
Hierarchical Timing Language

Arkadeb Ghosal
Thomas A. Henzinger
Daniel Iercan
Christoph Kirsch
Alberto L. Sangiovanni-Vincentelli

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-79

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-79.html

May 23, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by GSRC grant 2003-DT-660 and in part
by the Center for Hybrid and Embedded Software Systems (CHESS) at UC
Berkeley, which receives support from the National Science Foundation
(NSF award #CCR-0225610), the State of California Micro Program, and
the following companies: Agilent, DGIST, General Motors, Hewlett
Packard, Infineon, Microsoft, and Toyota.

Hierarchical Timing Language∗

Arkadeb Ghosal

UC Berkeley

arkadeb@eecs.berkeley.edu

Thomas A. Henzinger

EPFL

tah@epfl.ch

Daniel Iercan

”Politehnica” U. of Timisoara

daniel.iercan@aut.upt.ro

Christoph Kirsch

University of Salzburg

ck@cs.uni-salzburg.at

Alberto Sangiovanni-Vincentelli

UC Berkeley

alberto@eecs.berkeley.edu

May 23, 2006

Abstract

We have designed and implemented a new programming language for hard real-time systems. Critical timing

constraints are specified within the language, and ensured by the compiler. The main novel feature of the language is

that programs are extensible in two dimensions without changing their timing behavior: new program modules can

be added, and individual program task can be refined. The mechanism that supports time invariance under parallel

composition is that different program modules communicate at specified instances of time. Time invariance under

refinement is achieved by conservative scheduling of the top level. The language, which assembles real-time tasks

within a hierarchical module structure with timing constraints, is called Hierarchical Timing Language (HTL). It is a

coordination language, in that individual tasks can be implemented in other languages. We present a distributed HTL

implementation of an automotive steer-by-wire controller as a case study.

1 Introduction

Much current real-time programming proceeds by trial and error: if during a program test some task misses its deadline,

then the task priorities are reassigned, and new tests are performed. In rare cases can the timing of a program beproved

correct, by scheduling theory or formal verification. Scheduling analysis becomes difficult when the program structure

is irregular, with branches, exceptions, and dynamic task creation. Formal techniques are difficult due to state space

explosion.

Part of the problem is that design practice refers to time in an indirect way, often through low-level constructs such

as priorities. One of the main challenges in real-time programming, therefore, is lifting the level of abstraction. In
∗This work was supported in part by GSRC grant 2003-DT-660 and in part by the Center for Hybrid and Embedded Software Systems (CHESS)

at UC Berkeley, which receives support from the National Science Foundation (NSF award #CCR-0225610), the State of California Micro Program,

and the following companies: Agilent, DGIST, General Motors, Hewlett Packard, Infineon, Microsoft, and Toyota.

1

this report, we present a new high-level coordination language for interacting hard real-time tasks called Hierarchical

Timing Language (HTL). Like Giotto [1], our language refers directly to real-time instances, but it is more general

than Giotto, in that it offers hierarchical layers of abstraction. Besides adding program structure, a main benefit of the

abstraction hierarchy is that feasible schedules for lower layers can be efficiently constructed from feasible schedules

for higher layers.

HTL permits the composition and refinement of programs without changing their real-time behavior. Parallel program

modules communicate with each other and with the environment through so-calledcommunicators, of which sensors

and actuators are special cases. A communicator defines a sequence of real-time instances of a static variable. Task

reads and writes specify communicator instances. As the read and written time instances of communicators are fixed

by a program, they remain unchanged when the context of the program is modified. In other words, the communicator

instances specify alogical execution time(LET) [1] slot for each task; the actual physical execution of the task must fall

within this slot. As long as physical task execution falls within the LET interval, the functional and timing semantics

of a program is deterministic, independent of the actual task schedule. In particular, individual program modules can

be reused in different contexts without changing their timing behavior, or upgraded without affecting the timing of the

rest of the system.

In HTL, tasks can be refined, in multiple levels, by groups of tasks with precedence relations. Each task refinement

is constrained in such a way that if the task is schedulable, then the more detailed replacement group of tasks is

schedulable as well. As a consequence, schedulability needs to be checked only for the top level of an HTL program.

This avoids a combinatorial explosion, and permits scheduling to be performed by the HTL compiler. The compiler

rejects a program if it cannot guarantee that its timing specification is satisfied on a given platform (which is specified

through worst-case execution times for all tasks).

In addition to module composition (concurrency) and task refinement (hierarchy), HTL supports the collection of tasks

into modes, which can be composed sequentially. We provide an operational semantics for HTL and define a (simple)

compiler to generate E code (code used by the Embedded Machine). The compiler performs schedulability analysis

and translates HTL programs into code for the Embedded Machine [2]. The HTL compiler can generate E code for

an distributed HTL implementation; we assume that the Embedded Machine has been implemented on each host over

which the HTL implementation is distributed. The semantics of an HTL program remains independent of the number

of hosts, but the analysis and code generation takes into account the distribution.

We present an automotive steer-by-wire controller as a case study. A steer-by-wire system removes the mechanical

linkage between steering wheel and car with a set of sensors, actuators, and a controller distributed over several pro-

cessors. Typically the sensors and actuators are spread over four processors for each of the wheels, and the controller

(along with different functionalities like fault detection, supervisory control, and power coordinator) is implemented

on more than one processor. While the example is particularly useful to show the use of communicators and task

refinement, it also illustrates the need of horizontal and vertical extensions of the software. Horizontally, parallel mod-

ules can be appended to the implementation without changing the timing behavior of the implementation. Vertically,

the refinement concept can be used to provide (temporal) space for future extensions.

Overview. Section 2 presents a brief overview on communication and computation model of HTL and basic program

structures. Section 3 discusses an implementation of the steer-by-wire controller in HTL. Section 4 presents the

abstract syntax for HTL and the restrictions required to ensure race-free execution and schedulable programs. Section

5 presents the operational semantics of the language. Section 6 discusses the compiler for HTL to generate E code.

2

Section 7 presents an overview of schedulability check for HTL. Section 8 compares HTL with related works. Section

9 concludes the report.

2 Overview

Logical execution time.LET model(Figure 1) decouples the time when a software task reads input and writes output

from the time when the task executes. An LET task is a sequential code operating on memory that has been assigned

to the task upon release (and is not accessible to any other tasks). Thereleaseandterminationdecides the LET for the

task; the task isactivebetween the release and termination events which are triggered clock ticks or sensor interrupts.

The input of an LET task is written into its assigned memory when the release event occurs and not when the task

actuallystartsexecuting. Similarly the output is available to other tasks or actuators at the termination event, even

if the task completes physical execution earlier. In between the start and completion of execution the task may be

preempted and then resume the execution. LET tasks are time and value deterministic, portable and composable. An

LET task istime safeon some given hardware if the taskcompletesexecution on that hardware before the termination

event occurs.

Figure 1: Logical Execution Time (LET) Model

Communication and computation model.The communication model for HTL is centered aroundcommunicators.

A communicator is a variable (with a structured data type and has values from a set that complies to the data type)

which can be accessed (i.e. read from or write to) only at specific time instances. We specify the time instance through

a communicator period. The computation model for HTL comprises of software tasks; atask is sequential code

without any internal synchronization point. A task reads from certain instances of some communicators, evaluates a

pre-defined function based on the input and updates certain instances of the same or other communicators.

Figure 2: Communicators and Tasks

Figure 2 shows the interaction between four communicators and two tasks. The four communicators,c1, c2, c3 and

3

c4 have periods2, 3, 4 and3 respectively; the instances of access have been shown along the time line. Taskt1 reads

second instances ofc1 andc4 and updates fourth instance ofc2. Taskt2 reads second instance ofc3 and updates sixth

instance ofc1 and fifth instance ofc2. The read and write instances implicitly specify the LET for the tasks; thus LET

of t1 span from time unit 3 to time unit 9 and LET oft2 span from time unit 4 to time unit 10.

Communicators determine the interaction between tasks. While communicators are the key to write HTL programs in

a compositional way, they also ensure deterministic behavior. Determinism implies that given sufficient CPU speed,

the real-time behavior of the program is determined by the input, independent of the host speed and utilization and is

maintained by ensuring no race on communicators and that a communicator is updated before it is read.

HTL allows direct communication between tasks with identical frequencies (tasks with different frequencies can only

communicate via communicators); communication through ports ensure zero latency. Figure 3 shows three taskst1,

t2 andt3. Taskt1 reads second instances ofc1 andc4 and taskt2 reads second instance ofc3. Completion oft1 and

t2 are not specified; instead a third taskt3 reads the evaluation oft1 andt2 and updates the fifth instance ofc2. The

communication betweent1 (andt2) andt3 occurs through ports. Aport is variable with fixed data type but is not

bound to time instances i.e. as soon as the evaluation oft1 is complete, taskt2 can read the output.

Figure 3: Communicators, Ports and Tasks

Program. An HTL programis a set of communicators and a set of modes. Amodeis a group of task with identical

frequency (expressed as mode period). Tasks within a mode may interact through ports; however tasks in different

modes can only communicate through communicators. The ports in a mode express the precedence relation between

tasks; if a taskprecedesanother task then the second task must read a port updated by another task. Figure 4 shows

two modesm1 andm2 with periods 6 and 12 respectively.

Figure 4: Modes, Tasks and Communicators

In real-time applications a group of tasks get replaced by an alternate group depending on some pre-defined condition

(e.g. change in temperature readings). HTL accommodates this by allowing switching of modes (possible only at end

of mode periods) based on some condition specified as a predicate on communicators and ports. A network of modes

switching between themselves is referred as amodule(Figure 5). In the modified specification model, an HTL program

is a set of modules and a set of communicators. The modules are composed in parallel while modes in a module are

composed sequentially. At any instance, tasks of at most one mode of a module may be executing. One mode in each

4

module is specified as the start mode and starts executing (before any other modes of the module) when the module is

executed.

Figure 5: Modules and Modes

Refinement. Specifying all behaviors through mode switching is cumbersome. To have an efficient and concise

specification we introduce the concept ofmode refinement; a mode in a program can be replaced by an HTL program.

This does not add expressiveness of the model; in fact an HTL program with arbitrary levels of refinement can be

translated into one with no refinement. However the feature allows a compact representation without overloading

analysis; e.g. for schedulability analysis one does not need to consider all possible combinations of refinement modes

and this save subsequent computation effort. In fact for an HTL program (with certain restrictions) schedulability is

ensured if the top-level program (without considering any refinement) is schedulable.

Figure 6: Refinement

Figure 6 shows a modem and a modem′ (from a program which refinesm). The tasks inm execute in parallel to that

of m′. HTL imposes certain restrictions onm′ to ensure efficient analysis. First, period of modem′ is identical to that

of m. This ensures that whenm switches (which is only possible at the end of period), all tasks in the modes refiningm

has terminated execution. Second, every task inm′ maps to an unique task inm (shown by grey arrows) e.g.t′5 (child)

to t5 (parent). HTL considerst5 as a placeholder (or anabstracttask) to that oft′5 (or anconcretetask); in other

wordst5 does not execute at run-time but ensures thatt′5 is accounted for during schedulability analysis of the top

program. Also, the latest (earliest) communicator read (write) oft′5 should be equal to or earlier (later) than that oft5,

dependencies oft′5 should be a subset of dependencies oft5 and worst-case-execution-time oft′5 should be less than

equal to that oft5. The constraint ensures that ift5 can be scheduled in the top program,t′5 can be scheduled for the

whole program (refer Section 7 for complete analysis).

Figure 7: Program and Refinement

Refinement allows efficient specification by allowingchoiceandchange of behavior. The choice is expressed when an

abstract task in a mode can be parent of several concrete or abstract task in different modes of a refinement program.

5

By using the hierarchy, the choices can be used in a structured manner. The change of behavior is exploited by having

the child task reading from/ writing to different communicators within the constraints discussed above. Figure 7

shows a diagrammatic view of an HTL program with refinement. The modes shows the tasks with precedences and

the refinement modes show possible orientation of children concrete/ abstract tasks.

Distribution. Many embedded applications are distributed; tasks are distributed on several hosts and interact with

each other through communication channels. In HTL, distribution is specified through a mapping of modules to hosts;

the distribution is implemented by replicating shared communicators on all hosts and then have the tasks (writing to

the shared communicators) broadcast the outputs. The semantics remain the same as if they were running on a single

host; however code generation and analysis take the distribution into account. The LET model is extended to include

both execution and transmission of output (Figure 8).

Figure 8: Task execution and transmission

3 Steer-By-Wire

A steer-by-wire(SBW) control system replaces the mechanical linkage between steering wheel and car wheels by a

set of steering wheel angle sensors, electric motors that control the wheel angle, and a controller that computes the

required wheel motor actuation. To maintain a realistic road condition feel for the driver, a force feedback actuator

is placed on the steering wheel. The specific architecture that has been used here is a simplified steer-by-wire model

used by General Motors for their prototype hydrogen fuel-cell car FX-3. The example is an imitation of the concerns

and requirements and does not represent a real set of control algorithms for an actual product or prototype.

Figure 9: Data Flow and Functional Blocks

The sensors (Figure 9) read desired steer/ torque from driver and current vehicle state (wheel angle, motor current,

speed, friction, power, pitch, yaw etc). The system functionality is divided into five parts: computation of wheel

6

motor actuation and steer feedback, supervisory control, fault handling and power coordinator. Supervisory control co-

ordinates between steering, braking and suspension; for simplicity we are not implementing the braking and suspension

and assume that the interface is being provided as a set of sensor values. The supervisor typically runs in triple-

redundant mode (three copies are executed in three different processors). The fault handling system detects, isolates

and mitigates fault and warns the driver in case of fault. Power coordinator handles the coordination of motor current

computed by the controller with rest of the power grid.

