period; hence composition of the modes can be performed without
any need to modify the semantics of mode switches. The conversion is not possible for top-level program as mode
periods are different.
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Algorithm 5 FlattenAndConvertToSingleModule

if P is a leaf program anfhodules(P)| =1
return;
if P is a leaf program
define a new module declaration
(M,portdecl,taskdecl,modedecl,smode)
M = composition of module namesitvdules(P)
portdecl = union ofportdecl of all modules inP
taskdecl = union of concrete task declarations of all moduleB in
emptymodedecl and emptysmode
k:= |modules(P)|
for each unique combinatiam, ., m; of one mode from each module
create(m, invocs, switches)
m=mj-mp-..mg
invocs = invocsj UinvocsyU..invocsg
switches = Power set of mode switch@sitches,.,switchesy
addm in moduledecl
smode is the combination with all start modes
return
else
for each modulé! € modules(P)
for each(m, ., .,P’) € modedecl(M)
invoke FlattenAndConvertToSingleModube P’
invoke MergeModeWithPrograronm, p’
invoke FlattenAndConvertToSingleModube P
return

Algorithm 6 MergeModeWithPrograrm, P’)

single module?’ in P’
and let(m, invocs, switches,P’) in modedecl (M)

/I modify all mode declarations inodedecl (M)
/I modify task invocations
copy all concrete task invocationsmto all modes otr’
/I modify mode switches
the mode switch conditions are added with
not-switch-condition for switches in
copy all mode switches af to each mode i’

/I modify M
copy all task declarations ®of to M
copy all port declarations of toM

/I modify switches from modes i other tham
for all switches with destination mode

replace destination mode leyiode of M

remove(m, invocs, switches,P’) frommodedecl (M)
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