Figure 10: Implementation of SBW system

An architecture for SBW (Figure 10) consists of eight hosts (or processors): four motor control units (MCUs) and

four electronic control units (ECUs). The MCUs are placed near the wheels and detect sensor values related to wheels

and send signals to motor actuator. The ECUs implement rest of the functionalities. All hosts are connected through a

communication link that allows broadcast from any host.

Figure 11: Modules for the SBW implementation

Steer-by-wire in HTL. Each of the functional units of the SBW system is represented by a module in the HTL

implementation (Figure 111). There are nine modules: sensor units for each wheel (rear-left: RL, rear-right: RR, front-

left: FL, and front-right: FR), actuator units for each of the four wheels (RL, RR, FL, and FR), and computational

units for control, steer feedback, fault diagnosis, power and supervisor (there are three copies of supervisor).

Each of the above units behave differently under varied conditions. For example, the wheel actuation need to be

done faster over a critical speed; computation of actuation signal at the time of engine start is different from that at

1In the figures program, module and mode will be denoted by an oval box, rectangle and an ellipse respectively.

7

high speed; supervisor functions differently when the car is running under emergency condition; fault diagnosis uses

a different set of computations at normal driving conditions than when a fault is detected etc. The change in the

behavior is captured by mode switches; Figure 12 shows the different modes of the modules (period of the modes

are in millisecond and are shown in the shaded box). Due to space constraints, we will not present the details of the

modes; referhttp://htl.cs.uni-salzburg.atfor full specification. Next we will present a specific scenario of inter-mode

communication.

Figure 12: Modes for the modules

Angle for rear-left wheel (car is moving at a high speed) is measured by three sensors; the sensor values (after

appropriate modification) are read by a task that mediates on the value to be considered and then pass it onto the

control task. This necessitates communication between modehigh (modulesensor RL), modehigh (module

steer feedback) and modehigh (modulecontrol). The modes and communicators have period 4000 and

500 microseconds respectively. Instances of communicators are referred relative to mode period (0-th instance corre-

sponds to the start of the mode). TasksSENWheelA3, SENWheelA4, SENWheelA5 (in modehigh of module

sensor RL) reads three sensors A3, A4, A5 (connected to RL wheel) at the start of the period and update first instance

of three communicatorscA3, cA4 andcA5. TaskMEDAngleRL (in modehigh of modulesteer feedback)

reads the first instance of the above communicators. The program semantics ensure that write precedes read. Task

MEDAngleRL write to the second instance of communicatorcAngleRL . TaskcntrlFUN reads the second instance

of cAngleRL (among other communicators) and computes value of wheel actuation signal. TaskRackPinAct

reads the output port ofcntrlFUN and computes the power requirement for the motors.

Figure 13: Communication in SBW implementation

Scenario-specific functionalities can be further differentiated. For example, at high speeds control law for computing

the actuation signal differs on the basis of whether the car is driven manually or under cruise. Similarly the tasks exe-

cuted during emergency by the supervisory control are different in the case of under-steering from that of oversteering.

Fault handling functionality depends on whether there is a communication fault or processor fault. If all of these are

expressed in one module, the module size becomes large and unmanageable - refinement allows an efficient solution.

In the SBW program (Figure 14), the modelow (of modulecontrol) is refined by a program which has one module

8

with two modesidle andmotion ; the modemotion is further refined by a program with a module with two modes

crawl andaverage . If the modes were not refined then the modulecontrol would have 6 modes and 17 mode

switches; this is not only inefficient but error prone.

Figure 14: HTL program for SBW system with all the refinements

Distribution of an HTL program is specified by a mapping of the modules of the top-level program (a program which

does not refine any mode) to hosts; the modes of the module and the corresponding refinements are bound to execute

on the same host. The SBW system is distributed over 8 hosts: sensor and actuator modules for each wheel share one

host; modulescontrol , steer feedback and fault diagnosis are distributed on three hosts along with

one supervisor module; modulepower is assigned to one host.

Implementation. We have implemented the case study on eight AMD Duron 1.4Ghz machines with 256MB RAM

connected by a 100Mbps Ethernet network. The case study is written in 873 lines of HTL code and compiled to

around 1800 virtual machine instructions per host. The virtual machine [2] is written in C and executes the generated

code with an overhead between 60 and 300 microseconds per time instant for which it is invoked. See Section 6 for

more details on the HTL compiler and runtime system. The tasks are written in C but do not actually implement any

functionality, only bounded empty loops. Our implementation simulates the case study in real time but at a frequency

of 2Hz, which is 1000 times slower than the actual system, and therefore only demonstrates the correctness of the code

generated for the HTL program of the case study.

9

4 Abstract Syntax

We provide the main components of the HTL language in an abstract way. In practise a concrete syntax can be written

from this abstract syntax (refer Appendix A).

An HTL programP consists of the following components:

• a set ofcommunicator declarationscommdecl. A communicator declaration(c,type,init,πc) consists of a

communicator namec, a structured data type2 type, an initial valueinit (if different from the default value

of type), and a period of accessπc ∈ N>0. If (c, ., ., .) and (c′, ., ., .) are two distinct communicator decla-

rations thenc 6= c′. The set of declared communicator names for a programP becomms(P) i.e. comms(P) =
{c|(c, ., ., ., .)∈ commdecl(P)}. Given a communicatorc∈ comms(P), the typetype[c] denotes the range of val-

ues the communicator can evaluate to andinit[c] denotes the initial value of the communicator. The evaluation

of a communicatorval[c] is a function that mapsc to a value intype[c].

• a set ofmodule declarationsmoduledecl. A module declaration(M,portdecl,taskdecl,modedecl,smode)
consists of a module nameM, a set of port declarationsportdecl, a set of task declarationstaskdecl, a set of

mode declarationsmodedecl, and a mode namesmode. If (M, ., ., ., .) and(M′, ., ., ., .) are two distinct module

declarations thenM 6= M′. The set of declared module names for a programP bemodules(P) i.e.modules(P) =
{M|(M, ., ., ., .) ∈ moduledecl(P)}.

– a port declaration(p,type,init) consists of a port namep, a structured data typetype, and an initial

valueinit (if different from the default value oftype). If (p, ., .) and(p′, ., .) are two distinct port declara-

tions thenp 6= p′. The set of declared port names for a moduleM beports(M) i.e.ports(M) = {p|(p, ., .)∈
portdecl(M). Given a portp ∈ ports(M), the typetype[p] denotes the range of values the port can eval-

uate to andinit[p] denotes the initial value of the port. The evaluation of a portval[p] is a function that

mapsp to a value intype[p].

– a task declaration(t,filist,folist,fn) consists of a task namet, a list of formal input parameters

filist, a list of formal output parametersfolist and an optional task functionfn. An element of the

list of formal input parameters is a data type; i.e. for all1≤ j ≤ |filist|, filist(j) = type. Similarly

an element of the list of formal output parameters is a data type; i.e. for all1≤ k≤ |folist|, folist(k) =
type. If (t, ., ., .) and(t′, ., ., .) are two distinct task declarations thent 6= t′. Let val[type] denote the

range of values for a particular data typetype. The functionfn is defined asfn : ∪ival[filist(i)]→
∪ jval[folist(j)].

– a mode declaration(m,πm,invocs,switches,refprog) consists of a mode namem, a mode periodπm ∈
N>0, a set of task invocationsinvocs, a set of mode switchesswitches, and an optional program name

refprog. If (m, ., ., ., .) and(m′, ., ., ., .) are two distinct mode declarations thenm 6= m′. The set of declared

mode names for a moduleM is modes(M) i.e. modes(M) = {m|(m, ., ., .) ∈ modedecl(M).

∗ a task invocation(t,ailist,aolist,ptask) consists of a task namet, a list of actual input parame-

tersailist, a list of actual output parametersaolist and an optional task nameptask. An element

of ailist (or aolist) is either a portp or a pair(c,i) with a communicator namec and an instance

2Data type indicates common types like integer, float and boolean. More complex data types like arrays can be defined; however types are not

an integral part of the program definition and a detailed discussion has been left out.

10

numberi∈N. Task names of the invocations are unique i.e. if(t, ., ., .) and(t′, ., ., .) are two different

task invocations thent 6= t′.

∗ a mode switch(cnd,m) consists of a conditioncnd (expressed as a predicate on ports and commu-

nicators) and a destination mode namem ∈ modes(M). If (cnd, .) and(cnd′, .) are two distinct mode

switches, then for all valuations of ports and communicators, eithercnd evaluates tofalse or cnd′

evaluates tofalse i.e. mode switches are deterministic. The set of destination mode names from a

modem bedestmodes(m) i.e.destmodes(m) = {m|(.,m′) ∈ switches(m)}.

4.1 Definitions based on hierarchy

In the section we will relate components e.g. modules or programs or communicator accesses across levels of hierarchy

in a HTL program.

Module types.A moduleMn is asub-moduleof a moduleM1 if there existsn∈N>1 modulesM1,M2, ..,Mn such that for

every pairM j ,M j+1 there exists a mode declaration(m, ., ., .,P) ∈ modedecl(M j) andM j+1 ∈ modules(P) for 1≤ j < n.

The moduleM1 is asuper-moduleof Mn. A module is a sub-module (and a super-module) of itself. Atop-level module

is one with no super-module other than itself; aleaf moduleis one with no sub-module other than itself. A module

M2 is an immediate sub-moduleof a moduleM1 if there exists a mode declaration(m, ., ., .,P) ∈ modedecl(M1) and

M2 ∈ modules(P). The moduleM1 is an immediate super-moduleof M2. An immediate sub (super) module is also a

sub (super) module. The set of all the sub-modules of a moduleM is submdl(M). ModuleM is asiblingof moduleM′ if

M,M′ ∈ modules(P) for a programP. Thesibling setfor moduleM is sibset(M) = modules(P)\M.

Program types. If M′ ∈ modules(P′), M ∈ modules(P) andM′ is a (immediate) sub-module ofM, thenP′ is a (im-

mediate) sub-programof P andP is a (immediate) super-programof P′. A programP is both a sub-program and a

super-program to itself. Atop-level programis one with no super-program than itself. Aleaf-level programis one

with no sub-program than itself. Aflat programis one which is both a top-level and leaf-level program.

Abstract programabs(P) for programP is the top-level program with all immediate sub-programs removed, i.e. ifP=
(commdecl,moduledecl) thenabs(P) = (commdecl,moduledecl′) where(M,portdecl,taskdecl,modedecl′,
smode) ∈ moduledecl′ if (M,portdecl,taskdecl,modedecl,smode) ∈ moduledecl where mode declaration

(m,invocs,switches) ∈ modedecl′ for every mode declaration(m,invocs,switches, .) ∈ modedecl. An abstract

program is always flat.

Mode types. Given a mode declaration(m, ., .,P), modem is parentof modem′ wherem′ is any mode inP. Modemn

is transitive parentof modem1 if there existsn∈ N>1 modes such that for every pairmi ,mi+1, where1≤ i < n, mi+1

is a parent ofmi . A (transitive) parent modem is a top-level parentif m is declared in a top-level program.Ancestors

ancestors(m) of modem is a set of modes that includes the parent modes ofm and the ancestors of the parent modes;

ancestors for modes of top level program is empty. Thestart modestart[M] of a moduleM is the mode name in

the module declaration i.e.start[M] = smode if (M, ., ., .,smode) is the corresponding module declaration. Thestart

set startSet(m) of a modem is a set that includes modem and start sets of the start modes of all modules inP

i.e.startSet(m) = {m} ∪{
⋃

M′∈modules(P)
startSet(start(M′))} whereP refinesm.

11

4.2 Communicators and ports access

Accessed by task invocations.Input communicator seticoms(inv,m) for a task invocationinv ∈ invocs(m) is the

set of communicators read byinv, output communicator setocoms(inv,m) is the set of communicators written by

inv, input port setiprts(inv,m) is the set of ports read byinv andoutput port setoprts(inv,m) is the set of ports

updated byinv. Formally,

- Input communicator set,icoms(inv,m) = {c|∃ j s.t.ailist[j] = (c, .)}.
- Output communicator set,ocoms(inv,m) = {c|∃ j s.t.aolist[j] = (c, .)}.
- Input port setiprts(inv,m) = {p|∃ j s.t.ailist[j] = p}.
- Output port setoprts(inv,m) = {p|∃ j s.t.aolist[j] = p}.

Accessed by switches.Switch communicator setscoms(sw,m) for a switchsw = (cnd, .) ∈ switches(m) is the set

of communicators in predicate of switch conditioncnd andswitch port setsprts(sw,m) is the set of ports incnd.

Formally,

- Switch communicator setscoms(sw,m) = {c} if there exists communicatorc in the conditioncnd.

- Switch port setsprts(sw,m) = {p} if there exists portp in the conditioncnd.

Accessed by modules.An accessible communicator setacccommset for a moduleM ∈ modules(P) is the set of com-

municators declared by the super-programs ofP. A read setreadset(M) for a moduleM is the set of communicators

read by task invocations and used by mode switches of modes inM. A write setwriteset(M) for a moduleM is the set

of communicators updated by task invocations of modes inM. A hierarchical read set(hierreadset(M)) for a module

M is the set of communicators that belongs both to the read-set and accessible communicator set of any sub-module of

M. A hierarchical write set(hierwriteset(M)) for a moduleM is the set of communicators that belongs both to the

write set and accessible communicator set of any sub-module ofM. Formally,

- Accessible communicator setacccommset(M) = {c|(c, ., ., .) ∈ commdecl(P′)} whereP′ is a super-program ofP.

- Read setreadset(M), {c|(c ∈ icoms(inv,m) or c ∈ scoms(sw,m)) andm ∈ modes(M)}.
- Write setwriteset(M), {c|c ∈ ocoms(inv,m) andm ∈ modes(M)}.
- Hierarchical read set,hierreadset(M) =

⋃

M′∈submdl(M)
(readset(M′)∩acccommset(M′)).

- Hierarchical write set,hierwriteset(M) =
⋃

M′∈submdl(M)
(writeset(M′)∩acccommset(M′)).

4.3 Definitions related to tasks

Declaration types.An abstract task declarationfor a taskt is a task declaration with no function definition i.e. of the

form (t, ., .). A concrete task declarationis one with function definition i.e. of the form(t, ., .,fn).

Relating dependencies.A binary relationprec(m) for modem contains the dependency information of the tasks.

A task invocationinv1 precedesanother task invocationinvn (or (inv1,invn) ∈ prec(m)) if there existsn ∈ N>1

different task invocationsinv1, ...,invn such that for each pairinv j andinv j+1, oprts(inv j)∩iprts(inv j+1) 6= φ
where1≤ j < n. Thepreceding invocation setprec(inv,m) is the set of task invocations precedinginv in modem

i.e.prec(inv,m) = {inv′|(inv′,inv) ∈ prec(m). Thefollowing invocation setfoll(inv,m) is the set of task invoca-

tions followinginv in modem i.e.foll(inv,m) = {inv′|(inv,inv′) ∈ prec(m). A task invocationinv′ immediately

precedesan invocationinv if oprts(inv′,m)∩iprts(inv,m) 6= φ. The immediately preceding setimmprec(inv,m)

12

is the set of task invocation that immediately precedesinv.

Read/ write time. Read timer(inv,m) of a task invocationinv = (.,ailist,aolist, .) in a modem is the latest

communicator instance it reads from.Write timeτ(inv,m) for a task invocationinv in modem is the earliest commu-

nicator instance to which it writes to. Formally,

- Read timer(inv,m) = maxj(πc ·i) whereailist[j] = (c,i) and(c, ., .,πc) is the communicator declaration.

- Write timeτ(inv,m) = mink(πc ·i) whereaolist[k] = (c,i) and(c, ., .,πc) is the communicator declaration.

For an invocation which does not read any communicatorr = 0 i.e. start of the mode period; for an invocation which

does not write to any communicatorτ = π[m] i.e. end of the mode period.

Transitive read timer∗(inv,m) of a task invocation in a modem is the latest communicator instance that the invoca-

tion or any of its preceding invocation reads from.Transitive write timeτ∗(inv,m) of a task invocation is the earliest

communicator instance that the invocation or any of its following invocation writes to.

- Transitive read timer∗(inv,m) = max(r(inv,m),maxinv′(r∗(inv′,m))) where(inv′,inv) ∈ prec(inv,m).
- Transitive write timeτ∗(inv,m) = min(τ(inv,m),mininv′(τ∗(inv′,m))) where(inv,inv′) ∈ prec(m).
For an invocation with no preceding invocation,r∗ = r. For an invocation with no following invocation,τ∗ = τ.

Parent task. Task t2 is parent of task invocationinv1 = (t1, ., .,t2) ∈ invocs(m1) whereinv2 = (t2, ., ., .) ∈
invocs(m2). Invocationinv2 is the parent invocation ofinv1. A tasktn+1 is ann-th transitive parentof task invo-

cationinv1 = (t1, ., .,t2) ∈ invocs(m1) if there existsn∈ N>1 modesm1, ..,mn such that for any two modesm j ,m j+1,

(t j , ., .,t j+1) ∈ invocs(m j) and(t j+1, ., ., .) ∈ invocs(m j+1), for all 1≤ j < n. The task invocation associated with

tn+1 is the n-th transitive parent invocation ofinv1. A parent task is also a 1-st transitive parent. A taskptask

is a top-level parentof a task invocation(t, ., .,ptask) if (ptask, ., .) ∈ invocs(m) wherem is one of the modes of

top-level modules andptask is m-th transitive parent oft for somem∈ N. Transitive parent and top-level parent has

no definition for task invocations in modes of top-level modules.

Task interface. For each taskt we will consider a set of local input (output) variables, each with a data type implying

the range of values it can store. At termination the local output variables are updated with the evaluation of task

(specified by the function in task declaration) on the values of local input variable (at the instance of task release). The

local input (output) variable for a portp being read (written) is denoted aslivt(p) (lovt(p)). The local input (output)

variable fori-th instance of ac being read (written) islivt(c,i) (lovt(c,i)). The value of a local input (output)

variable is denoted byval(·).

4.4 Definitions related to distribution

Host map. Given an HTL programP and a set of hostshset, host mapis a map from hosts inhset to top-level

modules ofP and denotes the distribution ofP; hmap(h) is the set of top-level modules mapped to hosth.

Partial program. Given a top-level programP = (commdecl,moduledecl) and a host map,partial programPh for a

hosth is the set of communicators and top-level modules ofP mapped toh; formally Ph = (commdecl,moduledecl′)
where for every(M,moduledecl,portdecl,modedecl,smode) ∈ moduledecl′, there is a module declaration

(M,moduledecl,portdecl,modedecl,smode) ∈ moduledecl andM ∈ hmap(h).

Worst case mapping. WCET (WCTT) map, wemaph (wtmaph), is a mapping from tasks to worst-case-execution

13

(transmission) times (relative to hosth); wemaph(t) (wtmaph(t)) denotes the wcet (wctt) for taskt on hosth. For a

task invocationinv = (t, ., ., .), wcet(inv) = wemaph(t) andwctt(inv) = wtmaph(t).

Task interface. Communicators of top-level program are shared across all hosts. Each host maintain a local output

variable for tasks writing to these communicators. If taskt (executing on hosthi) writes to a communicatorc of

the top-level program, then a local output variablelivthj [c,i] is maintained for the task on all hostsh j other than

hosthi . On completion of execution oft on hi , the output is transmitted to hosth j and stored inlivthj [c,i]. When

communicator write is due,c is updated from the local variable.

4.5 Well-formed HTL program.

A HTL program iswell-formedif it conforms to the following restrictions on program, communicators, task invoca-

tions and refinements.

Constraints on programs.

C1.1There is only one top-level program.

C1.2For each program (other than top-level program) there is only one immediate super-program.

C1.3For each module (other than top-level module) there is only one immediate super-module.

C1.4A program cannot refine more than one mode of a module i.e. if there exists two mode declarations(m1, ., .,P1)
and(m2, ., .,P2) wherem1,m2 ∈ modes(M) thenP1 6= P2.

C1.5The start mode of a module should belong to the mode set of a module i.e. for a module declaration(M, ., ., .,smode),
smode ∈ modes(M).

C1.6The set of destination modes from mode switches should be from the set of modes of the corresponding module

i.e. if m ∈ modes(M) thendestmodes(m) ∈ modes(M).

Constraints on communicators.

C2.1 If a communicator has been declared in programP then it cannot be redeclared in any sub-program other thanP

i.e. if (c, ., ., .) ∈ commdecl(P) then(c, ., ., .) 6∈ commdecl(P′) for all sub-programP′ of P other thanP itself.

C2.2 If a communicator is accessed by a task invocation or switch in mode ofM (in programP) then the communicator

must be declared in one of the super-programs ofP; i.e. read and write set should be subset of accessible communicator

set (readset(M)⊆ acccommset(M) andwriteset(M)⊆ acccommset(M)).

C2.3 If a communicatorc is (hierarchically) written by a moduleM then none of the sibling modules can (hierarchi-

cally) write toc, i.e. if c ∈ hierwriteset(M), then for all modulesM′ ∈ sibset(M), c 6∈ hierwriteset(M′).

14

Constraints on task invocations.

C3.1For a task invocationinv in modem read time should be earlier than write time,r(inv,m) < τ(inv,m).

C3.2For a task invocationinv in modem transitive read time should be earlier than transitive write time,r∗(inv,m) <

τ∗(inv,m).

C3.3Precedences between tasks should be acyclic(invi ,inv j) ∈ prec(m), invi 6= inv j .

C3.4 If a task invocationinv (in a modem) reads or writes a port, the port must be declared in moduleM, where

m ∈ modes(M); formally, if p ∈ iprts(inv) (or in oprts(inv)) there must be declaration(p, ., .) ∈ portdecl(M).

C3.5 Two task invocationsinv = (., .,aolist, .) andinv′ = (., .,aolist′, .) of a modem cannot write to the same

port or to same instance of a communicator; i.e.oprts(inv,m)∩ oprts(inv′,m) = φ and if (c,i) ∈ aolist then

(c,i) 6∈ aolist′.

C3.6 A task can be invoked in a mode if it has a declaration in the corresponding module and the size of the input

(output) parameter list for the invocation is of the same size as that of the declaration; if(t,ailist,aolist, .) ∈
invocs(m) andm∈ modes(M) then(t,filist,folist, .)∈ taskdecl(M) with |ailist|= |filist| and|aolist|=
|folist|.

If the j-th element of the input (output) listailist (aolist) is a communicator-instance pair(c,i) and the cor-

responding communicator declaration is(c,type, .,πc) then the following should hold: (1) mode period is multiple

of communicator access period i.e. mod(πm
πc) = 0, (2) task invocation cannot read from an instance corresponding to

the end of the period i.e.0≤ i < πm
πc (similarly it cannot write to an communicator instance at the start of the period

i.e.0< i≤ πm
πc) and (3) type of the communicator should match the corresponding element of the formal input (output)

list i.e.filist[j] = type (folist[j] = type). A task invocation cannot write to the same instance of a communicator

more than once i.e.6 ∃i,k s.t.aolist[i] = aolist[k] = (c,i).

If the j-th element of input (output) list of a task invocation is a port then the j-th element of the input (output) list

of the corresponding task declaration should be the same type as the port; i.e. ifailist[j] = p (aolist[j] = p) then

filist[j] = type (folist[j] = type) where(p,type, .) is the corresponding port declaration. A task invocation

cannot write to the same port more than once i.e.6 ∃i,k such thataolist[i] = aolist[k] = p.

Constraints on refinement.

C4.1Period of modem and all modes in programP refiningm should be identical; formally if there is a mode declaration

(m,πm, ., .,P) then for all mode declarations(m′,πm
′, ., ., .) ∈ modedecl(M), πm

′ = πm whereM ∈ modules(P). Mode

switches of a program being checked in top-down way, the constraint ensures that there is no unsafe termination of

tasks in refinement modes.

C4.2Every task invocation of a modem in a moduleM other than the top-level modules should have a parent task; the

parent task should have an abstract declaration in the immediate super-module and should be invoked in the parent

of m. Formally, a task invocation should be of the forminv = (t, ., .,ptask) ∈ invocs(m) wherem ∈ modes(M)
(andM is not top-level module). The parent task should have an abstract declaration i.e.(ptask, ., .) ∈ taskdecl(M′)

15

andinvp = (ptask, ., ., .) ∈ invocs(m′) wherem′ is parent mode ofm andM′ is immediate super module ofM. The

constraint ensures that the parent task is not executed during the execution of the program but acts as placeholder for

the children during program analysis.

C4.3 A task invocation (in a mode of a moduleM) should have an unique parent task relative to all task invocations

in the same mode and to task invocations in modes of sibling modules ofM. Formally if tp (in mp) is the parent task

invocation forinv (in m of moduleM) then no other task invocation of modem or any modem′ (wherem′ ∈ modes(M′)
andM′ is a sibling module ofM) should havetp as parent. The constraint ensures that all tasks that can potentially

execute in parallel have an unique top-level parent.

C4.4 If inv′ is the parent task invocation ofinv then the read time ofinv should be no later than that ofinv′ and the

write time ofinv should be no earlier than that ofinv′ i.e.r(inv,m)≤ r(inv′,m′) andτ(inv,m)≥ τ(inv′,m′) where

inv ∈ invocs(m) andm′ is the parent mode ofm. The constraint ensures that the parent invocation is more constraint

in time than child task.

C4.5 Every relation in precedence set of a modem should be preserved in the parent modem′; i.e. for all pairs of

task invocations(inv1,inv2) ∈ prec(m), there should be(inv′1,inv
′
2) ∈ prec(m′) whereinv′1 andinv′2 are parent

task invocations ofinv1 andinv2. The constraint ensures that the parent task invocation is more constrained in

dependencies than child invocation.

4.6 Well-timed HTL program

The notion of well-formedness of a program is independent of the run-time system. To ensure that schedulability

analysis can be performed only on the top-level program, a task (in refinement) should use less resources than its

parent task. Anwell-formedHTL program iswell-timedif wcet and wctt of task invocation is not greater than the wcet

and wctt of the parent task invocation i.e.wemaph(inv) ≤ wemaph(inv
′) andwtmaph(inv) ≤ wtmaph(inv

′) where

inv′ is the parent invocation ofinv and they run on hosth. The constrained ensures that resources used by a parent

invocation is at least same as that of the child invocation.

4.7 Claims on well-formed HTL program

Claim 1 Parent mode of a modem is unique.The claim can be proved by contradiction. Consider a modem∈ modes(M)
whereM ∈ modules(P). Assume there are two mode declarations(m1, ., .,P) and(m2, ., .,P) with m1 6= m2 i.e. program

P refines bothm1 andm2. Modesm1 andm2 cannot be in different programs as thenP be would have more than one

immediate super program (constraint C1.2). Modesm1 andm2 cannot be in different modules of same program as then

M would have more than one immediate super module (constraint C1.3). If modesm1 andm2 are in the same module

thenP cannot refine both the modes (constraint C1.3). Hence the initial assumption cannot hold. It can be similarly

proved that top-level parent of a mode is unique.

Claim 2 Every task invocation other than in the top-level program has a top-level parent.Consider a task invocation

inv ∈ invocs(m); if m is a mode in a refinement program theninv has a parent in parent mode ofm (constraint C4.2).

16

If parent ofm, mp is in top-level module then the claim holds. Otherwise the claim can be proved by induction. Let

j-th (j ∈N>0) transitive parentinv′ of inv is in m′; inv′ must have a top-level parent (inductive assumption) which is

also a top-level parent forinv (definition).

Claim 3 j-th transitive parents for all task invocations in a modem1 belongs to the same modemn for somej ∈ N>0.

The proof is by induction. Parent modem2 of a modem1 is unique (claim 1); hence (1-st transitive) parent of all task

invocations belong tom2 (constraint C4.2). This is the base case. Considerm-th transitive parents of task invocations

belongs tom j (inductive assumption). The parent mode ofm j is unique i.e. parents of all task invocation inm j belongs

to the same mode; these are thej +1-th transitive parents of invocations inm1 (definition). Hencej +1-th transitive

parents of task invocations inm1 belong to an unique mode.

Claim 4 Top-level parents for all task invocations in a modem1 belongs to the same modemn in top-level program.

From claim 2, every task invocation in a refinement program has a top-level parent which is also j-th transitive parent

for some j ∈ N>0 (definition) and j-th transitive parents for all task invocations in a modem1 belongs to the same

mode (claim 3).

Claim 5 Every task invocation has a unique top-level parent relative to all task invocations that can be invoked in

parallel. Let there be a task invocationinv = (t, ., .,ptask) ∈ invocs(m) wherem ∈ modes(M) (M is not a top-level

module) and the top-level parent task beinv′ = (t′, ., .) ∈ invocs(m′) wherem′ ∈ modes(M′) andM′ is a top-level

module. LetP′ refinesm′. Consider a task invocationinv′′ = (t′′, ., .,ptask′′) ∈ invocs(m′′) wherem′′ ∈ modes(M′′)
andM′′ is not a top-level module. We will proveinv andinv′′ have either different top-level parents or they do not

execute in parallel (or they are identical).

BothM andM′′ has to be sub-modules ofM′; otherwiset′ cannot be parent fort′′ (from program structure). BothM and

M′′ should be sub-modules of modules inP′; otherwiseM′′ cannot execute in parallel.

If M,M′′ ∈ modules(P′) we have the following cases:

(i) M 6= M′′ theninv andinv′′ have different parent task (from constraint 4.3) which are also the top-level parents.

(ii) M = M′′ butm 6= m′′ theninv andinv′′ cannot be invoked in parallel.

(iii) M = M′′ andm = m′ butt 6= t′′. Then task invocationsinv andinv′′ should have different parent tasks inm′ (from

constraint 4.3) which are also the top-level parents.

(iv) M= M′′, m= m′ andt= t′′. then the invocations are identical (there cannot be two invocations with identical tasks).

If P′ is leaf-level program then no further analysis is required.

If

- M ∈ modules(P′) andM′′ is a sub-program for any sibling moduleM∗ of M, then there exists some integer n such that

n-th transitive parent ofinv′′ is invoked in some mode ofM∗

- M′′ ∈ modules(P′) andM is a sub-module for any sibling moduleM∗ of M′′ then there exists some integer m such that

m-th transitive parent ofinv is invoked in some mode ofM∗

- M andM′′ are sub-modules of different modules ofP′, then there exists some integersm,n such that m-th and n-th

transitive parents ofinv andinv′′ respectively are invoked in different modules ofP′.
All of the above three situations are special instances of case (i) analyzed earlier and thus the top-level parent must be

different for the two task invocations.

17

If M ∈ modules(P′) andM′′ is a sub-module ofM (other thanM) we have:

- there exists integer m such thatinv is m-th transitive parent ofinv′′

- there exists integer m such thatinvi ∈ invocs(m) is the m-th transitive parent ofinv′′.
In first case,t should have an abstract declaration and does not get executed. In second case,inv andinvi should

have different parents inm′ (which are also their top-level parents). This in turn implies different top-level parent of

inv andinv′′.

The case whereM′′ ∈ modules(P′) andM is a sub-module ofM′′ (other thanM′′) has a symmetric analysis to the last one

(by interchangingM andM′′).

The last analysis deals with bothM andM′′ being sub-module of a moduleMi in P′. Both the modules should belong to

refinement programPi of a modemi in Mi (otherwise the tasks cannot be invoked in parallel). The subsequent analysis

can be done in a similar way we did forP′ (by replacingP′ with Pi).

Claim 6 If inv′ is the parent task invocation ofinv then the transitive read time ofinv should be no later than that

of inv′ and the transitive write time ofinv should be no earlier than that ofinv′ i.e. r∗(inv,m) ≤ r∗(inv′,m′) and

τ∗(inv,m)≥ τ∗(inv′,m′) whereinv ∈ invocs(m) andm′ is the parent mode ofm.

From well-formedness criterion, period ofm andm′ are identical and modes switches at period boundaries; hence

matching a period ofm with that ofm′ is sufficient for the claim. The read time, transitive read time, write time and

transitive write time forinv ber, r∗, τ andτ∗ respectively. The read time, transitive read time, write time and transitive

write time forinv′ ber′, r′∗, τ′ andτ′∗ respectively. By induction we will showr∗ ≤ r′∗ andτ∗ ≥ τ′∗.

Release time: From definitions,r∗ = max(r,maxi(r∗i)) whereinvi ∈ prec(inv,m) andr∗i is the transitive release time

of invi . Again,r′∗ = max(r′,maxk(r′∗k)) wherer′∗k is the transitive release time ofinv′k andinv′k ∈ prec(inv′,m′).
From well-formedness constraints precedences ofm are contained inm′. So parents of the setprec(inv,m) should be

a subset ofprec(inv′,m′). If inv′i (in the setprec(inv′,m′)) is the parent ofinvi (in the setprec(inv,m)) then from

inductive assumptionr∗i ≤ r′∗i . This impliesmaxi(r∗i) ≤ maxk(r′∗k) in the above definitions. We haver ≤ r′ from

well-formedness constraints. From the last two conditions we haver∗ ≤ r′∗.

Termination time: From definitions,τ∗ = min(τ,mini(τ∗i)) whereinvi ∈ foll(inv,m) and τ∗i is the transitive ter-

mination time ofinvi . Again, τ′∗ = min(τ′,mink(τ′∗k)) where τ′∗k is the transitive termination time ofinv′k and

inv′k ∈ foll(inv′,m′). From well-formedness constraints, precedences ofm are contained inm′. So parents of the

setfoll(inv,m) should be a subset offoll(inv′,m′). If inv′i (in the setprec(inv′,m′)) is the parent ofinvi (in the

setprec(inv,m)) then from inductive assumptionτ∗i ≥ τ′∗i . This impliesmini(τ∗i)≥mink(τ′∗k) in the above definitions.

We haveτ≥ τ′ from well-formedness constraints. From the last two conditions we haveτ∗ ≥ τ′∗.

Base Case: If task invocationinv does not follow any taskr∗ = r. For parent task invocationinv′: r′∗ = max(r′, ·).
From constraintsr ≤ r′. Hencer∗ ≤ r′∗. If inv does not precede any taskτ∗ = τ. For parent task invocationinv′:
τ′∗ = min(τ′, ·). From constraintsτ≥ τ′. Henceτ∗ ≥ τ′∗.

18

5 Operational Semantics

The execution of a TSL program yields a (possibly infinite) sequence of configurations. Each configuration consists of

values of all program variables (ports and communicators), a set of triggers (where triggers are of type write, switch,

read or release), and a set of released tasks. A trigger defines an action to be taken at an event which is specified

as a combination of time ticks and a set of completion events (of tasks). An event is enabled when the number of

time ticks to wait is zero and all the completion events have occurred. When a trigger is handled, action associated

with the trigger is carried out. An action may be communicator write (handled by write triggers), communicator read

(handled by read triggers), task release (handled by release triggers) or mode switch check and subsequent invocation

of modes (handled by switch triggers). A configuration is waiting if there are no enabled triggers in trigger set; any

other configuration is non-waiting. A time tick or a completion event is handled only if a configuration is non-waiting.

For a non-waiting configuration there are four possible transitions: write, switch, read and release transition. A write

transition occurs if there is at least one enabled write trigger. A switch transition occurs if no write trigger is enabled

and at least one switch trigger is enabled. A read transition occurs if no write or switch triggers are enabled and at

least one read trigger is enabled. A release transition occurs if no write, switch or read triggers are enabled and at least

one release trigger is enabled.

Configuration. Let P3 be an HTL program distributed on host sethset. The execution trace ofP is a (possibly

infinite) sequence of configuration. Aconfigurationu is a tuple(statecol,trgscol,taskscol) where variable

state collectionstatecol is a set of variable states for each host, trigger set collectiontrgscol is a set of trig-

ger sets for each host and task set collectiontaskscol is a set of task sets for each host. Formally,statecol =
{state1, .,statei , .state|hset|} wherestatei is a function from communicators and ports to values for hosthi ;

trgscol= {trgs1, .,trgsi , .trgs|hset|}wheretrgsi is set of triggers for hosthi andtaskscol= {tasks1, .,tasksi ,

.tasks|hset|} wheretasksi is a set of released tasks for hosthi . Given a configurationu and a hosthi , the variable

state, trigger set and task set forhi is denoted asstatei(u), trgsi(u) andtasksi(u).

Variable state. A variable statestatei (for hosthi) is a valuation of communicators and ports (accessed by the

partial programPhi on hosthi) to values. The set of communicators consists of those accessed by the sub-modules of

the top-level modules (mapped toh) i.e.
⋃

M∈hmap(h)(hierreadset(M) ∪ hierwriteset(M)). The set of ports consists

of those used by sub-modules of top-level modules (mapped toh) i.e.
⋃

M∈hmap(h)
⋃

M′∈submdl(M) ports(M′).

Events. An eventis an interrupt raised by the host on which the program executes. We will consider two type of

events: time tick event and task completion event. Thetime tick eventis bound to the system clock. The resolution

of the clock is assumed to be the highest common factor of all communicator and mode periods. The clocks of all

hosts are assumed to be in synch. Thetask completion eventis generated internally by the program and are similar to

software interrupts. To generate a completion event the program bind it to a specific task invocation at run-time. When

the task terminates, a completion event is raised. For a taskt we will denote the completion event ascompl(t). A

completion event can occur simultaneously with a time tick event; however for any host only one completion event can

occur at any instance. Formally, an evente is a pair(τ,υ) whereτ is a tag andυ is a value assigned to the event. For

time tick event,τ ∈ N and the value istrue (implying that the clock is consistent and present at uniformly separated

points). For completion eventτ ∈ R andυ is a set of task namesti (implying the completion of taskti) for hosthi .

3We will assume all task invocations have unique task names i.e. a task name uniquely identifies an invocation; let task invocation for a taskt

beinv.

19

Trigger. A trigger g is a tuple(gtyp,e,a) wheregtyp ∈ {w,s,d,r} denotes write, switch, read and release trigger

respectively,e is an event instance anda is action to be carried out when the trigger is handled. Anevent instanceis a

pair(n,complete) wheren∈N≥0 represents number of time tick events andcomplete= {compl(t1), ...,compl(tn)}
is a set of completion events for tasks. A trigger isenabledwhenn= 0 andcomplete= φ for the corresponding event

instance. A configuration iswaiting if none of the triggers in any trigger set is enabled; otherwise the configuration is

non-waiting. The four types of triggers are:

• a write trigger is a trigger(gtyp,e,a) wheregtyp = w, e is an event instance and actiona is a tuple (c,i,t)

wherec is a communicator,i ∈ N>0 andt is a task.

• a switch triggeris a trigger(gtyp,e,a) wheregtyp = s, e is an event instance, and actiona is a pair (sw,m)

wheresw is a mode switch in modem.

• a read trigger is a trigger(gtyp,e,a) wheregtyp = d, e is an event instance, and actiona is a tuple (t,c,i)

wheret is a task,c is a communicator andi ∈ N≥0.

• a release triggeris a trigger(gtyp,e,a) with gtyp = r, e is an event instance and actiona is a taskt.

Successor.A configurationu′ is asuccessorof configurationu if u is waiting and a completion event or time event

occurs, oru is non-waiting and a write/ switch/ read/ release trigger is handled. There are five types of successors:

event / write/ switch/ read and release successor; next we will define each of the above successors.

Event successor.Configurationu′ is anevent successorif configurationu is waiting and an event occurs. Three

possible scenarios are:

• a task completion event occurs: Trigger set for each hosthi is updated. Let the completion event forhi be

compl(ti) (φ if no completion event occurred for the host). The output ports ofti are updated from local output

variables of the task i.e. for all portsp ∈ iprts(invi), val[p] = val[lovti(p)]. Triggers whose event depends

oncompl(ti) are updated; rest of the triggers remain the same. For all triggersg= (.,e, .)∈ trgsi(u) there exists

a triggerg′ = (.,e′, .) ∈ trgsi(u
′). If e = (.,complete) andcompl(ti) ∈ complete thene′ = (.,complete′)

with complete′ = complete/compl(ti); otherwisee′ = e. Taskti is removed from task set i.e.tasksi(u) =
tasksi(u′)/ti .

• a time tick event occurs: For each trigger settrgsi , all triggers are updated. For all triggersg = (.,e, .) ∈ trgsi

there exists a triggerg′ = (.,e′, .) ∈ trgs′. If e = (n, .) with n > 0 thene′ = (n−1, .); otherwisee′ = e. The

variable state and task set remains same i.e.statei(u′) = statei(u) andtasksi(u′) = tasksi(u).

• a time tick event and a task completion event occurs simultaneously: Trigger set for each hosthi is updated. Let

the completion event forhi becompl(ti) (φ if no completion event occurred for the host). The output ports ofti

are updated from local output variables of the task i.e. for all portsp ∈ iprts(invi), val[p] = val[lovti(p)].
Triggers whose event depends oncompl(ti) and/or have a non-zero time tick count are updated; rest of the

triggers remain the same. For all triggersg = (.,e, .) ∈ trgsi(u) there exists a triggerg′ = (.,e′, .) ∈ trgsi(u
′).

If e = (n,complete) and

- compl(ti) ∈ complete andn≯ 0 thene′ = (n,complete′) with complete′ = complete/compl(ti),
- compl(ti) 6∈ complete andn > 0 thene′ = (n−1,complete),
- compl(ti) ∈ complete andn > 0 thene′ = (n−1,complete′) with complete′ = complete/compl(ti);
otherwisee′ = e. Taskti is removed from task set i.e.tasksi(u) = tasksi(u′)/ti .

20

If a completion event occurs without a simultaneous time tick, thenu′ is acompletion event successor; any other event

successor is atime event successor.

Write successor.Configurationu′ is awrite successorof non-waiting configurationu if an enabled write trigger is

handled atu.

Without loss of generality, say the write trigger beg = (w,e,a) ∈ trgsi(u) with e = (0,φ) anda = (c,i,t). The

trigger is handled as follows. Value of communicatorc is updated. If taskt is executed on hosthi , thenval[c] =
val[lovt(c,i)]; otherwiseval[c] = val[lovthi(c,i)]. Values for rest of the communicators and ports remain the

same. Triggerg is removed from trigger set,trgsi(u
′) = trgsi(u)/g and task set remains same,tasksi(u′) =

tasksi(u). For all other hostsh j ∈ hset/hi , the variable state, trigger set and task set remains the same i.e.state j(u′)=
state j(u), trgs j(u

′) = trgs j(u) andtasks j(u′) = tasks j(u).

Switch successor.Configurationu′ is aswitch successorof non-waiting configurationu if an enabled switch trigger

is handled. An enabled switch trigger can be handled if no write triggers are enabled and no switch triggers of the

ancestors are enabled.

Without loss of generality, the enabled switch trigger beg ∈ trgsi(u). No write trigger is enabled i.e. there exist

no trigger(w,e, .) ∈ trgsk(u) with e = (0,φ) for all hostshk ∈ hset. Let triggerg = (s,e,a) ∈ trgsi(u) where

e = (0,φ), a = (sw,m) andsw = (cnd,m′) and there is no triggerg′′ = (s,e,a) ∈ trgsi(u) such thate = (0,φ) and

a = (.,m′′) wherem′′ ∈ ancestors(m). There are three possible scenarios:

• condition cnd evaluates to false and there exists enabled switch triggers fromm −→ trigger g is removed.

Formally, if there existsg′ = (s,e′,a′)∈ trgsi(u) with e′ = (0,φ) anda′ = (.,m), thentrgsi(u
′) = trgsi(u)/g.

• conditioncnd evaluates to false and there exists no other enabled switch trigger fromm−→ triggerg is removed

and modem is invoked. Formally, if there does not exist a triggerg′ = (s,e′,a′) ∈ trgsi(u) with e′ = (0,φ) and

a′ = (.,m), then i.e.trgsi(u
′) = trgsi(u)/g; invoking of modem (see below) may add more triggers to trigger

settrgsi(u
′).

• conditioncnd evaluates to true−→ all enabled switch triggers corresponding tom and descendants ofm are

removed from the trigger set and all modes instartSet(m′) are invoked. Let all such triggers beggrp i.e.g′ ∈
ggrp if g′ = (s,e′,a′) ∈ trgsi(u) with e′ = (0,φ) anda′ = (.,m′′′) where eitherm′′′ = m or m ∈ ancestors(m′′′).
The group of triggers are removed i.e.trgsi(u

′) = trgs′(u′)/ggrp; invoking of modes may add more triggers

to trgsi(u
′).

The variable state and task set remains same i.e.statei(u′) = statei(u) and tasksi(u′) = tasksi(u). For all

other hostsh j ∈ hset/hi , the variable state, trigger set and task set remains the same i.e.state j(u′) = state j(u),
trgs j(u

′) = trgs j(u) andtasks j(u′) = tasks j(u).

Invocationof mode am adds a read trigger for every communicator instance read by a task invocation inm, a write

trigger for every communicator instance written by a task invocation inm, a release trigger for every task invoked inm

and a switch trigger for every mode switch inm. Formally, it involves the following steps:

21

• for all task invocationinv = (t,ailist,aolist, .) ∈ invocs(m) wheret has a concrete declaration4:

- if ∃k such thatailist[k] = (c,i) and(c, ., .,πc) is the communicator declaration, then triggerg = (d,e,a)
with e = i ·πc anda = (t,c,i) is added totrgsi(u

′).
- if ∃ j such thataolist[j] = (c,i) and(c, ., .,πc) is the communicator declaration, then triggerg = (w,e,a)
with e = i ·πc anda = (c,i,t) is added totrgsi(u

′).
- triggerg = (r,e,a) with e = (n,complete) (defined below) anda = t is added totrgsi(u

′). The time tick

count is set to transitive read time ofinv i.e. n = r∗(inv) andcomplete is the set of completion events of

preceding task invocations with concrete declaration i.e.compl(t′) ∈ complete if (t′, ., ., .) ∈ prec(inv) and

t′ has a concrete declaration.

• for each mode switchsw= (cnd,m′) ∈ switches[m], trigger(s,e,a) with e= (π[m],φ) anda= (sw,m) is added

to trgsi(u
′).

Read successor.Configurationu′ is a read successorof non-waiting configurationu if an enabled read trigger is

handled; an enabled read trigger can be handled if no write/ switch trigger is enabled for any host.

Without loss of generality let the enabled read trigger beg = (d,e,a) ∈ trgsi(u) with e = (0,φ) anda = (t,c,i).
No write or switch trigger are enabled i.e. for all triggers(gtyp,e, .) ∈ trgsk(u

′) with gtyp = w|s, e 6= (0,φ) for all

hostshk ∈ hset. Local input oft is loaded with the value of communicatorc i.e. val[livt(c,i)] = val[c]. Trigger

g is removed from trigger set,trgsi(u
′) = trgsi(u)/g; variable state and task set remains same i.e.statei(u′) =

statei(u) andtasksi(u′) = tasksi(u). For all other hostsh j ∈ hset/hi , the variable state, trigger set and task set

remains the same i.e.state j(u′) = state j(u), trgs j(u
′) = trgs j(u) andtasks j(u′) = tasks j(u).

Release successor.Configurationu′ is arelease successorof non-waiting configurationu if an enabled release trigger

is handled; an enabled release trigger can be handled if no write/ switch/ read trigger is enabled for any host.

Without loss of generality let the enabled release trigger beg = (r,e,a) ∈ trgsi(u) with e = (0,φ) anda = t. No

write/ switch/ read trigger are enabled i.e. for all triggers(gtyp,e, .) ∈ trgsk(u
′) with gtyp 6= r, e 6= (0,φ) for all

hostshk ∈ hset. Triggerg is removed from trigger set i.e.trgsi(u
′) = trgsi(u)/g. Input ports of the task invocation

are copied to local input variables i.e. for all portsp ∈ iprts(inv), val[livt(p)] = val[p]. Taskt is added to task

set i.e.tasksi(u′) = tasksi(u)∪{t}. Variable state and task set remains the same i.e.statei(u′) = statei(u). For

all other hostsh j ∈ hset/hi , the variable state, trigger set and task set remains the same i.e.state j(u′) = state j(u),
trgs j(u

′) = trgs j(u) andtasks j(u′) = tasks j(u).

Trace. The initial configuration of a program is as follows; the variable states consists of the initial values of ports

and communicators, trigger sets consists of triggers by invoking start set for each of the start modes for all top-level

modules and the task sets being empty. Thetraceof a program is a sequence of configurationsu0,u1, ... whereu0 is

the initial configuration and for any two consecutive configurationsui−1,ui (wherei ∈N>0), configurationui is a valid

time event/ completion event/ write/ switch/ read/ release successor ofui−1; the configuration pair (ui−1,ui) is referred

as a time event/ completion event/ write/ switch/ read/ releasetransitionrespectively.

Configuration graph. In an HTL program there are finitely many communicators, ports, task invocations, modes,

modules and programs. If the communicators and ports have finitely many values then the HTL program isproposi-

tional. A propositional HTL program has finitely many configurations. The relation between the configurations and

4In the case of abstract program both abstract and concrete declarations are considered.

22

the transitions of a propositional HTL program can be represented by a labeled transition graph. Alabeled transition

graph G = (V,V0,Σ,σ) consists of a finite set of verticesV, a setV0 ⊆ V of initial vertices, a setΣ of labels and

a relationσ ⊆ V ×V of edges, such that all the relationsσ are labeled by a labela(a ∈ Σ). The labeled transition

graph for configurations is referred asconfiguration graph. A configuration graph,GP, of an HTL programPh is a

labeled transition graph,(VP,V0
P ,ΣP,σP), where 1,VP is the set of all possible configurations forP, 2,V0

P is the start-

ing configuration, 3,ΣP is the set of all possible completion event transitions, time tick transitions, write transitions,

read transitions, switch transitions and release transitions forP and 4,σP ⊆VP×VP such that(vP,v′P) ∈ σP iff c′ is a

valid completion event successor, time event successor, write successor, read successor, switch successor or release

successor ofu, wherevP,v′P denotes the configurationsc,c′ respectively.

Properties of well-formed program. The following are some of the interesting properties of the execution trace for

well-formed HTL programs. The effect of well-timedness will be discussed in Section 7.

Mode switches for a mode (and the respective ancestors and descendant modes) are enabled simultaneously; the

triggers are handled in order from top-level modes.Period of a modem and its ancestors are identical which implies

that the respective switch triggers will be enabled simultaneously. Constraint on trigger handling ensures that switch

triggers ofm are handled only if no switch triggers of ancestors is enabled. If switch of an ancestor ofm evaluates to

true, then all switch triggers related tom are removed from the trigger set, thus prioritizing the switches of parents over

refinement modes. Mode switching for a well-formed program is explained through an example in Figure 15.

Figure 15: Mode switching through hierarchy

Modesm andm′ are refined by programsP andP′ respectively. Consider a scenario whenm, m11 andm21 are executing;

from well-formedness constraints periods of all three are identical. At the end of the period mode switches of all the

three modes would be checked; there are four possible scenarios:

- switch condition form is true (the switch condition of refined modes are not checked). The scenario switches to

parallel execution ofm′, m′11 andm′21 (assumingm′11 andm′21 are start modes of respective modules inP′).
- switch condition form andm21 are false and switch condition form11 is true; the scenario switches to parallel execution

of m, m12 andm21.

- switch condition form andm11 are false and switch condition form21 is true; the scenario switches to parallel execution

of m, m11 andm22.

- switch condition form is false; and switch condition form11 andm12 is true; the scenario switches to parallel execution

of m, m12 andm22.

The only source of non-determinism is the sensor communicators.Except the sensor communicators, which are up-

dated by the environment (through device drivers), the communicators and ports are updated by tasks. For well-formed

23

HTL program, tasks of only one module can write to a communicator and only one task in a mode (of the module) can

write to a communicator instance and to a port. In other words, there is no race on communicator instances and ports.

The semantics ensures that communicator updates are done before mode switch checks/ communicator reads and task

releases. The switch/ read/ release triggers can update trigger sets and task sets but cannot modify the variable state;

this ensures that values of ports and communicators are consistent after all write trigger have been handled until a new

event arrives.

Any execution trace from a non-waiting configurationu with no enabled write triggers will converge at an unique

waiting configurationu′. Once the write triggers have been handled, communicators and ports cannot be modified

before the next event transition. Mode switches being deterministic (at most one switch can be enabled at a given

instance) mode invocations are deterministic. In other words, irrespective of the order of handling of switch triggers,

the path would lead to an unique configurationu1 without any enabled switch triggers. Handling of read triggers do

not add new triggers, modify existing triggers (other than removing the trigger being handled) or update the variable

states. This ensures that irrespective of the order of handling read triggers fromu1, there exists an unique configuration

u2 without any enabled read triggers. Similarly handling of release triggers do not add new triggers, modify existing

triggers (other than removing the trigger being handled) or update the variable states. This ensures that irrespective

of the order of handling release triggers fromu2, there exists an unique configurationu3 without any enabled release

triggers. Configurationu3 being unique must be same asu′.

6 HTL-E code Compiler

Figure 16: Structure of compiler and target

We have designed and implemented a compiler for full, distributed HTL in Java. The compiler checks well-formedness,

well-timedness, and schedulability of a given HTL program, flattens the program into a semantically equivalent HTL

program with only top-level modules, and then generates so-calledE codefor the flattened program targeting the

(E)mbedded Machine[2]. In our experiments, we have used an existing implementation of the E machine written in

C running on Linux. E code specifies the exact real-time instants when port and communicator values are exchanged

24

and when tasks are released and terminated. E code neither implements the actual tasks’ functionality nor specifies

when released tasks actually execute. Task functionality must be implemented in some other programming language

and compiled separately using an appropriate compiler. Here, we have chosen C for implementing tasks since the

E machine is written in C as well. Released tasks are dispatched for execution by an EDF scheduler that is external to

the E machine and also implemented in C. Figure 16 depicts the structure of the compiler and the target architecture.

The compiler generates E code for each host separately, i.e., each host runs its own E machine. In our experiments, the

hosts communicate via sockets and standard Ethernet. In the following, we explain each phase of the HTL compiler.

Checking well-formedness and well-timedness as well as schedulability.Before flattening the input program, the

compiler first checks the well-formedness and well-timedness of the program. In particular, the compiler verifies that

any concrete task indeed refines its parent task in order to make sure that the subsequent top-level scheduling test

guarantees overall schedulability. The compiler performs an EDF-scheduling test on the abstract, top-level portion of

the input program only. If the test succeeds it follows from our result in Section 7 that the whole input program is

schedulable. This result also applies to distributed HTL programs as long as the worst-case latency for broadcasting

all output ports of each task has been added to the worst-case execution time of the task, and the worst-case latency

includes the time it takes to resolve any collisions even when all hosts try to broadcast at the same time. In our current

implementation, all output ports of each task are always broadcast to all other hosts as soon as the task completes

execution. Communication and scheduling techniques that may utilize the network more efficiently, e.g., [5], can also

be used but are not implemented.

Flattening. The HTL compiler flattens a given well-formed and well-timed HTL program into a semantically equiv-

alent flat HTL program that only contains modules on the top level in a straightforward way. A module of a flat HTL

program may only contain modes that do not contain a refining program. Flattening works by essentially computing

the product of all modes in the refinement of each top-level module. This is easy because these modes all have the

same period. Only modes in different top-level modules may have different periods. In order to maintain semantical

equivalence, flattening needs to prioritize mode switch checking, i.e., mode switches in more abstract modules need

to be checked before mode switches in more concrete modules. Refer Appendix C for details on algorithms used for

flattening.

Flattening an HTL program may in theory result in generated code that is exponentially larger with respect to the size

of the input program (i.e., number of refinement levels). However, execution of the generated code is very efficient

and is readily supported by existing versions of the E machine. An HTL compiler that may shift the trade-off between

code size and execution efficiency more towards smaller code size by generating code directly from the unflattened

input program is future work. Note that for such a compiler the design of the E machine may have to be modified as

well.

Target machine. The HTL compiler generates E code, which has a semantics that is designed to simplify code

generation and can be executed very efficiently [6]. Besides releasing tasks, E code also controls when port and

communicator values are copied (or initialized) using so-calleddrivers, which are implemented in C, one for each

data type. E code consists of the following instructions: acall(d) instruction executes the driverd, a release(t)
instruction releases the taskt for execution by the EDF scheduler, afuture(g,a) instruction marks the E code at the

addressa for future execution when the predicateg evaluates to true, i.e., wheng is enabled. We callg a trigger, which

observes events such as time ticks and the completion of tasks. Here, we only use triggers that are enabled when all

observed events have occurred. We assume that completion events only occur strictly between time ticks, i.e., not at

time ticks. An extension of the original trigger implementation to handle completion events in addition to time ticks

25

has been done. The original E machine implementation itself was not affected. The E machine maintains a FIFO queue

of trigger-address pairs. If multiple triggers in the queue are enabled at the same instant, the corresponding E code

is executed in FIFO order, i.e., in the order in which thefuture instructions that created the triggers were executed.

An if (cnd,a) instruction branches to the E code at the addressa if the predicatecnd evaluates to true. We callcnd a

condition, which observes port or communicator states such as sensor readings and task outputs. Ajump(a) instruction

is an absolute jump to the E code addressa and areturn instruction completes the execution of an E code sequence.

E code generation.For a given HTL program and a mapping of its top-level modules to hosts, the HTL compiler

generates E code for each host separately. The idea is to compile repeatedly the whole program for each host and

generate E code that implements the whole program except that the tasks of the modules not mapped to a host are

not released on that host. In other words, the generated E code is identical on all hosts except for the instructions that

release the tasks. This also means that each host has copies of all communicators and ports. In order to make sure

that the distributed system maintains a consistent state of all communicators and ports, each task broadcasts the values

of its output ports as soon as the task completes an invocation, i.e., communication is done by the tasks, not by the

E code. Therefore, for a schedulability analysis, the communication latency needs to be part of the WCET of each

task as we have mentioned earlier. More efficient approaches are possible but have not been implemented such as

broadcasting only those output ports of a task that are actually written to communicators that are read by tasks running

on other hosts.

The compiler conceptually divides each mode into uniform temporal segments called units. Theunit of a mode is the

smallest time interval at which any two consecutive communicator instances are accessed in that mode. Given a mode

m, we denote the duration of its unit byγ[m], which is the gcd of all access periods of all communicators accessed inm.

The total number of units ofm is π[m]/γ[m], whereπ[m] is the period ofm. The compiler generates separate E code

blocks for each unit of a mode. The address of an E code block corresponding to uniti of a modem is denoted by

unit address[m, i]. This is a symbolic address to which instructions may forward reference and therefore may need fix

up during compilation. We use similar notation for other symbolic addresses.

The compiler generates E code for the flattened input program by invoking Algorithm 1 for each host, which in turn

invokes Algorithm 2 to generate E code for each module of the program, which finally invokes Algorithm 3 to generate

E code for each mode of each module. The following is a set of auxiliary operators used for code generation:

• init(x) is the driver that initializes the communicator or portx

• readDrivers(m,u) is the set of drivers that load the tasks in modem with values of the communicators that are

read by these tasks at unitu

• writeDrivers(m,u) is the set of drivers that load the communicators with the output of the tasks in modem

that write to these communicators at unitu

• portDrivers(t) is the set of drivers that load taskt with the values of the ports of the tasks on whicht depends

• complete(t) is the set of events that signal the completion of the tasks on which taskt depends and that signal

the time instants at which communicators are read byt

• releasedTasks(m,u) is the set of tasks in modem with no precedences that are released at unitu

• precedenceTasks(m) is the set of tasks in modem with precedences

26

Algorithm 1 generates instructions to initialize all communicators and modules. Here, we use instructions of the

form future(0,moduleaddress[M]), which effectively execute the E code at the addressmoduleaddress[M] similar to

a jump-to-subroutine instruction. However, the actual mechanism is more complicated: for afuture(0,a) instruction

the E machine appends the already enabled trigger-address pair(true,a) to the trigger queue and then proceeds to the

next instruction. Only when the E machine reaches areturn instruction, the machine checks the trigger queue again

and eventually removes the pair(true,a) from the trigger queue and executes the E code at the addressa but not

before it executed the E code of all other enabled trigger-address pairs occurring before(true,0) in the queue.

Algorithm 1 GenerateECodeForProgramOnHost(P,h)
// initialize communicators

∀c ∈ comms(P):emit(call(init(c)))
// initialize and start each module

∀M ∈ modules(P):emit(future(0,moduleaddress[M]))
// end initialization phase

emit(return)
// generate code for each module

∀M ∈ modules(P):GenerateECodeForModuleOnHost(M,h)

Algorithm 2 generates instructions to initialize all ports of a module and to start the execution of the module by

jumping to the E code of the first unit of the start mode of the module. We denote the compiler’s program counter

by PC.

Algorithm 2 GenerateECodeForModuleOnHost(M,h)
setmoduleaddress[M] to PC and fix up

// initialize ports

∀p ∈ ports(M):emit(call(init(p)))
// jump to the start mode at unit 0

emit(jump,unit address[smode[M],0])
// generate code for each mode

∀m ∈ modes(M):GenerateECodeForModeOnHost(m,h)

Algorithm 3 generates the E code for all units of a mode. Only unit0 contains instructions to check mode switching

because mode switching may only occur at the beginning of a mode. When a mode switch occurs, E code execution

continues at themodeaddress[m′] of the target modem′, not theunit address[m′,0], since only at most one mode

switch per time instant may occur. At each time instant, the generated E code usesfuture(0,a) instructions to write

communicators always before any communicators are read making sure that the latest communicator values are used

across all modules. Communicator and port values do not need to be buffered since tasks are invoked at most once

per mode period and communicator-to-port transactions are done as soon as possible while port-to-communicator

transactions are done as late as possible. It is therefore sufficient to have a single copy of each communicator and port

on each host. Additional memory is not required.

27

Algorithm 3 GenerateECodeForModeOnHost(m,h)
u := 0

while u < π[m]/γ[m] do

setunit address[m,u] to PC and fix up

// update communicators with task output

∀d ∈ writeDrivers(m,u):emit(call(d))
if (u = 0)

// begin mode after other modules updated communicators

emit(future(0,PC+2))
emit(return)
// check mode switches

∀(cnd,m′) ∈ switches(m):emit(if (cnd,modeaddress[m′]))
setmodeaddress[m] to PC and fix up

else

// continue mode after other modules updated communicators

emit(future(0,PC+2))
emit(return)
end if

if (modem is contained in a module on hosth)

// read communicators into tasks

∀d ∈ readDrivers(m,u):emit(call(d))
// release tasks with no precedences

∀t ∈ releasedTasks(m,u):emit(release(t))
if (u = 0)
// release tasks with precedences

∀t ∈ precedenceTasks(m):
// wait for tasks on whicht depends to complete

emit(future(complete(t),PC+2))
emit(jump(PC+6))
// releaset after other modules updated communicators

emit(future(0,PC+2))
emit(return)
// read ports of tasks on whicht depends, then releaset

∀d ∈ portDrivers(t):emit(call(d))
emit(release(t))
emit(return)

end if

end if

// continue mode afterγ[m] time

emit(future(γ[m],unit address[m,u+1 modπ[m]/γ[m]]))
emit(return)
u := u+1

end while

28

7 Schedulability

An execution trace of an HTL program is a (possibly infinite) sequence of configurations. The schedulability analysis

for HTL checks that traces generated from an HTL program has three properties: 1, a task writing to a communicator

must have terminated before the communicator update, 2, two instances of the same task do not overlap and 3, if

an host is transmitting all other hosts are listening (i.e. neither executing nor transmitting). Aschedulerdecides

which task to be executed on each host. The scheduler may decide to keep the host idle (no task is chosen from the

task set), execute a task (from the task set) or transmit the output of the task. The scheduler is a discrete-time one

i.e. it takes decisions at a periodic event. The periodic event is assumed to be a global clock tick (i.e. clocks of all

the hosts are synchronized). The clock is harmonic to the program clock (which is the minimum interval at which

any communicator is accessed i.e. the highest common factor for all communicators and mode periods). The worst

case execution and transmission times for tasks are specified as multiple of clock ticks. Under this assumption, a

task completion event occurs simultaneously at a host clock tick; in other words, without loss of generality all event

successors in the execution trace are time event successors. In the analysis below, a time tick will refer to clock

advancement of the global clock5. If the trace generated by a scheduler maintains the first two properties mentioned

above then it is time safe and if the third property is maintained then it is transmission safe. A scheduler is safe if it is

both time and transmission safe.

Ready set.Given a configurationu and an hosthi , ready setready(u,hi) (or readyi(u) in short) is a set of tasks for

which the corresponding release triggers has been enabled i.e. the tasks would be added to task set before the next

waiting configuration; formally,ti ∈ ready(u,hi) if there exists trigger(s,(0,φ),ti) ∈ trgsi(u).

Time-on-host set.Given a configurationu and an hosthi , time-on-host settoh(u,hi) (or tohi(u) in short) maps each

released task to the amount of cpu time allocated for the execution and transmission of output (of the task); formally,

settoh(u,hi) consists of triples(ti ,ne,nr) whereti ∈ tasksi(u) andne ∈ N≥0 andnr ∈ N≥0 denote the remaining

execution and transmission time (forti) respectively.

The time-on-host set is updated as follows. Letu andu′ be consecutive configurations. Ifu′ is a write/read/switch suc-

cessor ofu, thentohi(u′) = tohi(u). If u′ is a release successor and the release trigger being handled is(s,(0,φ),t) ∈
trgsi) thentohi(u′) = tohi(u)∪ (t,wcet(t),wctt(t)). If u′ is a time event successor and the scheduler decides to

schedule taskti on hosthi then:

- for all tuples(t′,ne,nr) ∈ tohi(u) wheret′ 6= t there exists tuple(t′,ne,nr) ∈ tohi(u′).
- for tuple(t,ne,nr) ∈ tohi(u) if

– if ne > 0 then(t,ne−1,nr) ∈ tohi(u′).
– if ne = 0 andnr > 1 then(t,ne,nr−1) ∈ tohi(u′).
– if ne = 0 andnr = 1, then tuple(t, ., .) 6∈ tohi(u′).

Scheduler. Let γ be a non-empty finite trace for HTL programP (on a set of hostshset) andu be the last con-

figuration of γ. Given a non-empty finite traceγ such thatu is waiting6, scheduleris a function that returns a

mappingtmap from hosthi to φ or a taskti ∈ tasksi(u). An infinite traceγ = u0,u1, ... (whereu0 is the ini-

tial configuration) is said to be generated by schedulersch if for every non-empty finite prefixesγ′ = u0,u1, ...,u j

of γ whereu j is waiting, sch(γ′) = tmap such thattmap(hi) = ti (or φ), whereti ∈ tasksi(u) and ti has not

5We will also assume each task invocation has an unique task name i.e. a task name uniquely identifies the task invocation.
6The successor ofu is a always a time event successor under the initial assumption that execution and transmission times are provided in multiple

of clock ticks.

29

completed execution (i.e.(ti ,ne,nr) ∈ tohi(u) with ne > 0) or ti has completed execution but not transmission

(i.e. (ti ,ne,nr) ∈ tohi(u) with ne = 0 andnr > 0). If (ti ,0,1) ∈ tohi(u) then a completion eventcompl(ti) is raised

at the next time tick event. Intuitively, at each time step the scheduler decides which task to be executed/ transmitted

on each host (it may also decide to keep the host idle).

Time safety.An HTL program executes as intended if taskti (on hosthi) completes execution before a communicator

is updated by the output (ofti) or another instance ofti is scheduled; an execution trace satisfying the above behavior

is a time safetrace. A time safe trace is generated by time safe configurations. A configuration is time safe (1) if

a communicator is being updated by the evaluation of a task then the task and all the predecessor tasks must have

completed execution and, (2) if a task is being released then any other instance of the task must have terminated. A

configurationu is time safeif there exists a configurationu′ such that

• if u′ is a write successor ofu and the write trigger being handled is(w,(0,φ),(c,t)) ∈ trgsi(u), thent′ 6∈
tasksi(u) andt′ 6∈ readyi(u) wheret′ = t or t′ is a predecessor oft, and

• if u′ is a release successor ofu and the release trigger being handled is(r,(0,φ),t) ∈ trgsi(u), thent 6∈
tasksi(u).

A schedulersch is time safeif all traces generated by the scheduler is time-safe.

Transmission safety.An HTL program transmits as intended if when an host is transmitting the output of a task, no

other host is executing or transmitting; an execution trace satisfying the above behavior is atransmission safetrace.

Consider a finite prefixγ∗ = u0,u1, ...,u j (for infinite traceγ) whereu j is waiting andsch(γ∗) = tmap. The scheduler

is transmission safeif there exists hosthi such thattmap(hi) = ti and(ti ,0,nr) ∈ tohi(u j) thentmap(h j) = φ for all

hostsh j ∈ hset/hi .

Definition 1 A schedulersch is safe if the scheduler is both time safe and transmission safe.

Definition 2 Given an HTL programP, a set of hostshset and a host maphmap (from top-level modules to hosts), the

schedulability problem forP returnstrue if there exists a safe scheduler forP, false otherwise.If the schedulability

problem returns true, then the programP is schedulable.

Theorem 1 Given a well-formed programP, if abstract programabs(P) is schedulable thenP is schedulable.

Proof. Assume there exists no safe scheduler forP. Let the safe scheduler forabs(P) besch′. We will construct a

schedulersch for P as follows. Consider non-empty finite prefixγ′∗ andγ∗ for infinite tracesγ′ (for abs(P)) andγ (for

P) respectively. Letγ′∗ = u′0,u
′
1, ...,u

′
j whereu′j is waiting,n∈N>0 time transitions precedeu′j andsch′(γ′∗) = tmap′.

Let γ∗ = u0,u1, ...,uk whereuk is waiting,n time transitions precedeuk andsch(γ′∗) = tmap; task maptmap is defined

as follows:

(a)tmap(hi) = t if tmap′(hi) = t wheret is a concrete task of top-level modules ofPhi ,

(b) tmap(hi) = φ if tmap′(hi) = φ,

30

(c) tmap(hi) = φ if tmap′(hi) = t′ and there exists no taskt ∈ tasksi(uk) such thatt′ is top-level parent oft.

(d) tmap(hi) = t if tmap′(hi) = t′ and there exists taskt ∈ tasksi(uk) such thatt′ is top-level parent oft.

Let task(t, ., ., .) ∈ invocs(m) andm is defined in a program other than the top-level program; under the assumption

that every task invocation has unique task name and program structure of well-formed programs,m is unique fort.

Let the last activation ofm is at a configurationum and there areno (whereno ∈ N and0≤ no ≤ n) time transitions

betweenum anduk on traceγ∗ and switch triggers for current invocation ofm are enabled afterns time transitions.

Considert′, the top-level parent oft is invoked in modem′. Let the last activation ofm′ is at a configurationu′m′ and

there aren′o (wheren′o ∈ N and0≤ n′o ≤ n) time transitions betweenu′m′ andu j on traceγ′∗ and switch triggers for

current invocation ofm′ are enabled aftern′s time transitions.

Observation 1 Invocation ofm coincides with the invocation of modem′. The environment behavior is identical for

tracesγ andγ′ and period of a mode is same as that of its ancestors. This implies thatno = n′o andn′s = ns. In other

words period oft in γ and period oft′ in γ′ overlaps.

Observation 2 For all modes active atuk, the corresponding top-level parent mode is active at configurationu j . The

proof is by contradiction. Let modem1 be enabled atuk while the corresponding top-level modemn has not been

enabled atu j . There are two possibilities. First, top-level parentmn is not inP. This is not possible as for well-formed

programs there is only one top-level program (constraint C1.1). Second,mn has terminated while modem is active. This

is also not feasible: (1) modem1 has an unique top-level parent, (2) when modemn terminates all modes in subsequent

refinements terminate and (3) whenmn switches, switch triggers for all modes in refinements are removed and thus

eliminating the possibility of modes in refinement programs switching between themselves when the top-level parent

in not active.

From the above observations, period for each task intasks(uk) on traceγ coincides with the period of the correspond-

ing top-level parent task inγ′.

Observation 3 For each taskt′ ∈ tasks′i(u j) there exists at most one taskt ∈ tasksi(uk) such thatt′ is a top-level

parent oft. In other words, a task has an unique top-level parent task relative to all tasks that can execute in parallel.

ProgramP being well-formed taskt has an unique parent relative to all other tasks inm and tasks in all modes of sibling

modules ofM (wherem ∈ modes(M)). Using the above constraint and program structure of well-formed programs, it

can be proved that for any two tasks either they have different top-level parents or they cannot execute in parallel; refer

Section 4.7 for the complete proof.

Observation 4 If (t,ne,nr) ∈ readyi(uk), and(t′,ne′,nr′) ∈ readyi(u j) thenne ≤ ne′ andnr ≤ nr′. Let t does not

have preceding tasks i.e. the release depends only on the transitive read time oft. Sayt has been releasednl time

transitions earlier (wherenl ∈ N andnl ≤ no) in γ∗, andt′ must have been releasedn′l ′ time transitions earlier (where

n′l ′ ∈N andn′l ′ ≤ no) in γ′∗. From from well-formedness,r∗(t)≤ r∗(t′) which implies(no−nl)≤ (no−n′l ′) or n′l ′ ≤ nl .

Given the definition of schedulersch and well-timedness constraints (wcet(t)≤ wcet(t′) andwctt(t)≤ wctt(t′)),
observation 2 holds fort andt′. This also implies thatt completes execution beforet′.

If t has precedences, then the claim can be proved by induction. The release event fort andt′ be(n,complete) and

(n′,complete′). The time ticksn ≤ n′ (from constraint of transitive release time). For eachcompl(ti) ∈ complete,

31

there is acompl(t′i) ∈ complete′ in the release trigger fort′ wheret′i is parent ofti . By inductive hypothesis,

completion event for eachti cannot be later than that oft′i (the base case of the argument has been discussed above).

In other words all of the completion events incomplete′ should have occurred before the completion events in

complete which implies thatt′ must have been released later thant.

The observation also argues the necessity of four cases in definition ofsch: (a) t is a concrete task of the top-level

mode and hence is executing in both abstract and concrete program, (b)t has not been released,t′ may (or may not)

have been released, (c)t has been released but not terminated,t′ has been released and terminated and (d) botht and

t′ have been released but neither have terminated.

Claim 7 Schedulersch is time safe.

Let t′ updates a communicatorc′ at configurationu′p and taskt updates a communicatorc atuq.

Observation 5 Taskt or none of its preceding tasks are intasksi(uq) or readyi(uq). Let no other communicator is

updated byt′ or no switch trigger for modem′ is handled betweenu′j andu′p. Similarly, let no other communicator

is updated byt and no switch trigger for modem is handled in betweenuk anduq. Let there ben′c′ ∈ N>0 time

transitions betweenu′j andu′p andnc ∈ N>0 time transitions betweenuk anduq. Traceγ′ is time safe; sot′ or no

task precedingt′ in tasksi(u′p) or readyi(u
′
p). Without loss of generality, lett′ terminates aftern′t ′ time transitions

(n′t ′ ∈ N andn′t ′ ≤ n′c′). If t terminates afternt time transitions (nt ∈ N) thennt ≤ n′t ′ (from discussion of observation

1). Alson′c′ ≤ nc asτ∗(t′)≤ τ∗(t). From above we have,nt ≤ n′t ′ ≤ n′c′ ≤ nc which implies thatt 6∈ tasksi(uq) and

t 6∈ tasksi(uq). If task t has been terminated all the preceding tasks must have terminated. There is a special case

whennt = n′t ′ = n′c′ = nc = ns (i.e. the communicator update and mode switch check would be enabled simultaneously).

However from operational semantics, the communicator update would be handled before switch check; thus excluding

the possibility of addingt in task set by new mode invocations. Thusuq is time safe.

Observation 6 Two invocations oft cannot overlap.There are two possibilities - 1,t writes to a communicator at

the end of mode period and 2,t writes to a port (but not any communicator). The first case has been discussed above.

Time-safety ofγ ensures that execution oft′ (irrespective of whether it writes to a communicator or not) is complete

aftern′t ′ ≤ ns time event transitions. We knownt ≤ n′t ′ . If nt = n′t ′ = ns the operational semantics ensure that task is

removed from task set before modem is invoked i.e. another instance oft is invoked.

Claim 8 Schedulersch is transmission safe.

Let hosthi be transmitting the evaluation. Sotmap′(hi) = t′ with (t′,0,nr′) ∈ tohi(u′j). Schedulersch′ being

transmission safe, for all hostsh j ∈ hset/hi , tmap′(h j) = φ. From definition ofsch, tmap(h j) = φ. The last proof

shows thatt cannot complete execution later thant′. This along with the definition ofsch implies that the transmission

for the two tasks start at the same instance from the start of program execution. From well-formedness constraints

wctt(t)≤ wctt(t′). Thus eithert 6∈ tasksi(uk) or (t,0,nr)∈ tohi(uk) with nr ≤ nr′. In the first case,tmap(hi) = φ,

in the second casetmap(hi) = t. The observation implies that whent is being transmitted, all other hosts are idle. In

other wordssch is transmission safe.

Observation 3 and 4 proves Claim 1 which along with Claim 2 shows that schedulersch is safe. This contradicts the

initial assumption and concludes the proof.

32

8 Related Works

Timed languages. HTL builds on the LET concept pioneered by the Giotto language [1]. LET-based languages

include TDL [7], which like Giotto is restricted to periodic tasks; Timed Multitasking (TM) [8], which defines LET

properties through deadlines; and xGiotto [9], an event-triggered LET language. HTL differs in that logical execution

times are defined through the reading and writing of communicator instances. This adds considerable flexibility,

and naturally supports aperiodic tasks and hierarchical refinement. In periodic languages such as Giotto, only very

restricted forms of refinement are possible, and in event-triggered languages, such as xGiotto, scheduling quickly

becomes intractable. Refer Appendix B for a detailed comparison between Giotto and HTL.

Synchronous languages.Esterel [10], Lustre [11], and Signal [12] are based on the synchrony assumption that the

execution platform is sufficiently fast as to complete the execution before the arrival of the next environment event

occurs. Similar to timed languages, the resulting behavior of synchronous languages is highly deterministic, and hence

amenable to efficient formal verification. HTL differs from synchronous languages in the program structure, which

supports the refinement of tasks into task groups with precedences.

Real-time languages for specialized domains.nesC [13] is targeted towards network-based applications for small,

distributed sensor devices. Erlang [14] is a concurrent functional programming language for real-time systems, specif-

ically for telephony and telecommunication. Flex [15] extends C++ by introducing explicit real-time constraints and

offers flexible trade-offs between time, resources and precision. Timber [16] is a programming language for imple-

menting event-driven real-time systems. nesC and Erlang are targeted toward soft real-time requirements, while HTL

is targeted toward hard real-time. Unlike in HTL, program execution in nesC and Timber is not schedule independent.

Flex allows tasks to miss a deadline (in which case it provides an imprecise computation); in HTL this is a run-time

error. None of the above languages supports a compositional communicator model and hierarchical task refinement.

9 Conclusion

In this report we present HTL, a hierarchical coordination language for safety critical hard real-time applications. HTL

is built upon the LET model of task execution and allows parallel composition of modules and horizontal refinement

of tasks without modifying the timing behavior. The hierarchical layers of abstraction allows efficient and concise

specification without overloading program analysis. We present the restrictions on a general HTL program to guarantee

schedulability of lower levels if higher levels of abstraction are schedulable. The report presents the operational

semantics for HTL and discusses the implementation of an HTL compiler to generate code for the Embedded Machine.

33

References

[1] Henzinger, T.A., Horowitz, B., Kirsch, C.M.:GIOTTO: A time-triggered language for embedded programming.

Proceedings of the IEEE91 (2003) 84–99

[2] Henzinger, T.A., Kirsch, C.M.: The Embedded Machine: Predictable, portable real-time code. In: Proceedings

of Programming Language Design and Implementation, ACM Press (2002) 315–326

[3] FlexRay: Road Vehicles - Interchange of Digital Information - Controller Area Network (CAN) for High-Speed

Communication. (International Standards Organisation (ISO). ISO Standard -11898, Nov 1993)

[4] CAN: (Flexray communications system specifications 2.1, 2005)

[5] Tindel, K., Clark, J.: Holistic schedulability for distributed hard real-time systems. Microprocessing and Micro-

programming - Euromicro Journal (Special Issue on Parallel Embedded Real-Time Systems) (1994)

[6] Kirsch, C., Sanvido, M., Henzinger, T.: A programmable microkernel for real-time systems. In: Proc.

ACM/USENIX Conference on Virtual Execution Environments (VEE), ACM Press (2005)

[7] Templ, J.: Tdl specification and report. Technical Report T004, Department of Computer Science, University of

Salzburg (2004)

[8] Liu, J., Lee, E.A.: Timed multitasking for real-time embedded software. IEEE Control Systems Magazine23
(2003) 65–75

[9] Ghosal, A., Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A.: Event-driven programming with logical execution

times. In: Hybrid Systems Computation and Control. Lecture Notes in Computer Science 2993. Springer-Verlag

(2004)

[10] Boussinot, F., de Simone, R.: The ESTEREL language. Proceedings of the IEEE79 (1991) 1293–1304

[11] Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow programming language LUSTRE.

Proceedings of the IEEE79 (1991) 1305–1320

[12] Guernic, P.L., Borgne, M.L., Gauthier, T., Maire, C.L.: Programming real time applications with signal. Pro-

ceedings of the IEEE (1991)

[13] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC language: A holistic approach to

networked embedded systems. In: Proceedings of Programming Languages Design and Implementation, ACM

Press (2003) 1–11

[14] Armstrong, J., Virding, R., Wikstr̈om, C., Williams, M.: Concurrent Programming in Erlang. Prentice-Hall

(1992)

[15] Kenny, K., Lin, K.J.: Building flexible real-time systems using the FLEX language. IEEE Computer24 (1991)

70–78

[16] Carlsson, M., Nordlander, J., Jones, M.: The semantic layers of timber. In: The First Asian Symposium on

Programming Langauges and Systems (APLAS), Springer Verlag (2003)

34

A Concrete Syntax

Package htlc;

Helpers

all = [0 .. 0xFFFF];

lowercase = [’a’ .. ’z’];

uppercase = [’A’ .. ’Z’];

digit = [’0’ .. ’9’];

hex_digit = [digit + [[’a’ .. ’f’] + [’A’ .. ’F’]]];

tab = 9;

cr = 13;

lf = 10;

eol = cr lf | cr | lf; // This takes care of different platforms

not_cr_lf = [all -[cr + lf]];

not_star = [all -’*’];

not_star_slash = [not_star -’/’];

blank = (’ ’ | tab | eol)+;

short_comment = ’//’ not_cr_lf* eol;

long_comment = ’/*’ not_star* ’*’+ (not_star_slash not_star* ’*’+)* ’/’;

comment = short_comment | long_comment;

letter = lowercase | uppercase | ’_’;

name = letter (letter | digit)*;

ident = name (’.’ name)*;

Tokens

program = ’program’;

communicator = ’communicator’;

sensor = ’sensor’;

actuator = ’actuator’;

general = ’general’;

period = ’period’;

uses = ’uses’;

module = ’module’;

start = ’start’;

import = ’import’;

export = ’export’;

task = ’task’;

output = ’output’;

input = ’input’;

35

state = ’state’;

parent = ’parent’;

function = ’function’;

update = ’update’;

port = ’port’;

mode = ’mode’;

invoke = ’invoke’;

switch = ’switch’;

wcet = ’wcet’;

init = ’init’;

host = ’host’;

ident = ident;

number = digit+;

semicolon = ’;’;

comma = ’,’;

dot = ’.’;

colon = ’:’;

greater_than = ’>’;

less_or_equal = ’<=’;

assign = ’:=’;

l_par = ’(’;

r_par = ’)’;

l_brace = ’’;

r_brace = ’’;

l_bracket = ’[’;

r_bracket = ’]’;

blank = blank;

comment = comment;

Ignored Tokens

blank, comment;

Productions

program_declaration_list = program_declaration*;

program_declaration = program [program_name]:ident

l_brace

communicator_declaration_list?

module_declaration_list

r_brace;

36

communicator_declaration_list = communicator communicator_declaration* ;

communicator_declaration = [type_name]:ident

[communicator_name]:ident

period [communicator_period]:number

init [init_driver]:ident

semicolon;

module_declaration_list = module_declaration*;

module_declaration = module [module_name]:ident

host_declaration?

start [start_mode]:ident

l_brace

port_declaration_list?

task_declaration_list

mode_declaration_list

r_brace;

host_declaration = l_bracket

[host_name]:ident

[host_ip]:ip_declaration colon

[host_port]:number

r_bracket;

ip_declaration = [a]:number [d1]:dot

[b]:number [d2]:dot

[c]:number [d3]:dot

[d]:number;

port_declaration_list = port port_declaration*;

port_declaration = [port_type]:ident

[port_name]:ident assign [init_driver]:ident semicolon;

task_declaration_list = task_declaration*;

task_declaration = task [task_name]:ident

input [input_formal_ports]:formal_ports

state [state_formal_ports]:state_ports

output [output_formal_ports]:formal_ports

task_function?

task_wcet?

semicolon;

task_function = function [function_name]:ident;

task_wcet = wcet [wcet_map]:number;

formal_ports = l_par formal_port_list? r_par ;

formal_port_list = concrete formal_port formal_port_tail* | (formal_port+) ;

formal_port_tail = comma formal_port ;

formal_port = [type_name]:ident [port_name]:ident ;

state_ports = l_par state_port_list? r_par ;

37

state_port_list = concrete state_port state_port_tail* | (state_port+) ;

state_port_tail = comma state_port ;

state_port = [type_name]:ident [state_name]:ident

assign [init_driver]:ident ;

mode_declaration_list = mode_declaration*;

mode_declaration = mode [mode_name]:ident

period [mode_period]:number

refine_program?

l_brace

task_invocation_list

mode_switch_list

r_brace;

refine_program = program [program_name]:ident;

task_invocation_list = task_invocation*;

task_invocation = invoke [task_name]:ident

input [input_actual_ports]:actual_ports

output [output_actual_ports]:actual_ports

parent_task?

semicolon;

parent_task = parent [task_name]:ident;

actual_ports = l_par actual_port_list? r_par ;

actual_port_list = concrete actual_port actual_port_tail* | (actual_port+) ;

actual_port_tail = comma actual_port ;

actual_port = concrete [port_name]:ident | communicator_instance ;

communicator_instance = l_par

[communicator_port_name]:ident comma

[communicator_instance_number]:number

r_par ;

mode_switch_list = mode_switch*;

mode_switch = switch

l_par

[condition_function]:ident

switch_ports

r_par

[destination_mode]:ident

semicolon;

switch_ports = l_par switch_port_list? r_par ;

switch_port_list = concrete switch_port switch_port_tail* | (switch_port+) ;

switch_port_tail = comma switch_port ;

switch_port = [port_name]:ident;

38

B Giotto vs. HTL

B.1 Comparison

The difference between Giotto and HTL is discussed based on the following example. There are three sensors

(s1,s2,s3), two actuators (a1,a2) and four tasks (t1,t2,t4,t5). The intended execution starts with taskst1,t2,t4;

upon some predefined condition taskt4 is replaced byt5 (the reverse switch is also possible). The data flow between

tasks, sensors, and actuators is as follows:t1 reads froms1, t2 reads the output oft1 and sensors2, and updates

actuatora1, t4 (t5) reads sensors3 and updates actuatora2. Taskst1 andt2 should be executed every 10 ms, while

taskst4 andt5 should be executed every 5 ms. Figure 17 and Figure 18 shows (simplified) Giotto and HTL code.

mode m1() period 10 {
actfreq 1 do a1(a1 drv);

actfreq 2 do a2(a2 drv);

exitfreq 2 do m2(sw drv);

taskfreq 1 do t1(drv1);

taskfreq 1 do t2(drv2);

taskfreq 2 do t4(drv4);

}

mode m2() period 10 {
actfreq 1 do a1(a1 drv);

actfreq 2 do a2(a2 drv);

exitfreq 2 do m1(sw drv);

taskfreq 1 do t1(drv1);

taskfreq 1 do t2(drv2);

taskfreq 2 do t5(drv5);

}

Figure 17: Giotto modes

HTL implementation reduces latency than an equivalent Giotto implementation.In Giotto code,t2 can read the output

of t1 only at period boundaries (even ift1 terminates earlier than the period). In other words, there is a delay of one

period. On the other hand,t2 reads the output oft1 in HTL implementation as soon ast1 completes.

program P {
communicator

s1, s2, s3, a1, a2

module M10 start m10 {
port p1

task t1 // concrete decl.

task t2 // concrete decl.

mode m10 period 10 {
invoke t1 input (s1,0)

output (p1)

invoke t2 input (s2,0)

output (a1,10)

}

module M5 start m5 {
task t3 // concrete decl.

mode m5 period 5 program refP {
invoke t3 input (s3,0)

output (a2,5)

}

program refP {
module refM start refm1 {
task t4 // concrete decl.

task t5 // concrete decl.

mode refm1 period 5 {
invoke t4 input (s3,0)

output (a2,5) parent t3;

switch (cond, refm2);

}
mode refm2 period 5 {

invoke t5 input (s3,0)

output (a2,5) parent t3;

switch (cond, refm1);

}

}

Figure 18: HTL code fragements

HTL implementation reduces latency for sensor readings.In Giotto, the sensors are read at the start of task periods;

thuss1 is read once every 10 ms. In HTL, the sensors can be read in the middle of task periods. For example, the

communicator instance of communicators2, can be set to a number between0 and9 to indicate which sensor instance

should be read within the period. If need be, the task can read multiple sensor instances within the period.

39

Figure 19: Giotto (a) and HTL (b) implementation diagrams;

HTL allows more structure than Giotto specification.The Giotto modes are different by only one task; modem2 invokes

t5 in place oft4 (both of period 5). In HTL, the tasks are partitioned for efficient handling; modem10 invoked tasks

t1 andt2 and modem5 invokes an abstract taskt3 (to be used a placeholder for botht4 andt5). Modem5 is then

refined by programrefP which consists of two modes switching between themselves; moderefm1 invokest4 and

moderefm2 invokest5. This helps in code reduction and better structure with increase in choices.

B.2 Giotto-to-HTL

As we showed previously HTL is more powerful then Giotto, this means that there should be an algorithm which

converts a Giotto program to an HTL program. In this subsection we present the conversion of a Giotto program to an

HTL program based on three examples.

In the first example (Figure 20) we consider a Giotto program which consists of two modes (m1 andm2). Modem1 has

a period of 6 and invokes two tasks:t2 with a frequency of 3 (a period of 2), andt6 with a frequency of 1 (a period

of 6). Modem2 is similar to modem1, the only difference being the fact that in modem2 tasktask2 is replaced byt3,

which has a frequency of 2 (a period of 3). Modem1 can switch to modem2 with a frequency of 3, the revers switch

is also possible but with a frequency of 2. The corresponding HTL program will have three modules one for each

frequency group that exists in Giotto program (M2, M3, andM6). As it can be seen in Figure 20, moduleM6 is straight

forward, since it corresponds to the group of frequency 1, which is represented by only one task (t6), which is invoked

in both Giotto modes (it is not influenced by the mode switch); moduleM6 contains only one mode which invokes only

one task (t6), and there is no switch. On the other hand modulesM2 andM3 are much more complex, this is because

the frequency groups represented by two modules are influenced by the mode switch. The two HTL modules have to

express all possible states in which Giotto program can get due to the non-trivial mode switch. In order to accomplish

this goal there has to be introduced empty modes (modes that do not invoke any task).

In the second example (Figure 21) the only difference is that a third mode (m3) was added to the Giotto program, the

following switches were added compare to the first case: modem2 can switch to modem3, and modem3 can switch to

modem1. Regarding the corresponding HTL program, it can be seen that a new module (M4) was added, since there is

40

Figure 20: Example 1

41

a new frequency group, moduleM6 is unchanged since it is not affected by the new added mode, while modulesM2 and

M3 have become more complex, since they have to express more possible states.

In the third example (Figure 22) we can see that there are two groups of frequency (represented by taskst6, andt2)

which are not influenced by the mode switch, they will be express in HTL by simple modules (M6 andM2, respectively),

while the other two groups of frequency (represented by taskst3, andt4) being influenced by the mode switch will

lead to complex modules (M3 andM4 respectively) in the HTL program.

In conclusion when converting a Giotto program to an HTL program, for each group of frequency in Giotto program

there has to be a module in the top-level program of the HTL program, the complexity of a module depends on how

the mode switches from Giotto program affect the corresponding group of frequency.

42

Figure 21: Example 2

43

Figure 22: Example 3

44

C Flattening

Given a well-timed HTL program,P, the program can be converted into a programP′ with same number of modules

as inP but with all mode declaration of the form(m, ., .); in other words all modes in the top-level program with

refinement are replaced by modes with no refinement. Instead of presenting a formal translation algorithm we will

motivate the case through examples.

Figure 23: Flattening HTL program

If the top level program is a leaf program, no further flattening is required; otherwise each mode is replaced by

(recursively flattened) refinement program as in Figure 23. Renaming of all communicators, modules, modes, ports,

task declarations, task invocations are to be performed first. Next the procedureFlattenTopLevelProgramis invoked

on the top-level program. If the program is a leaf program then no further action is necessary. Otherwise each mode of

the modules which has a refinement has to be flattened. This is carried in two steps. For a mode declaration(m, ., .,P′),
first the program is flattened (recursive invocation), second, converting the set of modules to one module and third,

merging the single module program with modem.

Algorithm 4 FlattenTopLevelProgram (P)
// P is a non-leaf program

for each moduleM ∈ modules(P)
for each(m, ., .,P′) ∈ modedecl(M)
invokeFlattenAndConvertToSingleModuleonP′

invokeMergeModeWithProgramonm,P′

If a programP′ is not top-level and it is a leaf program the modules can be converted into one single module (Figure 23).

This is possible because all modes have identical period; hence composition of the modes can be performed without

any need to modify the semantics of mode switches. The conversion is not possible for top-level program as mode

periods are different.

45

Algorithm 5 FlattenAndConvertToSingleModule
if P is a leaf program and|modules(P)|= 1

return;

if P is a leaf program

define a new module declaration

(M,portdecl,taskdecl,modedecl,smode)
M = composition of module names inmodules(P)
portdecl = union ofportdecl of all modules inP

taskdecl = union of concrete task declarations of all modules inP

emptymodedecl and emptysmode

k := |modules(P)|
for each unique combinationm1, .,mk of one mode from each module

create(m,invocs,switches)
m = m1 ·m2 · ..mk

invocs = invocs1∪invocs2∪ ..invocsk

switches = Power set of mode switchesswitches, .,switchesk

addm in moduledecl

smode is the combination with all start modes

return

else

for each moduleM ∈ modules(P)
for each(m, ., .,P′) ∈ modedecl(M)
invokeFlattenAndConvertToSingleModuleonP′

invokeMergeModeWithProgramonm,P′

invokeFlattenAndConvertToSingleModuleonP

return

Algorithm 6 MergeModeWithProgram(m,P′)
single moduleM′ in P′

and let(m,invocs,switches,P′) in modedecl(M)

// modify all mode declarations inmodedecl(M′)
// modify task invocations

copy all concrete task invocations ofm to all modes ofM′

// modify mode switches

the mode switch conditions are added with

not-switch-condition for switches inm

copy all mode switches ofm to each mode inM′

// modify M

copy all task declarations ofM′ to M

copy all port declarations ofM′ to M

// modify switches from modes inM′ other thanm

for all switches with destination modem

replace destination mode bysmode of M′

remove(m,invocs,switches,P′) from modedecl(M)

46

