
PARALLEL
UNIT RESULTING
RESOLUTION

Diplomarbeit

am Fachbereich Informatik
der Universit�at des Saarlandes

von

Christoph Meyer

Saarbr�ucken� ����

Erkl�arung

Ich erkl�are die vorliegende Arbeit selbst�andig im Sinne der Diplompr�ufungsordnung erstellt und
ausschlie�lich die angegebenen Quellen und Hilfsmittel benutzt zu haben�

Saarbr�ucken� ��� Februar ����

Christoph Meyer

Betreuer� Priv� Doz� Dr� Hans J�urgen Ohlbach
Dr� Peter Graf

F�ur meine Eltern Karin und Ren	e Meyer�

Danksagung

Mein gr�o�ter Dank gilt meinem Betreuer Peter Graf� der sich stets Zeit nahm f�ur meine Fragen
und Probleme und mir durch seine kritischen Kommentare und Verbesserungsvorschl�age sehr
geholfen hat�

Ebenso danke ich Hans
J�urgen Ohlbach f�ur seine Anregungen und viele fruchtbare Diskus

sionen� die erheblich zur Entstehung dieser Arbeit beigetragen haben�

Ich danke den Mitarbeiterinnen und Mitarbeitern des Max
Planck
Instituts f�ur die an

genehme Atmosph�are und f�ur die gro�e Hilfsbereitschaft bei fachlichen Problemen� Besonders
erw�ahnen m�ochte ich Christoph Weidenbach und Peter Barth�

Ich danke Michael Christen� Boris Kraft� Jan
Georg Smaus und allen anderen Kommilitonen
am Max
Planck
Institut f�ur die Zusammenarbeit und f�ur die sch�one gemeinsam verbrachte Zeit�

Saarbr�ucken� Februar ���� Christoph Meyer

Preface

The term �Parallel unit resulting resolution� refers to a modi
ed unit resulting resolution rule
working on sets of substitutions� We modi
ed the inference rule in order to investigate term in

dexing and to exploit parallelism in automated reasoning� Term indexing supports the construc

tion of e�cient automated reasoning systems by providing rapid access to
rst
order predicate
calculus terms with speci
c properties� The theoretical background and the implementation of
a theorem prover called Purr which implements parallel unit resulting resolution as well as
experiments with Purr are presented in this thesis� The author addresses the reader interested
in new indexing techniques and in distributed theorem proving� The reader is assumed to have
detailed knowledge of automated reasoning and logic�

II PREFACE

Contents

List of Figures � V

�� Introduction �

��� Aim of the Work �

��� Parallel Unit Resulting Resolution �

��� Structure of the Work �

�� Preliminaries �

��� Rules �

��� First
Order Logic �

��� Graphs and Trees ��

��� Algorithms ��

�� UR�Resolution ��

��� Unit Resulting Resolution ��

��� Clause Graph ��

��� UR
Resolution on Substitution Sets ��

�� Indexing ��

��� Classi
cation of Indexing Techniques ��

��� Substitution Tree Indexing ��

��� Indexing Operations ��

����� Subsumption ��

����� Union ��

����� Multi
Merge ��

����� Selection ��

�� Parallelism ��

��� Notions of Parallelism ��

����� Parallelism in Logic ��

����� Parallelism in Practice ��

��� Parallel Programming Systems ��

����� Overview ��

����� PVM ��

IV CONTENTS

�� The Prover ��

��� Indexing Algorithms ��

����� Subsumption ��

����� Union ��

����� Multi
Merge ��

����� Selection ��

��� The Implementation ��

����� Overview ��

����� Preprocessing ��

����� Reasoning Phase ��

����� Postprocessing ��

����� Options in Purr ��

��� Techniques ��

����� Contexts ��

����� Indexing and Process Communication ��

�� Experiments 	�

��� Indexing ��

��� Parallelism ��

	� Conclusion
�

Bibliography ��

Index ���

List of Figures

�� Introduction �

��� A Clause Graph �

�� Preliminaries �

��� Presentation of Algorithms ��

�� UR�Resolution ��

��� Undirected Clause Graph ��

��� Directed Clause Graph ��

��� Directed Clause Graph ��

��� Labeled Directed Clause Graph with Test and Send Substitutions � � � � � � � � � ��

��� Test Uni
cation and Send Instantiation ��

��� Initial State of the Search Sets ��

��� RESOLVE applied on link �v�� ���� ���� v�� with receiver literal v� � � � � � � � � � � ��

��� RESOLVE applied on link �v�� ���� ���� v�� with receiver literal v� � � � � � � � � � � ��

�� Indexing ��

��� Substitution tree ��

��� Subsumption in Weighted Substitution Trees ��

��� A Selective Substitution Tree ��

��� An Algorithm for the Transition Rule RESOLVE ��

��� Subsumption as an n�m indexing task ��

��� A Sequence of Selective Substitution Trees ��

�� Parallelism ��

��� A Parallel Programming Model ��

��� Shared
Memory Model ��

��� Message Passing Model ��

��� Communication Patterns ��

�� The Prover ��

��� Algorithm for subsume ��

��� Algorithm for union ��

��� Algorithm for multi�merge ��

��� Multi
Merge with Three Substitution Trees ��

��� Algorithm for selection ��

VI LIST OF FIGURES

��� Algorithm for partition ��

��� The Master Process ��

��� The Preprocessing ��

��� Create Clause Graph ��

���� Create all links leading to vertices in Vin ��

���� Delete tautologies ��

���� Delete clauses with pure literals ��

���� Sequential Reasoning in Purr ��

���� UR
Resolution on Link �v� ��� ��� w� ��

���� Optimized UR
Resolution on Link �v� ��� ��� w� ��

���� Optimized UR
Resolution on Literal Associated with v � � � � � � � � � � � � � � � ��

���� Termination on Clause C ��

���� Termination on Units with Predicate P ��

���� Start and Control of the Parallel System ��

���� The Postprocessing ��

���� Recursive Proof Generation ��

���� Two Contexts C� and C� with Bindings ��

���� The Multi
Merge Operation with Three Substitution Trees � � � � � � � � � � � � ��

���� Test Uni
cation and Send Instantiation ��

���� Process Communication ��

���� Transformation of a Substitution Tree ��

���� Transformation of a Substitution ��

���� Transformation of a Term ��

�� Experiments ��

��� Clause Graph of the Problem IC
JL�IC
� ��

��� Experiments with the Implicational Propositional Calculus � � � � � � � � � � � � ��

��� Statistics of the Resolution Process in PurrLiteral
� on Problem IC
JL�IC
� � � ��

��� Experiments with the Equivalential Calculus ��

��� Experiments with the R Calculus ��

��� Experiments with PurrLiteral
� on the Two
Valued Sentential Calculus � � � � � ��

��� Clause Set in Group Theory ��

	� Conclusion ��

�
Introduction

Parallel unit resulting resolution is based on a modi
ed unit resulting resolution rule working
on sets of substitutions� The ur
resolvents are represented by substitutions� We attach the
substitution sets to vertices and links of a clause graph �Eis��� Kow��� which is created on the
original clause set in order to associate the substitutions with the according literals and clauses�
The links of the clause graph determine possible applications of the modi
ed inference rule� New
substitutions are created and exchanged among the substitution sets in the clause graph� The
graph structure itself does not change� Our modi
ed ur
resolution scheme can be supported
e�ciently by indexing techniques and� moreover� can be applied to di�erent nuclei concurrently�
This concept has been implemented in our distributed theorem prover called Purr� The original
idea is based on the PhD thesis of Ulrich A�mann �A�m��� and on the work of Antoniou and
Ohlbach �AO����

��� Aim of the Work

One of the most important aspects of an automated reasoning system is the employed logic
calculus� The inference rules of a calculus often are implemented in order to examine the
properties of the calculus or to
nd solutions of challenging problems� In contrast� we shall
employ the inference rule of unit resulting resolution for the investigation of indexing techniques
and for the exploitation of parallelism in automated reasoning� Both indexing and parallelism
can signi
cantly improve the e�ciency of a theorem prover�

Indexing� The maintenance of large databases is supported by indexing which provides fast
access to stored data� In automated reasoning we employ databases that contain
rst
order
terms� Typical queries to such term indexes are� Given a database D containing terms �literals�
and a query term t�
nd all terms in D that are uni
able with� instances of� variants of� or more
general than t� Thus indexing can be used to support the search of partners for resolution or
subsumption�

� Chapter �� Introduction

P �d� f�a��

P �a� y� �P �z� f�y��

P �d� f�f�f�a����

�P �a� x� �P �a� f�x�� P �c� f�g�x���

�P �c� f�g�a��� �

Figure ���� A Clause Graph

Parallelism� In general� a program working on a problem which is composed of several �in

dependent� parts can be divided into concurrent processes with each process working on one
part of the problem� There are cases in which the performance of such a program can be im

proved with increasing concurrency� The possible speedup is limited by the degree of dependence
inherently to the problem and by the parallel machine employed� In automated reasoning we
can discover a large variety of such dependencies� They really complicate the investigation of
possible improvements� Concurrent processes working on dependent parts of a problem have to
solve these dependencies with communication� The more processes work on a problem� the more
communication usually is required� In sum� the main task during the design of a distributed
parallel system is to
nd a reasonable balance between the degree of parallelism and the amount
of communication overhead�

��� Parallel Unit Resulting Resolution

We extend the unit resulting resolution rule to work on sets of substitutions� To this end we will
introduce a so
called clause graph� The nodes of the clause graph correspond to literals in the
clause set� Two literals are connected by a link if the literals are complementary and uni
able�
In other words� connected literals are possible ur
resolution partners� Note that the clause
graph does not change during the reasoning phase� An example of a clause graph is depicted
in Figure ���� Consider for example the two literals �P �z� f�y�� and P �c� f�g�x���� They are
connected because they have opposite sign and they are uni
able by the unifying substitution
� � fz �� c� y �� g�x�g�

New ur
resolvents are represented by substitutions which are collected in sets of substitutions�
These substitution sets are attached to nodes and links in the clause graph� We will show that
substitution sets can be represented by indexes in a natural manner� In Purr indexes become
the fundamental data structure instead of the usual clauses and literals� New ur
resolvents
are exchanged among substitution sets in the form of indexes� Reasoning
based operations like
subsumption and the computation of simultaneous uni
ers are extended to set operations based
on indexing techniques� Moreover� the unit resulting resolution rule is concurrently applied to
di�erent nuclei�

��� Structure of the Work �

��� Structure of the Work

The
rst two Chapters � and � provide a general overview and introduce the main notions� In
Chapter � we present a modi
ed unit
resulting resolution rule on sets of substitutions� The main
operations in the modi
ed inference rule are presented as indexing methods in Chapter �� The
notions of parallelism in the
eld of logic and under practical issues are introduced in Chapter ��
The next Chapter � addresses implementational apsects of this work by presenting the central
algorithms of Purr� A sequence of experiments with Purr is discussed in Chapter �� The work
is
nished with a conclusion in Chapter ��

Chapter �� Introduction� The purpose of this chapter is to motivate the two main goals�
The investigation of indexing techniques and the exploitation of parallelism in automated the

orem proving� We brie�y describe our modi
ed ur
resolution scheme as the basis to study
advanced indexing methods and parallelism in a theorem prover�

Chapter �� Preliminaries� In the preliminary Chapter � we will focus on four di�erent
subjects� First� we present rules� They will be used throughout this work for de
ning functions
in an elegant and simple way� In the second section the standard notions for �rst�order logic are
introduced� As the standard notations for logic are used� readers familiar with this topic may
skip the second section� Since the employed indexing technique relies on tree
like structures� we
state some notions describing graphs and trees in the third section� Finally� we describe the way
algorithms are presented in the fourth section�

Chapter �� UR�Resolution� In the
rst section of Chapter � we brie�y discuss unit�resulting
resolution and reveal possible modi
cations in order to obtain a resolution scheme whose imple

mentation can be supported by indexing methods and parallelism� Then we introduce a data
structure called clause graph containing information about possible applications of ur
resolution�
Finally� a modi
ed ur
resolution rule working on sets of substitutions is introduced in the third
section� The substitution sets are attached to vertices and links of the clause graph� The mod

i
ed rule creates and exchanges substitution sets among the sets in the graph� The required
reasoning
based operations can be implemented e�ciently by indexing methods� The rule also
can be applied to substitution sets in parallel�

Chapter �� Indexing� First� we present an indexing technique called substitution tree in�
dexing which can represent sets of idempotent substitutions� In the second section the four
reasoning
based operations required by the modi
ed ur
resolution rule are presented as indexing
operations on substitution trees� In particular� we discuss the subsumption and union operations
of two substitution sets� the multi�merge operation of arbitrary many substitution sets� and the
selection operation of �lightest� substitutions�

Chapter �� Parallelism� In addition to the presentation of the usual notions of parallelism
in logic and practice� we also compare a selection of parallel programming systems� We conclude
that the Parallel Virtual Machine �PVM� library currently seems to be the most convenient
library to support the implementation of parallelism in our theorem prover�

� Chapter �� Introduction

Since we mainly discuss the notions of parallelism and well
known parallel programming
libraries� readers familiar with these topics might want to skip this chapter�

Chapter �� The Prover� In the
rst section detailed algorithms for the four indexing op

erations subsumption� union� multi
merge� and selection are presented� The implementational
aspects of Purr are discussed in the second section� The system mainly performs three phases�
The preprocessing for the creation and optimization of the clause graph� the reasoning phase
involving the distributed processing of ur
resolution� and�
nally� the postprocessing for the gen

eration of a proof protocol� In the last section two important aspects of the implementation are
presented� First� variables are maintained in contexts in order to represent variable bindings�
Second� a transformation of substitution trees into a process
independent form�

Chapter �� Experiments� In this chapter the results of experiments with Purr are pre

sented� We compare the proof times obtained with di�erent settings of Purr to the proof times
of the sequential theorem prover Otter� In the
rst section we use problem sets addressing the
indexing methods in Purr� Experiments involving parallelism are presented in Section ��

Chapter 	� Conclusion� We conclude that in many experiments Purr�s advanced indexing
operations achieve high inference rates and are able to handle large sets of inferences� Moreover�
indexing supports the communication of concurrent processes which exchange sets of inferences�
We discuss our experiences with parallelism in our theorem prover and point out the importance
of decentralized distributed processing and of �exible control of granularity of a distributed
theorem prover�

�
Preliminaries

In this chapter we introduce the notions of four di�erent subjects� First� we present rules� They
will be used throughout this work for de
ning functions in an elegant and simple way� In the
second section the standard notions for �rst�order logic are introduced� This introduction is
quite short� we merely present the notations needed in this thesis� As the standard notations for
logic are used� readers familiar with this topic may skip the second section� Since a large part
of the indexing techniques rely on tree
like structures� we state some notions describing graphs
and trees in the third section� Finally� we describe the way algorithms are presented� The whole
chapter is mainly based on the PhD thesis of Peter Graf �Gra����

��� Rules

In this text most de
nitions are based on sequences of rules� Each rule consists of three parts�
The
rst part contains a pattern and is written at the left side of the assignment� The second
part occurs at the right side of the assignment and contains the resulting value� The third part
is preceded by the keyword �if� and contains a condition under which the rule may be applied�
Usually� a de
nition consists of more than a single rule� as illustrated by the following schema�

pattern� �� value� if condition�
���

���

patternn �� valuen if conditionn

The rules are read top down� The ith rule is selected if all previous rules could not be applied�
if the pattern represents the expression at issue� and if the condition is ful
lled� If a rule does
not include a condition� the condition is evaluated to true by default� Note that a condition
occurring in a rule that could not be satis
ed is assumed to occur negated in all rules below�

� Chapter �� Preliminaries

In a rule that considers terms� x represents any variable� a represents any constant� f rep

resents any non
constant function symbol� and t represents any term� Consider the following
example�

is a constant�a� �� true

is a constant�t� �� false

On one hand� we see that the value of is a constant�b� is true because b is a constant and the
symbol a in the rule represents any constant� On the other hand� is a constant�x� is false because
x is a variable and therefore the
rst rule could not be applied�

��� First�Order Logic

����� Signature

The standard notions for
rst
order logic are used�

De�nition �����
Signature�
A signature � �� �V�F�P� consists of the following disjoint sets�

� V is a countable in
nite set of variable symbols�

� F is a countable in
nite set of function symbols� It is divided into the sets of n place
function symbols Fn �n � IN���

� P is a
nite set of predicate symbols divided into the sets of n place predicate symbols
Pn�

We will name variables x� y� z� We use the symbols f � g� h for functions and a� b� c for
constants �� place function symbols�� Predicates are represented by P � Q� R�

De�nition �����
Special Symbols�
The following special symbols are available�

� The logical connectives ���������� 	�

� The auxiliary symbols ���� ���� �� �

����� Terms� Literals� and Clauses

In
rst
order logic� constants and variables are used to denote objects� Predicates express prop

erties of or relations between objects� Functions describe operations to be performed on objects�
Constants� variables� and functions can be composed into terms� thus allowing arbitrarily com

plex object descriptions�

��� First�Order Logic �

De�nition �����
Terms�
The set of terms T is the least set with V � T and f�t�� � � � � tn� � T if f � Fn and t�� � � � � tn �
T� The set of variables VAR�t� occurring in a term t is de
ned as

VAR�x� �� fxg

VAR�a� �� �

VAR�f�t�� � � � � tn�� ��
�

��i�n

VAR�ti�

A term t with VAR�t� � � is called ground� Additionally� the function top denotes the top symbol
of a term�

top�x� �� x

top�a� �� a

top�f�t�� � � � � tn�� �� f

A term t is called linear if all variables of t occur exactly once in the term� The depth of a term
is de
ned as

depth�x� �� �

depth�a� �� �

depth�f�t�� � � � � tn�� �� � !maxfdepth�t��� � � � � depth�tn�g

The arity of a term is de
ned as

arity�x� �� �

arity�a� �� �

arity�f�t�� � � � � tn�� �� n

A typical notational variant used in theorem proving is the clause form� A set of clauses
represents a formula and each clause consists of a collection of literals�

De�nition �����
Atoms and Literals�

P �t�� � � � � tn� is an atom if P � Pn and t�� � � � � tn � T� Atoms and their negations are literals�
A literal is called negative if it consists of an atom and a negation symbol� Otherwise it is called
positive� Two literals P �s�� � � � � sn� and �P �t�� � � � � tn� are called complementary�

De�nition �����
Clauses�

A clause is a
nite set of literals� The set is interpreted as the disjunction of the literals� with
the whole clause being universally quanti
ed over all variables occurring in it� A unit clause
contains only one literal�

����� Positions

Throughout this work sequences are written in square brackets with � � denoting the empty
sequence�

� Chapter �� Preliminaries

De�nition �����
Concatenation of Sequences�
The concatenation of sequences is performed by the function j with

�X �j� � �� �X �

�X �j�i� Y � �� �X� i�j�Y �

For reasons of simplicity we often omit some of the square brackets and write X and �X ji� Y �
instead of �X � and �X �j�i� Y �� respectively� In this thesis most sequences contain natural numbers
separated by commas�

De�nition �����
Positions in a Term�
A position in a term is a
nite sequence of natural numbers� The subterm of a term t at position
p is denoted by t�p and de
ned as follows�

t � � � �� t

f�t�� � � � � tn� � �ijp� �� ti � p

The set of positions of the term t � f�t�� � � � � tn� is de
ned by

O�x� �� f� �g

O�a� �� f� �g

O�f�t�� � � � � tn�� �� f� �g

�

p�O�ti�

f�ijp�g

For example� the term g�a� occurs at the positions ����� and ��� in f�g�g�a��� g�a��� Accord

ingly� we have f�g�g�a��� g�a�� " ����� � g�a� and O�h�a� g�b�� x�� � f� �� ���� ���� ������ ���g�

As positions are sequences of natural numbers� we can use the lexicographical extension of
the natural ordering � on natural numbers to sort positions�

De�nition ����	
Total Ordering on Positions�
The lexicographical extension of the natural ordering � on natural numbers is de
ned as follows�

p
�
� � � if p �� � �

�ijp�
�
� �jjq� if i � j � �i � j � p

�
� q�

For example� �����
�
� ������ ���

�
� ������ and �������

�
� ������ Note that p

�
� q if in the preorder

traversal of the tree that represents a term containing both positions p and q the position q is
visited before p�

����� Substitutions� Uni	cation� and Matching

De�nition ����

Substitutions�
A substitution � � V � T is an endomorphism on the term algebra such that the set fx � V j
x� �� xg is
nite� The domain of a substitution is de
ned as

DOM��� �� fx � V j x� �� xg

��� First�Order Logic �

The codomain of a substitution is de
ned as

COD��� �� fx� j x � DOM���g

The image of a substitution is de
ned as

IM��� �� VAR�COD����

Since every substitution � is uniquely determined by its e�ect on the variables of DOM����
it can be represented as a
nite set of variable
term pairs fx� �� x��� � � � � xn �� xn�g where
DOM��� � fx�� � � � � xng� For example� the domain of the substitution � � fx �� f�a� b�� y ��
g�z�g is DOM��� � fx� yg and the codomain is COD��� � ff�a� b�� g�z�g� The set of variables
introduced by � is IM��� � fzg�

De�nition ������
Composition of Substitutions�

Let � � fx� �� s�� � � � � xn �� sng and � � fy� �� t�� � � � � ym �� tmg be two substitutions� The
composition �� of two substitutions is de
ned as

x���� �� �x���

for all x � V� It can be computed as

�� � fx� �� s��� � � � � xn �� sn�g
 fyi �� ti j yi � DOM���nDOM���g

Consider� for instance� the substitutions � � fz �� f�x�g and � � fx �� a� y �� cg� We have
�� � fz �� f�a�� x �� a� y �� cg� Note that the assignment x �� a is part of the composition�
although it was applied to the variable x in IM���� The join of � and � de
ned below will not
contain x �� a anymore�

De�nition ������
Join of Substitutions�

Let � � fx� �� s�� � � � � xn �� sng and � � fy� �� t�� � � � � ym �� tmg be two substitutions� The
join of the substitutions � and � is de
ned as

� � � �� fx� �� s��� � � � � xn �� sn�g
 fyi �� ti j yi � DOM���nIM���g

Obviously� for � � fz �� f�x�g and � � fx �� a� y �� cg we have � � � � fz �� f�a�� y �� cg�
The join of substitutions is closely related to the composition� The only di�erence is that�
contrary to the composition� assignments that could be applied are not contained in the result
of the join� In Section ������� the join of substitutions will be needed to de
ne deletion in
substitution trees�

De�nition ������
Restriction�
Let � be a substitution and U � V a set of variables� The restriction �jU is the substitution
with DOM��jU� � U which agrees with � on U �

De�nition ������
Idempotent Substitution�

The substitution � is called idempotent i� �� � ��

For idempotent substitutions we have DOM���� IM��� � ��

�� Chapter �� Preliminaries

De�nition ������
Variant Terms�
A substitution � is called a renaming if it is injective on DOM��� and if the codomain COD���
only contains variables� Two terms s and t are called variants if a renaming � exists such that
s� � t�

De�nition ������
Matcher�
A substitution � is called a matcher from term s to term t if s� � t� In this case s is called a
generalization of t and t is called an instance of s�

De�nition ������
Uni�able Terms� Most General Uni�er�
Two terms s and t are called uni�able if and only if a substitution � exists such that s� � t��
In this case the substitution � is called a uni�er of s and t� A uni
er � is called most general
uni�er �mgu� if for every uni
er � of s and t a substitution � exists such that �� � �� We de
ne
the function mgu�s� t� to compute the most general uni
er of the terms s and t� The extention
of mgu�� to compute the most general uni
er of atoms is straightforward�

For example� the terms f�a� y� and f�x� b� are uni
able and the mgu is fx �� a� y �� bg�
Note that the most general uni
er for two terms is unique up to variable renamings if theories
are not involved� Terms may be non�uni�able for di�erent reasons� Clashes occur when two
non
variable symbols occurring at identical positions in the two terms are not identical� A clash
is called direct if it can be detected without considering partial substitutions� For example�
a direct clash is detected when unifying f�a� x� and f�b� y�� The detection of indirect clashes
requires the consideration of partial substitutions� The uni
cation of f�x� x� and f�a� b� fails
because the variable x can only be bound either to the constant a or to the constant b� Failures
resulting from occur�checks also take partial substitutions into consideration� For example� the
occur
check detects the failure when unifying f�x� x� and f�y� g�y�� because a uni
er would have
to contain the binding y �� g�y��

De�nition ������
Merge of Substitutions�
Let � and � be two idempotent substitutions� A uni�er for � and � is a substitution � such that
�� � ��� A uni
er � of two substitutions is called most general if for every uni
er � of � and �
a substitution � exists such that �� � �� The substitutions � and � are compatible if they have
a most general uni
er �� In this case the merge of � and � is de
ned as

� � � �� ����jDOM����DOM���

Merging two substitutions corresponds to calculating the most general common instance�
The domain and the codomain of the resulting substitution are computed as follows�

DOM�� � �� � DOM���
 DOM���

COD�� � �� � �DOM�� � ���mgu�DOM�� � ����DOM�� � ����

For the two substitutions � � fx �� f�a� u�� y �� cg and � � fx �� f�v� b�g we have
� � � � fx �� f�a� b�� y �� cg�

De�nition �����	
Merge of Substitution Sets�
Let ��# be two substitution sets� We extend the merge operator � to a generic merge operator
�

��# �� f�j� � �� �� � � �� � � #g

The extention to an arbitrary number of arguments is straightforward�

��� Graphs and Trees ��

����
 Normalization

Finally� we introduce the notion of a normalized term s for a term s� Normalization renames
the variables of terms s and t in such a way that s � t holds for terms equal modulo variable
renaming�

The purpose of normalization is to rename terms and substitutions before they are inserted
into a term index in order to enable more sharing of common symbols in the index�

The variables in a term are renamed to so
called indicator variables� which are denoted by
�i� The set V� of indicator variables is a subset of V�

De�nition �����

Normalization of Terms�

Let s � f�s�� � � � � sn� be a term� The set of
rst occurrences of variables in s is de
ned as

Ofirst�s� �� fp j p � O�s�� s�p � V� 	q � O�s�� p
�
� q� s�q �� s�pg

Let Ofirst�s� � fp�� � � � � pmg and pj
�
� pi for � � i 	 j � m� Then the substitution � � fs�p� ��

��� � � � � s�pm �� �mg with �i � V� is called normalization and

s �� s�

For example� f�x� � f�y� � f���� and h�x� x� y� � h�z� z� x� � h���� ��� ���� The next
de
nition extends the normalization of terms to the normalization of substitutions�

De�nition ������
Normalization of Substitutions�
Let � � fx� �� t�� � � � � xn �� tng be a substitution and t � fn�t�� � � � � tn� with fn � Fn�
Additionally� let 	 be a
xed total ordering on variables and x� 	 � � � 	 xn� The normalized
substitution � is de
ned as

� �� fx� �� t��� � � � � xn �� t�ng

For example� if � � fx �� f�u� v�� y �� f�a� v�g and x 	 y� then � � fx �� f���� ����
y �� f�a� ���g� However� if we chose y 	 x� the normalization of � would be � � fx ��
f���� ���� y �� f�a� ���g�

��� Graphs and Trees

De�nition �����
Graph�
A graph G � �V�E� consists of a
nite� nonempty set of vertices V and a set of edges E� If the
edges are ordered pairs �v� w� of vertices� then the graph is said to be directed $ v is called the tail
and w the head of the edge �v� w�� If the edges are unordered pairs �sets� of distinct vertices�
also denoted by �v� w�� then the graph is said to be undirected� A directed graph is said to be
labeled if the edges are ordered triples �v�Label� w� of two vertices and an arbitrary label�

De�nition �����
Acyclic Graph�
A path in a graph is a sequence of edges of the form �v�� v��� � � � � �vn��� vn�� A path is simple if
all edges and vertices� except possibly the
rst and last vertices� are distinct� A cycle is a simple
path which begins and ends at the same vertex� An acyclic graph does not contain cycles�

�� Chapter �� Preliminaries

De�nition �����
Tree�
A tree T � �V�E� is a directed acyclic graph having the following properties�

�� There is exactly one vertex that no edges enter� This vertex is called root�

�� Every vertex except the root has one entering edge�

�� There is a unique path from the root to each vertex�

If �v� w� is in E� then v is called the father of w� and w is the son of v� If there is a path from
v to w� then v is an ancestor of w and w is a descendant of v� A vertex with no sons is called
leaf� A vertex w and all its descendants are called a subtree of v� The vertex w is called the root
of that subtree� The empty tree is denoted by
�

We introduce the following notions for a tree T � �V�E�� The set of vertices of a tree is
denoted by nodes�T � �� V � Additionally� root�T � denotes the root of the tree� Subtrees of the
tree are denoted by sons�T � �� fv j father�v� � root�T �g�

De�nition �����
Ordered Tree�

An ordered tree is a tree in which the sons of each vertex are ordered� When drawing an ordered
tree we assume that the sons of each vertex are ordered from left to right�

��� Algorithms

We use a standardized notation for presenting algorithms� An example algorithm for computing
the value of n% � � � � � � � n is shown in Figure ���� Prede
ned commands like if and then

� algorithm fac�int n�

� begin

� if n � � then

� RESULT � �

� else

� h This is a comment� i
	 RESULT � n � fac�n� ��

 return RESULT

� end

Figure ���� Presentation of Algorithms

are written boldface� The scope of if� else� and forall commands is de
ned by indention�
All variables like n and RESULT are local� If global variables are needed� a comment will tell
this� The result of a function is the value returned by the command return in line �� Formal
parameters of an algorithm may be de
ned together with their type�

�
UR�Resolution

The Unit Resulting Resolution was introduced by McCharen� Overbeek� and Wos �MOW��a��
We shall employ this inference rule for the investigation of indexing techniques and distributed
processing in automated reasoning� To this end we extend the unit resulting resolution rule to
work on sets of substitutions� In order to detach the inference rule from the usual notion of
clauses� we introduce a clause graph on the initial clause set� The clause graph provides pre

computed information about the potential application of the modi
ed unit resulting resolution�

In Chapter � we will show that substitution sets can be represented by indexes in a natural
manner� In Purr these indexes become the fundamental data structure instead of the usual
clauses and literals� Thus in this work an index e�ciently represents a substitution set� The
main operations like subsumption and the computation of simultaneous uni
ers are extended to
set operations based on indexing techniques� Moreover� the modi
ed ur
resolution rule is con

currently applied to di�erent nuclei of the clause graph� New sets of conclusions are exchanged
among parallel processes in the form of indexes�

In the
rst section we brie�y discuss the unit resulting resolution principle and motivate
possible modi
cations� The clause graph is introduced in the second section� Finally� we discuss
our extention of unit resulting resolution to an inference rule working on substitution sets in the
third section�

��� Unit Resulting Resolution

The ur
resolution rule is applied to a set of m unit clauses fK�g� � � � � fKmg and a single nucleus
fL�� � � � � Lm	�g consisting of m ! � literals� If there is a simultaneous complementary uni
er
� for all m pairs of literals Ki� Li� then fLm	�g� is the unit resulting resolvent� In the general
presentation of the rules all pairs of literals Ki� Li are assumed to be complementary� i�e� to have
opposite signs� The computation of the simultaneous uni
er ignores the signs of the literals$ jKj

�� Chapter �� UR�Resolution

denotes the atom contained in the literal K�

fK�g
���
fKmg
fL�� � � � � Lm� Lm	�g
�� � � mgu��jK�j� � � � � jKmj�� �jL�j� � � � � jLmj��
fLm	�g�

As an example for unit resulting resolution consider the non
unit clause

f�MARRIED�x� y���MOTHER�x� z�� FATHER�y� z�g

and the two unit clauses
fMARRIED�lisa� joe�g
f�FATHER�joe� pete�g

UR
Resolution yields the clause
f�MOTHER�lisa� pete�g

Unit resulting resolution can produce both negative and positive resolvents� The ur
inference
rule is refutation complete on the class of unary refutation complete clause sets� Horn clauses
are an important subset of this class�

Exploiting that ur
resolvents fLm	�g� are unit clauses� the resolvents can be represented as
substitutions � as long as the according literal Lm	� is known� Consider a modi
ed resolution
scheme which delays the application of simultaneous uni
ers �i of former resolution steps until
the computation of the current simultaneous uni
er �� Note that unit clauses of the initial
clause set have empty substitutions �i�

fK�g��
���
fKmg�m
fL�� � � � � Lm� Lm	�g
�� � � mgu��jK���j� � � � � jKm�mj�� �jL�j� � � � � jLmj��
fLm	�g�

In this resolution scheme� the literals Ki are always literals of the initial clause set� The
initial clause set also determines the possible combinations of literals Ki and Li� If the literals
Ki and Li are complementary and uni
able� then an instance Ki�i might still be uni
able with
Li� If two complementary literals Ki and Li are not uni
able� then no instance Ki�i will ever
be uni
able with Li�

Pairwise complementary and uni
able literals of the initial clause set can be computed in
advance� The uni
ability of literals in a clause set is represented by a clause graph� The nodes of
the clause graph correspond to the literals of the initial clause set� The links denote uni
ability
and thus determine the application of ur
resolution� We attach sets of ur
resolvents represented
as substitutions to the according nodes in the clause graph� The refutation process thus consists
of the creation and the exchange of substitutions via links in a clause graph�

In the next section we develop a convenient graph structure containing information about
the uni
ability of literals� The graph structure will serve as a base for a modi
ed unit
resulting
resolution rule that will solely work on substitutions�

��� Clause Graph ��

��� Clause Graph

����� Undirected Clause Graph

In a clause set some unit clauses or ur
resolvents are potential ur
resolution partners for a certain
nucleus� These relations do not change during subsequent applications of ur
resolution� One
means to represent this information explicitly is a clause graph� Each vertex of such a clause
graph denotes a literal of the clause set� Two vertices are linked if the associated literals are
complementary and uni
able� This de
nition yields a so
called undirected clause graph� For the
sake of simplicity we also refer to the term �vertex v corresponding to literal L� as �literal v� if
the correspondence is non
ambiguous� Consider the following clause set�

fQ�a�g
fP �a�g
f�Q�x���P �a�� P �y�g
f�P �d���P �b�g
f�P �c�g

The corresponding undirected clause graph is depicted in Figure ���� The vertices� whose corre

sponding literals form a non
unit clause� are presented in groups� Each pair of complementary
and uni
able literals is connected by a link�

Q�a� P �a�

�Q�x� �P �a� P �y�

�P �d� �P �b� �P �c�

Figure ���� Undirected Clause Graph

����� Directed Clause Graph

An undirected link indicates a possible application of ur
resolution� However� nothing is said
about which literals are regarded as electrons and which literals play the role of a literal of the
nucleus� Moreover� some links seem to be redundant for the refutation process� For instance� in
order to
nd a refutation of the unit clause f�P �c�g in Figure ���� the clause f�P �d���P �b�g is
not needed�

�� Chapter �� UR�Resolution

In order to avoid super�uous links in a clause graph we introduce directed links and a
classi
cation of clauses� The direction of a link determines the type of the connected literals�
The originating literal is called the sender literal� This literal corresponds to an electron which
is either a unit clause in the initial clause set or a ur
resolvent of a nucleus� The target literal
is referred to as the receiver literal which is part of a nucleus�

Chang and Slagle �CS��� introduced a classi
cation of the clause set inventing the Set�of�
Support �SOS� strategy� Here the clause set is divided into two disjoint subsets� One subset
contains the clauses originating from the axioms� where the other subset contains the clauses
from the negated theorem� The idea is that the axiom set itself is not unsatis
able� To
nd
a refutation the clauses that form the theorem are also required� The SOS strategy forbids
resolvents inferred by solely using clauses from the axioms�

According to the SOS strategy some clauses in a clause graph are marked as so
called query
clauses� As a consequence some reasoning possibilities need not to be considered� A query clause
usually corresponds to a theorem in the clause set� The creation of a clause graph is a recursive
process considering the literals of the query clauses as receiver literals� If an according sender
literal belongs to a nucleus� then the remaining literals of the nucleus have to be considered as
receiver literals as well�

In addition to the SOS strategy� the sign of the literals might be used as a restriction on
directed links� For example� one could only allow links from positive to negative literals� As a
consequence every ur
resolvent would be positive� This restriction corresponds to the positive
and negative versions of hyperresolution introduced by John Alan Robinson �Rob����

Note that a directed clause graph is a generalization of the undirected approach if all clauses
are marked as query clauses� In a directed clause graph with all clauses marked as query clauses�
each linked pair of vertices has two links �v� w� and �w� v��

In Figure ��� the unit clause f�P �c�g is marked as a query clause by the question mark� The
literal P �y� of the triple clause f�Q�x���P �a�� P �y�g is an appropriate partner for the query
clause� The remaining literals �Q�x� and �P �a� match the two positive unit clauses Q�a� and
P �a� and the P �y� itself �indicated by a so
called internal link�� Such an internal link connects
literals of a single clause� The clause f�P �d���P �b�g is omitted� because there is no possible
connection with other clauses� Thus this clause is not needed for the refutation of the query
clause �P �c��

����� Labeled Directed Clause Graph

A directed clause graph mirrors ur
resolution possibilities� The direction of links distinguishes
connected literals as electron and part of a nucleus� Sender literals are considered as electrons
whereas receiver literals belong to nuclei� The representation of ur
resolvents as substitutions
also requires additional information about the uni
ability of linked literals� To meet these
requirements we introduce labeled links containing splitted most general uni�ers of linked literals�
As a result we obtain a labeled directed clause graph�

��� Clause Graph ��

Q�a� P �a�

�Q�x� �P �a� P �y�

�P �d� �P �b� �P �c� �

Figure ���� Directed Clause Graph

������� Examples

Consider the following fragment of a clause set�

fR�a�g
fR�b�g
f�R�x�� P �x� a�g
f�P �b� y�� Q�y�g
� � �

Assume that the literal Q�y� has been chosen as a sender literal by some query clauses� The
corresponding directed clause graph is depicted in Figure ����

R�a� R�b�

�R�x� P �x� a�

�P �b� y� Q�y� � � �

Figure ���� Directed Clause Graph

�� Chapter �� UR�Resolution

Two ur
resolvents fP �a� a�g and fP �b� a�g might be inferred by using the clauses fR�a�g�
fR�b�g� and the nucleus f�R�x�� P �x� a�g� The ur
resolvent fP �b� a�g can be used as a new
electron with the literal �P �b� y� of the nucleus f�P �b� y�� Q�y�g to resolve fQ�a�g� The other
ur
resolvent fP �a� a�g is not compatible with �P �b� y��

In order to check if a speci
c instance of a sender literal is uni
able with the according
receiver literal we consider the most general uni
er of the two literals� In the example� the most
general uni
er of the sender literal P �x� a� and the receiver literal �P �b� y� is the substitution
� � fx �� b� y �� ag � The uni
ability can be checked if we also consider ur
resolvents represented
as substitutions� These substitutions correspond to the simultaneous uni
ers of ur
resolution�
The ur
resolvent fP �a� a�g is represented by the substitution �� � fx �� ag� The ur
resolvent
fP �b� a�g is represented by the substitution �� � fx �� bg� Obviously� only the substitution ��
is uni
able with the substitution ��

We observe that only assignments of � to variables occurring in the sender literal are needed
to check if a speci
c instance of the sender literal is uni
able with the receiver literal� In the
example that is the assignment fx �� bg of � which has to be checked for uni
ability with the
substitutions �� and ���

The assignments to variables occurring in the receiver literal are also needed in order to
create a simultaneous uni
er in subsequent ur
resolution steps� In the example� the assignment
fy �� ag of � is used to instantiate the receiver literal �P �b� y��

The next example contains clauses with more complex terms� Consider the clause set�

fQ�x� f�y��g
fP �f�f�x��� x� a�g
f�Q�f�x�� x���P �f�x�� f�y�� a�� P �x� f�y�� z�g
f�P �f�b�� f�b�� c�g is a query clause

Note that all clauses are considered variable disjoint� The corresponding clause graph is depicted
in Figure ���� Each link in the graph is labeled with a so
called splitted most general uni�er of
the connected literals� The uni
er is divided into two substitutions � and �� The substitution
� is called the test substitution� The substitution � is referred to as the send substitution� Note
that a test substitution only considers variables of the sender literal whereas a send substitution
only contains variables of the receiver literal in its domain�

The most general uni
er of the connected literals is splitted in order to support two essential
operations� The test uni�cation and the send instantiation�

� Every instantiation � of a sender literal has to be tested for uni
ability with the connected
receiver literal� This test corresponds to the selection of a ur
resolvent as an electron� We
also refer to this operation as the test uni�cation� The test uni
es the instantiation � and
the test substitution � of the corresponding link�

� The resulting uni
er of a successful test uni
cation is applied to the send substitution ��
We refer to this operation as the send instantiation� The result of the send instantiation
is a substitution �� which instantiates the receiver literal� As the receiver literal belongs
to a nucleus� the according instantiation �� is used for the computation of simultaneous
uni
ers together with instantiations of the remaining literals in order to perform a unit
resulting resolution step�

��� Clause Graph ��

Q�x� f�y�� P �f�f�x��� x� a�

�Q�f�x�� x� �P �f�x�� f�y�� a� P �x� f�y�� z�

�P �f�b�� f�b�� c� �

���fx��f�f�ys��g

���fx��f�ys�g

���fx��f�yr �g

���fx��f�f�yr���y ��yrg

���fx ��f�xr ��z ��ag

���fx��xr �y ��ysg

���fx��f�b��y ��b�z ��cg

����

Figure ���� Labeled Directed Clause Graph with Test and Send Substitutions

Consider the link labeled with �� and ��� Given the test substitution �� every instance of
the variable x in the sender literal fP �x� f�y�� z�g has to be of the form f�b� in order to be
uni
able with the query clause f�P �f�b�� f�b�� c�g� Moreover� instances of y are restricted to
the constant b and instances of z are restricted to c� The empty send substitution �� indicates
that the receiver literal does not contain any variables� Thus an instantiation �� will be empty
after a successful test uni
cation�

At the link labeled with �� and �� variables are involved in both the sender and the receiver
literal� Note that a test substitution � actually is not required for unit clauses since there are
no special instantiations for unit clauses� In this case� the send substitution �� su�ces for the
correct instantiation of the receiver literal� The same applies to the link labeled with �� and ���

The internal link labeled with �� and �� shows a new� complex situation� In general� vari

ables of literals of one clause are not disjoint� i�e� the variable x occurring in the sender literal
P �x� f�y�� z� and the receiver literal �P �f�x�� f�y�� a� denotes a single variable� However� vari

ables like x and y have to be distinguished in the test and send substitution if the literals are
connected with an internal link� Therefore� variables of the sender literal are indexed by �s� in
the codomain of the test and send substitution� Variables of the receiver literal are indexed by
�r��

The test substitution �� restricts all instances of x to the term f�xr�� where the variable
xr denotes the variable x in the receiver literal� The corresponding assignment fx �� xrg of
�� achieves the correct instantiation of the receiver literal� The variable xr refers to the same
variable in the codomain of ��� If xr is bound to a term t while testing an instance of the sender
literal against ��� the term t also becomes an instance of the variable x in the receiver literal�

Now� consider the assignment fy �� ysg in ��� If an instance of the sender literal instantiates
the variable y� then this instance also appears at the variable y in the receiver literal� The
domain variable y of fy �� ysg belongs to the receiver literal� whereas the codomain variable ys
belongs to the sender literal�

Note that an additional conversion of variables is needed for the correct instantiation of the

�� Chapter �� UR�Resolution

send substitutions� This problem arises when variables in the codomain of the send substitution
are not instantiated� We shall discuss this issue in more detail in Chapter ��

����� De	nitions

We
nally summarize the previous discussion by two informal de
nitions� In particular� we
de
ne the splitted most general uni
er of linked literals and the labeled directed clause graph�
The clause graph will be used in our ur
resolution scheme on substitution sets which is discussed
in the next section�

De�nition �����
Splitted Most General Uni�er�

Let Ls be a sender literal and let Lr be a receiver literal� The literals are not necessarily variable
disjoint� The Splitted Most General Uni
er split mgu�Ls� Lr� is de
ned as follows�

�� � �� � split mgu�Ls� Lr� ��� jLsj and jLrj are uni
able and

jLsj� � jLrj� and

�� � �� is most general�

Note that this de
nition does not address the formerly presented variable renaming with indices
�s� and �r�� However� we will discuss this issue in Chapter ��

We summarize the main ideas behind the test and the send substitutions as follows�

� The test substitution � is used to check if a speci
c instantiation � of ur
resolvent K is
uni
able with a connected receiver literal L�

� The send substitution � is used as a template for the computation of an instantiation ��

of the receiver literal L considering K� as an electron�

Finally� we present the de
nition of a directed clause graph labeled with test and send
substitutions� The later de
nition of the ur
resolution rule on substitution sets is based on this
clause graph� An example of a labeled directed clause graph is depicted in Figure ����

De�nition �����
Labeled Directed Clause Graph
LDCG��
Let S � fC�� � � � � Cmg be a non
empty clause set� A non
empty subset of the clauses of S is
marked as query clauses� A labeled directed clause graph on S

CGS �� �V�E�

is a labeled directed graph� The following conditions hold�

� Each literal of the clause set S corresponds to exactly one vertex in V � The function literal

maps each vertex v � V to exactly one literal L � Ci�

� The function clause maps a vertex v � V to a set of vertices fv� v�� � � � � vng which corre

spond to the literals of the according clause of v�

� query�S� � V denotes the set of vertices whose corresponding literals are considered as
literals of the query clauses in S�

��� UR�Resolution on Substitution Sets ��

� E is the set of labeled directed edges with �v� ��� ��� w� � E if the corresponding literals
of v and w are complementary and uni
able with �� � �� � split mgu�literal�v�� literal�w���
Furthermore� w corresponds to a literal in a query clause or a query clause is reachable
via a sequence of labeled directed edges�

A detailed algorithm for the creation and optimization of labeled directed clause graphs will be
discussed in Chapter ��

��� UR�Resolution on Substitution Sets

The ur
resolution scheme on substitution sets exploits the labeled directed clause graph� Re

solvents are represented as substitutions� Each substitution belongs to a certain literal in the
clause set� i�e� a certain vertex in the clause graph� Resolvents are collected in substitution
sets which are attached to vertices and links in the clause graph� Substitutions are exchanged
between these substitution sets via links in the clause graph� In the next section we introduce
a modi
ed version of ur
resolution that works on substitution sets�

����� Adapting UR�Resolution to Substitution Sets

On page �� we have introduced ur
resolution� We now present a
rst modi
ed ur
resolution rule
which solely works with substitutions instead of clauses and literals� To this end we create the
according LDCG�

We use substitutions to represent instances of literals in the graph� It is important to keep
in mind that a single substitution is always associated to a certain literal� In the following
ur
resolution rule we associate substitutions �i and � to sender literals in the graph�

The pairs of an electron Ki�i and a literal Li in the nucleus are replaced by the according
splitted uni
er ��i� �i� contained in the graph� The electrons Ki�i are represented by substi

tutions �i which belong to literals Ki in the graph� The function apply performs the test
uni
cation and the send instantiation which correspond to the pairwise uni
cation of electrons
Ki�i and literals Li in the nucleus and the creation of the according uni
er �s� Def� �������
We currently assume that all test uni
cations succeed� In other words� the electrons Ki�i and
literals Li are pairwise uni
able� The resulting uni
ers have to be uni
ed in order to produce
the simultaneous uni
er � which is associated to the literal Lm	��

��
���
�m
���� ���� � � � � ��m� �m�
�� � � apply�f��g� ��� ���� � � �� apply�f�mg� �m� �m�

�

In practice� we cannot assume that all pairs of literals Ki�i and Li are compatible� The idea
of the next ur
resolution rule is to associate every substitution �i and � to receiver literals in
the graph� The substitutions represent the result of already successful test uni
cations and send
instantiations�

If the substitutions �i belong to the literals Li of the nucleus� these substitutions �i can
directly be uni
ed to a simultaneous uni
er �� Finally� the substitution � is tested with the

�� Chapter �� UR�Resolution

splitted uni
er ��m	���m	�� of one outgoing link of the literal Lm	�� If the test uni
cation
succeeds� the resulting substitution belongs to the according receiver literal of the outgoing link�
This substitution might be used as a new electron in subsequent applications of the rule�

��
���
�m
��m	�� �m	��
�� � � �� � � � �� �m
apply�f�g� �m	�� �m	��

Instead of working with single substitutions �i� we could also process substitution sets �i�
The modi
ed ur
resolution rule also produces a set of simultaneous uni
ers�

��
���
�m

��m	�� �m	��
� �� �� � � �� � � � �� �m

apply��� �m	�� �m	��

In practice� we only consider one substitution set �i of new ur
resolvents� The remaining
substitution sets are considered as sets of ur
resolvents that have been uni
ed or merged� Thus
a new substitution set �i is merged with the known instances of the remaining literals of the
nucleus� Thus our
nal ur
resolution scheme on substitution sets is

�i� � � i � m
��� � � � ��i����i	�� � � � ��m� ��m	�� �m	��
� �� �� � � �� � � � �� �m

apply��� �m	�� �m	��

This modi
ed ur
resolution scheme requires substitution sets attached to vertices and links
in the clause graph� For example� the substitution set �i in the last rule is associated to the
vertex of literal Li� Later we will show how substitution sets attached to links can be exploited
to support subsumption on simultaneous uni
ers�

����� De	nitions

������� Sets of Substitution Sets

We de
ne four sets REC� MRG� RES� and SNT containing substitution sets that are associated
to a clause graph� The
rst two sets REC and MRG contain substitution sets that are attached
to vertices in a clause graph� The set REC contains sets of received substitutions� Received
substitutions correspond to uni
ers of new inferences and the according receiver literals� These
substitutions have not been considered for simultaneous uni
cation yet� Substitutions that have
been received and simultaneously uni
ed are added to substitution sets in the set MRG� These
substitutions are called merged substitutions�

The other two sets RES and SNT contain substitution sets that are attached to links in a
clause graph� The set RES contains sets of resolved substitutions for a single link� Resolved
substitutions correspond to the common instances of simultaneous uni
ers of ur
resolution� In

��� UR�Resolution on Substitution Sets ��

practice� not all of the resolved but often exponentially many substitutions can be considered
for subsequent resolution steps� Substitutions that have been considered for subsequent steps
are called sent substitutions� These substitutions are collected in the substitution sets of the
set SNT�

De�nition �����
Sets REC� MRG� RES� SNT of Substitution Sets�
Let CGS � �V�E� be a clause graph� Let REC � f�v� � � � � ��vmg� m � � be an ordered set of
substitution sets �vi and let MRG � f#v� � � � � �#vmg� m � � be an ordered set of substitution
sets #vi � Each element of REC belongs to exactly one vertex vi � V of the clause graph CGS � A
substitution set �vi � REC corresponds to the vertex vi � V of CGS � The same correspondence
applies to the set MRG�

Furthermore� let RES � f&vk �vl � � � � �&vm�vng be an ordered set of substitution sets &vi�vj and
let SNT � f'vk�vl � � � � �'vm�vng be an ordered set of substitution sets 'vi�vj � Each element of
RES belongs to exactly one link �v� ��� ��� w� � E of the clause graph CGS � A substitution set
&v�w � RES corresponds to the link �v� ��� ��� w� � E of CGS � The same correspondence applies
to the set SNT�

������� Transition System PURR

The transition system PURR describes the fundamental algorithm performed by our theorem
prover Purr� The transition system de
nes ur
resolution on substitution sets in a clause graph�
The transition rules of PURR use the formerly introduced sets to maintain substitution sets�
Substitutions are exchanged between substitution sets of connected literals according to our
modi
ed ur
resolution scheme�

We begin with the de
nition of the auxiliary functions apply and strategy� The function
apply combines ur
resolvents with the literal of a nucleus� This operation corresponds to the
test uni
cation and the send instantiation� We use the function strategy for the selection of
�best� ur
resolvents� Finally� we present the transition system PURR�

The Combination of UR�Resolvents and a Nucleus� The function apply performs the
test uni
cation and the send instantiation� The de
nition does not consider the technical details
of variable renaming� For more details see Chapter ��

�

v w

�v� ��� ��� w�

Figure ���� Test Uni
cation and Send Instantiation

De�nition �����
Test Uni�cation and Send Instantiation�

Let �v� ��� ��� w� be a labeled link� Let � and # be two substitution sets� The substitutions of
belong to the literal of vertex v� The substitutions of � belong to the literal of vertex w� We
de
ne�

� �� apply�#� �� �� if

	� � ��
� � # � � is the most general uni
er of � and � and

� is the renamed instance of ��

�� Chapter �� UR�Resolution

In Figure ��� the literal of vertex v is a sender literal connected by a link �v� ��� ��� w� to
the receiver literal of vertex w� The set # contains substitutions which represent instances of
the sender literal v� These instances are ur
resolvents� The function apply combines the ur

resolvents with the receiver literal w of a nucleus� The set � contains substitutions as a result
of successful combinations� The substitutions in � belong to the receiver literal w�

The combination of ur
resolvents with the receiver literal of a nucleus corresponds to the test
uni
cation and the send instantiation� Each substitution � in # is tested for uni
ability with
the test substitution � � The most general uni
er � of a successful test uni
cation is applied to
the send substitution �� The result is renamed to a substitution � in ��

The Selection of UR�Resolvents� The selection of �best� ur
resolvents is usually required
in order to reduce the number of drawn inferences� We also refer to the heuristic of selection
as the strategy� The function strategy selects substitutions of a substitution set according to a
predicate is wanted� Therefore� the predicate is wanted actually determines the strategy�

De�nition �����
Strategy�
Let � and # be two substitution sets� Let is wanted be a predicate� We de
ne�

strategy�#� � f� � # j is wanted���g

The substitutions in strategy�#� are referred to as given substitutions� One example for the
predicate is wanted is to select a certain number of lightest substitutions� i�e� substitutions which
have the smallest number of symbols� Note that the de
nition of is wanted is left open because
the strategy itself is not important at this point�

The Transition System PURR� The transition system PURR consists of the transition rules
RESOLVE� TRYTERMINATE� and TERMINATE� The transition rules are applied to the sets REC�
MRG� RES� and SNT of a clause graph� We de
ne the application of ur
resolution according to
one link in a clause graph with the transition rule RESOLVE� The transition rule TRYTERMINATE

maintains the set MRG of merged substitutions if the termination test fails� The transition rule
TERMINATE stops the transition process if the empty clause is detected�

De�nition �����
Transition System PURR without Subsumption�

Let CGS � �V�E� be a clause graph and let REC� MRG� RES� and SNT be sets of substitution
sets associated to the clause graph CGS according to Def� ������ Initially� the following conditions
hold�

�� RES � �� SNT � �

�� 	v � V � clause�v� � fvg� 	w � V � �v� ��� ��� w� � E �
apply��� fg� �� � �w � �w � REC

The substitution sets in REC of all literals with incoming links from unit clauses are
initialized with the renamed send substitutions ��

�� MRG � REC

Note that the initial state corresponds to the application of ur
resolution with all possible com

binations of unit clauses and nuclei� Subsequent ur
reolvents are produced by the transition

��� UR�Resolution on Substitution Sets ��

rule RESOLVE� This rule also uses the set of vertices V and the set of links E of the clause graph
CGS � The symbol � denotes the disjoint set union�

RESOLVE�

hREC � f�ug � f�wg � MRG � f#ug � RES � f&v�wg � SNT � f'v�wgi
hREC
 f�ug
 f�w
 �g� MRG
 f#u
 �ug� RES
 f&v�w
 &g� SNT
 f'v�w
'gi

if
�v� ��� ��� w� � E�
u � V � clause�v� � fu� v� v�� � � � � vmg �

#v� � � � � �#vm � MRG � & � �u � #v� � � � �� #vm � #vi �� � �

' � strategy�f&v�w
 &gn'v�w� �
� � apply�'� �� ��

The literal u represents the receiver literal of the nucleus fu� v� v�� � � � � vmg� The literal v is the
sender literal of the nucleus connected to the receiver literal w of another clause�

The substitutions in �u are newly received substitutions� The substitution sets #vi of the
remaining literals v�� � � � � vm contain substitutions which have already been merged in previous
ur
resolution steps� These substitutions have to be merged with �u� Then� the substitutions in
�u are copied to the set #v of merged substitutions� The resulting common instances & of the
simultaneous uni
cation are inserted as resolved substitutions into the according set &v�w �

The strategy selects the �best� substitutions ' of all resolved substitutions except for those
substitutions 'v�w that have already been sent� Finally� the instances � of the receiver literal
w are inserted into the according set �w of received substitutions�

TRYTERMINATE�

hREC � f�vg� MRG � f#vg � RES� SNTi
hREC
 f�vg� MRG
 f#v
 �vg� RES� SNTi

if
v � V � clause�v� � fv� v�� � � � � vmg �

#v� � � � � �#vm � MRG � �v � #v� � � � �� #vm � �� #vi �� �

The transition rule TRYTERMINATE considers failed termination tests� The literal v represents
the receiver literal of a clause fv� v�� � � � � vmg� The substitutions in �v are newly received sub

stitutions� The substitution sets #vi of the remaining literals v�� � � � � vm contain substitutions
which have already been merged in previous termination test� These substitutions have to be
merged with �v � Then� the substitutions in �v are copied to the set #v of merged substitu

tions� The termination fails since there is no simultaneous uni
er that instantiates the clause
fv� v�� � � � � vmg to the empty clause�

TERMINATE�

hREC � f�vg� MRG� RES� SNTi
STOP

if
v � V � clause�v� � fv� v�� � � � � vmg �

#v� � � � � �#vm � MRG � �v �#v� � � � ��#vm �� �� #vi �� �

�� Chapter �� UR�Resolution

The transition rule TERMINATE stops the search process if all literals of a single clause are
instantiated by simultaneously uni
able substitutions�

������� Example

Consider the following example of a clause set�

fQ�x� f�y��g
fP �f�f�x��� x� a�g
f�Q�f�x�� x���P �f�x�� f�y�� a�� P �x� f�y�� z�g
f�P �f�b�� f�b�� c�g is a query clause

The example has been presented on page ��� The according clause graph is depicted in Figure ����
The refutation of the query clause f�P �f�b�� f�b�� c�g consists of two ur
resolution steps� The
ur
resolvent ��� refutes the denied theorem�

��� fQ�x� f�y��g
��� fP �f�f�z��� z� a�g
��� f�Q�f�u�� u���P �f�u�� f�v�� a�� P �u� f�v�� w�g � � fu �� f�f�v��g
��� fP �f�f�v��� f�v�� w�g

��� fQ�x� f�y��g
��� fP �f�f�v��� f�v�� w�g
��� f�Q�f�x��� x����P �f�x��� f�x��� a�� P �x�� f�x��� x��g � � fx� �� f�x��g
��� fP �f�x��� f�x��� x��g

The same refutation can be computed on the clause graph with the transition system PURR�
Figure ��� depicts the initial state of the sets REC� MRG� RES� and SNT� The substitution
sets of REC and MRG are attached to vertices v�� v�� and v�� The internal link and the link to
the theorem are labeled with the according substitution sets of RES and SNT� Note that parts
of the sets always remain empty and therefore have been omitted�

The sets in REC and MRG of the vertex v� contain the substitution �� � fx �� f�y��g�
This substitution corresponds to the combination of the literals v� and v�� The variable in the
codomain of �� denoted with y� belongs to the literal v�� Note that �� corresponds to the send
substitution �� modulo renaming�

The substitution �� � fx �� f�f�y��g corresponds to the combination of v� and v�� Ob

viously� the variable y belongs to the same variable in the nucleus� Note that the assignment
fy �� yrg of the send substitution �� has been omitted since yr implicitly corresponds to the
variable y of the nucleus�

Figure ��� shows the situation after performing the transition rule RESOLVE on the internal
link �v�� ���� ���� v�� and the receiver literal v�� The substitution �� is uni
ed with all substi

tutions that have been received and merged at the remaining incoming links� i�e� it is uni
ed
with �� of literal v�� The common instance �� � fx �� f�f�y��g is stored in the set of resolved
substitutions of the current link� Then the only substitution �� in RES is selected as given and
copied to the set of sent substitutions in SNT� The function apply computes the according
instantiation �� � fx �� f�y��� y �� y�g which is passed to REC of vertex v�� Obviously� the
variable y� belongs to the literal v�� This transition corresponds to the
rst ur
resolution step�

��� UR�Resolution on Substitution Sets ��

v� v�

REC
 ���fx ��f�y��g

MRG
 ��

v�

REC
 ���fx ��f�f�y��g

MRG
 ��

v�

v�

REC
 �

MRG
 �
�

v�

���fx ��f�f�ys��g

���fx��f�ys�g

���fx��f�yr �g

���fx��f�f�yr ���y ��yrg

���fx��f�xr ��z ��ag

���fx ��xr �y ��ysg

RES
 �

SNT
 �

���fx��f�b��y ��b�z ��cg

����

RES
 �

SNT
 �

Figure ���� Initial State of the Search Sets

REC
 ���fx ��f�y��g

MRG
 ��

v�

REC
 ���fx��f�f�y��g

���fx��f�y���y ��y�g

MRG
 ��

v�

v�

���fx ��f�xr ��z ��ag

���fx��xr �y ��ysg

RES
 ���fx��f�f�y��g

SNT
 ��

Figure ���� RESOLVE applied on link �v�� ���� ���� v�� with receiver literal v�

�� Chapter �� UR�Resolution

The second ur
resolution step is performed by RESOLVE on the link �v�� ���� ���� v�� with
the receiver literal v�� See Figure ��� for the current state� The substitutions �� and �� of
v� are uni
ed with the merged substitution �� of v�� The resulting common instances are
�� � fx �� f�f�y��g and �� � fx �� f�y��� y �� y�g� We select �� as given� The according
instantiation �� � � is sent to REC of v�� The substitution �� is empty due to the empty send
substitution ���

REC
 ���fx��f�y��g

MRG
 ��

v�

REC
 ���fx ��f�f�y��g

���fx ��f�y���y ��y�g

MRG
 �����

v�

v�

REC
 ����

MRG
 �
�

v�

���fx��f�b��y ��b�z ��cg

����

RES
 ���fx ��f�f�y��g

�	�fx ��f�y���y ��y�g

SNT
 �	

Figure ���� RESOLVE applied on link �v�� ���� ���� v�� with receiver literal v�

Finally� the transition rule TERMINATE is applied on the receiver literal v�� Obviously�
TERMINATE succeeds because v� belongs to a unit clause� i�e� the uni
cation test is not required�
In general� a unit query clause is solved if at least one substitution has been received�

����� A Transition System with Subsumption

We de
ne a transition system SUBSUMPTION which performs subsumption on two substitutions
sets� Substitutions in one set which are subsumed by substitutions in the other set are removed�

De�nition �����
Transition System SUBSUMPTION�
The rule SUBSUMPTION is de
ned on two substitution sets� The rule performs subsumption on
both sets by removing all instances of one set in the other set and vice versa�

SUBSUMPTION�
h� � �ins� # � #insi

h��#i
if

	� � �ins�
� � # � � is a generalization of � �
	� � #ins�
� � � � � is a generalization of �

The transition system PURR with subsumption points out where subsumption may take place
in the reasoning process� We distinguish input and output subsumption� Subsumption might be
performed with received substitutions and merged substitutions of one literal� This subsumption
test is referred to as input subsumption� Resolved substitutions might be tested for subsump

tion with earlier resolved substitutions of one literal� This subsumption test is called output
subsumption� In general� subsumption is considered as one of the most important reduction
methods� Thus subsumption is an integral part of our approach� We present the
nal transition
system PURR which includes input and output subsumption�

��� UR�Resolution on Substitution Sets ��

De�nition �����
Transition System PURR with Subsumption�
Let CGS � �V�E� be a clause graph and let REC� MRG� RES� and SNT be sets of substitution
sets associated to the clause graph CGS according to Def� ������ The initial state is de
ned as
in Def� ������ The de
nition of the three transition rules is based on Def� ����� of the transition
system PURR without subsumption� Here� we merely add the subsumption test to the rules�

RESOLVE�

hREC � f�ug � f�wg � MRG � f#ug � RES � f&v�wg � SNT � f'v�wgi
hREC
 f�ug
 f�w
 �g� MRG
 f#�

u
 ��ug� RES
 f&
�
v�w
 &�g� SNT
 f'v�w
'gi

if
�v� ��� ��� w� � E�
u � V � clause�v� � fu� v� v�� � � � � vmg �

#v� � � � � �#vm � MRG � h�u�#ui �SUBSUMPTION � h��u�#

�
ui �

& � ��u � #v� � � � �� #vm � #vi �� � �
h&�&v�wi �SUBSUMPTION � h&��&�v�wi �

' � strategy�f&�v�w
 &�gn'v�w� �
� � apply�'� �� ��

The subsumption test with the set of received substitutions �u and the set of merged substi

tutions #u corresponds to the input subsumption� The subsumption test with the set of new
ur
resolvents & and the set of previously resolved substitutions &v�w corresponds to the output
subsumption�

TRYTERMINATE�

hREC � f�vg� MRG � f#vg � RES� SNTi
hREC
 f�vg� MRG
 f#�

v
 ��vg� RES� SNTi

if
v � V � clause�v� � fv� v�� � � � � vmg � h�v�#vi �SUBSUMPTION� h��v�#
�
vi �

#v� � � � � �#vm � MRG � ��v � #v� � � � �� #vm � �� #vi �� �

The input subsumption with the set of received substitutions �v and the set of merged substi

tutions #v can also reduce the amount of substitutions which have to be tested for termination�

TERMINATE�

hREC � f�vg� MRG � f#vg� RES� SNTi

STOP

if
v � V � clause�v� � fv� v�� � � � � vmg � h�v�#vi �SUBSUMPTION� h��v�#
�
vi �

#v� � � � � �#vm � MRG � ��v � #v� � � � �� #vm �� �� #vi �� �

The ur
resolution refutation process was represented as the computation and distribution of
substitution sets in a clause graph� Notions like clauses or literals are not needed any longer� In
the next chapter we will present an e�cient technique for the representation and manipulation
of substitution sets called substitution tree indexing�

�� Chapter �� UR�Resolution

�
Indexing

Indexing supports the maintenance of large databases by providing fast access to stored data�
In automated reasoning we employ databases that contain
rst
order terms� Typical queries to
such term indexes are� Given a database D containing terms �literals� and a query term t�
nd
all terms in D that are uni
able with� instances of� variants of� or more general than t�

So far� many successful theorem provers use term indexing to support the reasoning process�
We use term indexing not only as a tool but as the fundamental data structure during the
proof search� Term indexing replaces the standard implementation of literals and clauses� All
operations on resolvents� like resolution and subsumption� are indexing operations� The system
even communicates by sending sets of resolvents stored in indexes�

In the
rst section we present a classi
cation scheme for indexing techniques� An indexing
method called substitution tree indexing �Gra��b� is presented in detail in Section �� We use
substitution trees for the representation of sets of substitutions� In the last section we investigate
the operations on substitution trees providing an e�cient implementation of the former presented
unit resulting resolution on sets of substitutions�

This chapter is mainly based on the PhD thesis of Peter Graf �Gra���� His thesis also provides
an exhaustive discussion of other term indexing methods including the following classi
cation
scheme�

��� Classi�cation of Indexing Techniques

The main purpose of indexing techniques in theorem provers is to achieve e�cient access to
rst

order terms with speci
c properties� To this end a set of terms I is inserted into an indexing
data structure� A retrieval in I is started for a set Q of query terms� The aim of the retrieval
is to
nd tuples �s� t� with s � I and t � Q in such a way that a special relation R holds for
s and t� Most automated reasoning systems can pro
t from a retrieval based on the following

�� Chapter �� Indexing

relations� s and t are uni�able� t is an instance of s� and s is a generalization of t� The relation
for uni
ability can be used for the retrieval of complementary uni
able literals in a resolution
based system� for example� Moreover� possibly forward or backward subsumed clauses are found
by accessing more general or instance literals�

If we are interested in retrieving indexed substitutions instead of indexed terms� a relation
R��� �� is needed� We consider the relations of type R��� �� as generalizations of the relations
of type R�s� t� since indexing substitutions using the relation R�fx �� sg� fx �� tg� is equivalent
to using R�s� t�� An application of indexed substitutions is unit resulting resolution� where
simultaneous uni
cation of substitutions has to be performed�

Retrieval of Type ���� n��� and n�m� A retrieval is of type ��� if both sets I and Q have
cardinality �� Since both sets Q and I solely consist of one single term or substitution� the
retrieval corresponds to simply testing if R�s� t� holds�

Retrieval of type n�� is determined by a single query term t� which is used to
nd entries
s � I� The set I of n indexed terms is represented by an indexing data structure� The result of
a retrieval is a subset of I� Note that a very ine�cient retrieval of type n�� could be performed
by testing each entry of the index in a ��� type retrieval because such an approach would have
to consider all indexed terms explicitly�

Retrieval of type n�m includes all cases in which more than a single query term is involved�
Exploiting n�m indexing� the query set typically is also represented by an index� Hence� we
have to deal with two indexes$ one of them represents the indexed and the other one represents
the query set� The result of such a retrieval is a subset of the direct product of the term sets
involved�

As an example� we consider a n�m retrieval called merge� Suppose we are looking for si

multaneous uni
ers for ur
resolution� We create an index for each literal of the nucleus� Each
index contains the uni
ers of the literal with electrons� In this example it is of advantage if the
indexing technique employed is able to index substitutions in a convenient manner� In a merge
operation we look for simultaneous uni
ers of the electrons and the literals of the nucleus� In
case the nucleus contains more than two literals that have to be merged� we can extend the
merge operation to an arbitrary number n of indexes� In this case we
nd n
tuples instead of
pairs and call the according retrieval operation the multi�merge�

Maintenance of Type n�� and n�m� In addition to the retrieval operations we also have
to provide functions that insert entries into and delete entries from the indexing structure�
Insertion and deletion can also be classi
ed according to the cardinalities of the involved sets�

Maintenance of type n�� includes all operations that modify an index by a single term� Beside
the classical insertion and deletion operations of a single term� the deletion of all instances of a
term� for example� also corresponds to an n�� maintenance operation�

Maintenance of type n�m corresponds to index manipulation operations that
t into the
concept of n�m indexing� For example� the union of two indexes results in a new index that
contains all terms of the two sets involved� An additional n�m maintenance task is to delete all
instances of Q that occur in I from I� Such an operation is used for subsumption in the case of
unit clauses� for example�

��� Substitution Tree Indexing ��

��� Substitution Tree Indexing

Memory requirement and retrieval times being the main criteria for judging an indexing tech

nique� substitution tree indexing is superior to the known tree
based strategies in these points�
Substitution trees can represent any set of idempotent substitutions� In the simplest case all
these substitutions have identical domains and consist of a single assignment� which implies that
the substitution tree can be used as a term index as well� Figure ��� shows an index for the
three substitutions fu �� f�a� b�g� fu �� f�y� b�g� and fu �� f�b� z�g which obviously represents
a term index for the terms f�a� b�� f�y� b�� and f�b� z�� As the name indicates� the labels of
substitution tree nodes are substitutions� Each branch in the tree therefore represents a binding
chain for variables� Consequently� the substitutions of a branch from the root node down to a
particular node can be composed and yield an instance of the root node�s substitution�

�� � fu �� f�x�� x��g

�� � fx� �� bg �� � fx� �� b� x� �� ��g

�� � fx� �� ag �� � fx� �� ��g

Figure ���� Substitution tree

Before substitutions are inserted into the index� their codomain is renamed� This normal�
ization changes all variables in the codomain of a substitution� Renamed variables are called
indicator variables and are denoted by �i� The substitutions inserted to the index in Figure ���
therefore were fu �� f�a� b�g� fu �� f���� b�g� and fu �� f�b� ���g� This renaming has two main
reasons� There is more sharing in the index if the substitutions are normalized and� for some
retrieval tasks� it is necessary to distinguish between variables occurring in the query and in the
indexed terms� The latter may not be instantiated when looking for instances of query terms�
for example�

Consider the substitution � � fu �� f�a� b�g� which is represented by the chain of substitu

tions �� � fu �� f�x�� x��g� �� � fx� �� bg� and �� � fx� �� ag� The original substitution � can
be reconstructed by simply applying the substitution ������ to u� The result of this application
is

� � fu �� u������g

� fu �� f�x�� x������g

� fu �� f�x�� b���g

� fu �� f�a� b�g

The retrieval in a substitution tree is based on a backtracking algorithm� This algorithm
exploits a backtrackable variable binding mechanism� similar to the one used in Prolog�

To illustrate a retrieval operation� the search for substitutions compatible with fu �� f�a� x�g
in our example index is presented� We search for substitutions � such that u� is uni
able with
f�a� x�� We begin by binding the variable u to the term f�a� x� and start the retrieval� The
substitution tree is traversed by testing at each node marked with the substitution � � fx� ��
t�� � � � � xn �� tng whether under the current bindings all xi are uni
able with their appropriate

�� Chapter �� Indexing

ti� At the root node we unify the terms f�a� x� and f�x�� x��� which yields the two bindings
x� �� a and x �� x�� Then we consider the
rst son of the root node marked with �� and unify
x� with b� because x� has not been bound yet� The resulting binding is x� �� b and the leaf node
�� is the next node to be investigated� As x� is bound to a� the uni
cation problem is trivial
and therefore the substitution represented by this leaf node is compatible with fu �� f�a� x�g�
After backtracking node �� is found to represent another solution� because the variable �� is
uni
able with a� Backtracking deletes the bindings of �� and x� and then proceeds with node
��� Obviously� retrieval can be stopped at this point� because a� which is the binding of x�� is
not uni
able with b�

����� Standard Substitution Trees

������� De
nitions

We use a backtracking algorithm to
nd substitutions in the tree with speci
c properties� All
retrieval algorithms are based on backtrackable variable bindings and algorithms for uni
cation
and matching� which take variable bindings into account� Insertion of a substitution into the
index is a complex operation� Compared to insertion� the deletion of entries is much more
straightforward and even complex deletion operations� like the deletion of all compatible substi

tutions in a substitution tree� can easily be accomplished�

De�nition �����
Substitution Tree�
A substitution tree is an ordered tree� We describe a substitution tree by a tuple ����� where �
is a substitution and � is an ordered set of subtrees� The following conditions hold�

�� A node in the tree is a leaf node ��� �� or an inner node ����� with j�j � ��

�� For every path �������� � � � � ��n��n� from the root to a leaf of a tree we have

IM��� � � � � � �n� � V�

�� For every path �������� � � � � ��i��i� from the root to any node of a tree we have

DOM��i� �
�

��j�i

DOM��j� � �

The
rst condition in the de
nition assures that each inner node of a substitution tree has
at least two subtrees� The third condition assures that in each path of the tree a variable occurs
no more than once in the domain of a substitution�

If �������� � � � � ��n��n� is a path from the root of the tree to node ��n��n� and x occurs in the
codomains of the �i but not in the domains of the �i� then the variable x is called open at node
��n��n�� Variables that are not open at a node N are called closed at N � The second condition
in Def� ����� implies that all non
indicator variables are closed at leaf nodes of substitution trees�
The empty tree is denoted by
�

������� Foundations of the Retrieval in Substitution Trees

Retrieval� The retrieval algorithm checks each node of the tree for certain conditions� If the
conditions are ful
lled� the algorithm proceeds with the subnodes of the node� If the conditions

��� Substitution Tree Indexing ��

are ful
lled at a leaf node� the entry of the index represented by this leaf is retrieved� Four dif

ferent retrieval tasks are supported� Find more general substitutions� compatible substitutions�
instances� and variant substitutions� The functions G� U� I� and V support the tests at the nodes
of the tree�

The test functions G� U� I� and V take two substitutions � and �� The substitution � is
the one that is stored at a substitution tree�s node� The substitution � describes all variable
bindings that have been established while descending from the root to the current node of the
tree� When we test the root of the tree� the substitution � only contains the query substitution�

For each assignment xi �� ti of the current node�s substitution � the functions test whether
the term xi� is more general� uni
able with� an instance of� or a variant of ti�� Each of the test
functions can be used as a parameter for the retrieval function search�

De�nition �����
Test Functions for Retrieval�

Let � and � be two substitutions� Then

G��� �� �� f� j 	xi � DOM���� xi��� � xi�g

U��� �� �� f� j 	xi � DOM���� xi��� � xi�� � � is most generalg

I��� �� �� f� j � � U��� �� � DOM����V� � �g

V��� �� �� f� j � � G��� �� � DOM����V� � �g

The test function G checks for every assignment of the substitution � stored in the tree if
under the current variable bindings denoted by � a simultaneous matcher � from all terms of
the codomain to the corresponding bindings of the domain variables exists� The test function
U works similar� but tests if a simultaneous uni
er exists� The remaining test functions I and
V are de
ned using U and G� respectively� The function I only allows bindings of non
indicator
variables� thus avoiding variables of indexed terms to be bound� Since variant indexed terms
have to be identical to the normalized versions of query terms� the function V allows bindings
of the tree�s auxiliary variables only�

The retrieval function search�N� ��X� takes the substitution � � which is stored at node
N � ����� in the tree and tests � against the current variable bindings � using one of the
test functions G� U� I� or V� Although one might only be interested in leaf nodes found in the
substitution tree� the function search produces a set of nodes� which have successfully passed
the test X � no matter if they are leaf nodes or not� Note that before searching for variants the
query substitution has to be normalized�

Insertion� The function insert�N� �� inserts a substitution � into a substitution tree N re

sulting in a modi
ed substitution tree� As the index is used as a means for accessing data� it is
possible in practice to store additional information at the leaf nodes of the tree� The insertion of
entries into substitution trees is more di�cult than retrieval or deletion� The exact de
nitions
have been presented by Peter Graf �Gra��b��

Deletion� During the deletion process subtrees can be removed� Recall that in a substitution
tree each inner node at least has to have two subtrees� Since the resulting tree does not auto

matically have this property� we have to change it in an appropriate way� The tree is �repaired��
We assume that N � ����� is a tree according to the de
nition of a substitution tree except

�� Chapter �� Indexing

that the set of subtrees � may contain less than two subnodes� The function repair����� takes
the node�s substitution � and the set of subtrees �� The tree resulting from the application of
repair is a substitution tree according to the original de
nition�

Using the deletion function delete�N� �� all variants of the substitution � in the substitution
tree N are deleted resulting in a modi
ed substitution tree� Note that � does not need to be
normalized�

Combining Retrieval and Deletion� A great advantage of substitution trees is that the dele

tion function can easily be modi
ed so it will remove instances� generalizations� or uni
able
entries from the index� We simply have to use the test functions I��� ��� G��� ��� or U��� ��
instead of the test for variants V��� �� used in the function delete�

The function delete��N� ��X� computes a modi
ed substitution tree by removing substitu

tions � from tree N according to the test function X � Again� � does not need to be normalized�

����� Substitution Trees in Purr

In Purr we use a combination of two standard substitution tree variants� Additionally� we added
some extra information to support a fast selection of so
called lightest substitutions� The next
paragraph introduces the
rst variant� the so
called linear substitution tree� Furthermore� we use
a variant called weighted substitution tree� These two variants can easily be combined and yield
signi
cant improvements in the insertion and retrieval performance of standard substitution
trees� This linear weighted substitution tree is extended again which we discuss in the third
paragraph�

Linear Substitution Trees� The only di�erence between standard and linear substitution
trees �LST� lies in the maximal number of occurrences of a single auxiliary variable xi on a path
from the root to a leaf of a tree� Variables that occur in substitution trees but not in indexed
substitutions are auxiliary variables� In standard substitution trees the number of occurrences is
not restricted� In linear trees we have the simple restriction that each auxiliary variable occurs
at most once in a codomain and at most once in a domain of another substitution along a path
from the root to a leaf node of the tree� As in all substitution trees� the occurrence of the
auxiliary variable in the domain of a substitution must be located deeper in the tree than the
occurrence in the codomain� Using linear substitution trees we try to simplify insertion and to
accelerate retrieval�

Weighted Substitution Trees� The number of symbols contained in the codomain of a
substitution is called the substitution�s size� In weighted substitution trees �WST� additional
information about the size of the indexed substitutions is added to every node of the tree� We
mainly hope to increase the speed of subsumption tests by using weighted substitution trees�
During subsumption we have to decide whether substitutions stored in a tree can be instances
of substitutions stored in another tree� We can take advantage of the following observation� A
substitution � can only be an instance of another substitution � if the size of � is at least as
large as the size of � �

The substitution tree is modi
ed by storing an interval �min�max� at each node where min

contains the minimal and max contains the maximal size of the substitutions stored in the
subtrees� At leaf nodes the values of min and max are identical to the size of the represented

��� Substitution Tree Indexing ��

M

��

����

��

����

��

����

��

����

��

����

��

����

N

��

����

��

����

��

����

��

����

��

����

��

����

Figure ���� Subsumption in Weighted Substitution Trees

substitution� Since the size of a substitution is computed before insertion� the intervals stored
at the nodes of the tree can easily be updated� In Figure ��� we see two weighted substitution
trees M and N �

������� De
nitions

Selective Substitution Trees� A heuristic that is used in many resolution
based theorem
provers selects the smallest clauses in the set of kept clauses for the application of inference rules�
In Purr clauses are represented by substitutions and therefore we have to select the substitutions
with the minimum weight for the application of inference rules� Moreover� substitutions which
have been selected must be excluded from subsequent retrieval�

We introduce a variant of substitution trees called selective substitution trees� This variant
is similar to a weighted substitution tree and can easily be combined to a selective weighted
substitution tree� We add information to every node of the tree about the size and about
whether substitutions have been selected� During selection the size information adapts to the
minimal size of unselected entries� The state information provides an e�cient exclusion of
formerly selected entries�

De�nition �����
Selective Substitution Tree
SEST��
A selective substitution tree is a four
tupel ����� w� s� where the substitution � and the ordered
set of subtrees � correspond to De
nition ����� of a substitution tree� The weight w is the
smallest weight of the unselected entries in the tree� The state �ag s contains the information
whether there are unselected entries in the tree� In addition to De
nition ������ the following
conditions hold�

�� A leaf node ��� �� w� s� refers to entries with the corresponding weight w� We have s � true

if all entries have been selected�

�� The weight w of an inner node ����� w� s� is the minimum of the weights of the subtrees �
with unselected substitutions� We have s � true if all entries of the subtrees � have been
selected� In this case the weight w is arbitrary�

We will use the de
nition of selective substitution trees later in a selection scheme for the

rst n lightest entries�

�� Chapter �� Indexing

Note that the weight of a substitution does not necessarily have to be the number of symbols
in the substitution� Thus many heuristics based on weighting functions for indexed entries are
supported by selective substitution trees� For instance� we could de
ne a weighting function
which assesses constant symbols with � and other symbols with �� Obviously� ground substitu

tions will be preferred instead of equal
sized substitutions with variables�

M

��
w���s�false

��
w���s�false

��
w���s�true

��
w���s�false

��
w���s�true

��
w���s�true

Figure ���� A Selective Substitution Tree

Figure ��� shows a selective substitution tree� The two lightest entries �� and �� of M have
been selected and marked with true� The mark true has also been propagated to the common
ancestor ��� The other nodes of M contain unselected entries indicated by false� The weight w
and the state s of the root indicate that the lightest unselected entry in M has weight ��

��� Indexing Operations

� algorithm RESOLVE�clause graph CGS�

� begin

� while proof not found do

� h Let e � �v� �� � ��� w� � E be a link in CGS � �V�E� i

� h Let u � V � clause�v� � fu� v�� � � � � vm� vg be the current receiver literal i
� h Let
u�
v� � � � � �
vm be already merged indexes for u� v�� � � � � vm� v i

	 receive �u for u

 ���
u�

�
u� � subsume��u�
u�

�
u � union���
u�

�
u�

�� � � multi merge���
u�
v�� � � � �
vm�

�� h Let �v�w be an index of all resolved substitutions for link e i
�� ������v�w� � subsume����v�w�

�� �v�w � union������v�w�

�� h Let �v�w be an index of already sent substitutions for link e i

�� � � strategy��v�w n�v�w���v�w � �v�w ��

�� � � apply��� �� ��

�	 send � to w

�
 end

Figure ���� An Algorithm for the Transition Rule RESOLVE

��� Indexing Operations ��

In this section we present several indexing operations for substitution trees� These indexing
operations e�ciently implement the set operations of the ur
resolution rule on substitution sets
introduced in Chapter ��

Recall the transition system PURR with subsumption in De
nition ������ The according
informal algorithm for the transition rule RESOLVE is depicted in Figure ���� We omitted the
sets REC� MRG� RES� and SNT in the algorithm for reasons of simplicity� Since substitution
sets are implemented as indexes we also refer to the substitution sets as indexes� We brie�y
discuss the main steps of the algorithm�

As the transition rule RESOLVE can be applied to all outgoing links of non
unit clauses in a
clause graph� the algorithm arbitarily chooses an appropriate link e in the graph� Literal u of
the nucleus is considered as the receiver literal� The index �u contains received substitutions
which have not yet been considered for ur
resolution�

In line � input subsumption is performed with �u and the index #u of already received and
merged substitutions for u� In the following line the results are united to a modi
ed #u� In
line �� the simultaneous uni
ers of the remaining received substitutions ��u and the already
merged substitutions of the other literals are computed and stored as common instances in &�
In the next line output subsumption is performed with & and the index &v�w of formerly resolved
substitutions for link e� The remaining substitutions in &� represent the new ur
resolvents� In
line �� new and old ur
resolvents are united to a modi
ed &v�w � At this point the ur
resolution
step is
nished�

Finally� a selection of ur
resolvents in &v�w is considered for subsequent ur
resolution steps�
In line �� the �best� unselected ur
resolvents are selected according to a certain strategy� The
substitution set 'v�w contains the formerly selected resolvents� Note that the set 'v�w actually is
not required� In practice� this set is implemented by a marking scheme in the index &v�w � In line
�� the substitutions in � which belong to the receiver literal w are computed with the selected
resolvents ' and the link substitutions � and �� In other words� we anticipate the application
of selected resolvents as electrons in subsequent ur
resolution steps� The substitutions in �
represent the result of combining ur
resolvents with the receiver literal w�

The algorithm RESOLVE reveals the required set operations which have been implemented as
indexing methods�

�� Subsumption� In line � and �� subsumption is performed between two indexes� Con

sidering subsumption as an n�m indexing task corresponds to maintaining two indexes M
and N and to delete in M all instances of substitutions stored in N� and vice versa�

�� Union� In line � and �� substitutions of one index are inserted into another index� The
union of indexes is considered as an n�m indexing task in order to maintain two indexes
M and N and to add the substitutions stored in N to M �

�� Multi�Merge� In line �� the computation of simultaneous uni
ers corresponds to an
indexing operation on n indexes� We refer to this indexing operation as the multi
merge
on n indexes Mi� The multi
merge computes all uni
able combinations of substitutions in
the Mi and returns the according common instances in a new index�

�� Selection� The selection of substitutions according to a certain strategy in line �� is
represented as an indexing operation on two indexes M and N � The selected substitutions

�� Chapter �� Indexing

in N are added to M � In order to avoid multiple selections of the same substitutions� the
already selected substitutions are marked in N as selected�

Note that most of the indexing operations are de
ned on standard substitution trees� The
additional e�ort to maintain linear weighted substitution trees has been omitted� as these exten

tions only improve the e�ciency of certain operations� Only the selection operation explicitly
requires the features of selective substitution trees�

����� Subsumption

Considering subsumption as an n�m indexing task �Gra��� corresponds to maintaining two in

dexesM and N and to delete inM all instances of substitutions stored in N � We can accomplish
this task in a very elegant and e�cient way by using substitution trees�

De�nition �����
Subsumption�

Let M and N be two substitution trees� The sets of variables occurring in the trees must be
disjoint� The function subsume�M�N� returns a modi
ed version of M in which all instances of
substitutions stored in N are deleted�

subsume�
�N� ��

subsume�M�
� �� M

subsume�M�N� �� subs�M�N� ��

The subsumption is de
ned using an auxiliary function subs�M�N� �� that actually traverses
the trees and that has a substitution as an additional parameter� The function (� returns the

rst element of a tuple�

subs���M � ��� N� �� ��

if
� � I���M � ��

and
 ��� �� � search�N� ���U��

subs���M � ��� N� �� �� ��M � ��

subs�M� ��N � ��� �� �� delete��M� ��� I��

if
� � U���N � ��

subs���M ��M�� ��N ��N�� �� �� repair��M � fM �
�� � � � �M

�
mg�

if
�� � I���M � ��

and
��� � U���N � ����

and for all Mi � �M �

M �
i � (�� hMi��

N � ������i�SUBSUME �

For the traversal of the tree we use the two di�erent test functions I� and U�� They are modi
ed
versions of the original functions I and U in the sense that both functions do not need to perform
an occur
check and that I� may bind indicator variables occuring in N but not those occuring
in M � In order to backtrack if a subtree has already been deleted� we use the transition rule
SUBSUME�

��� Indexing Operations ��

SUBSUME�
hM��� fNg� �i

hsubs�M�N� ����� �i
if M ��

Subsumption has to consider three major situations occurring during the traversal of the
trees� First� in tree M we may
nd a leaf node� In this situation we have to check if tree N
contains a generalization in the corresponding subtree� If this is the case� the leaf node in M is
deleted� Second� tree M is not a leaf node� but the corresponding node in N is� Here we simply
call a deletion routine that deletes all instances of the current bindings in M � Third� if two inner
nodes are considered� we proceed by considering all possible combinations of subnodes until tree
M has been completely deleted or no more combinations are available�

The de
nition of subsumption is not easy to understand� We give an example� Suppose
we have to deal with the two trees M and N depicted in Figure ��� and we would like to
compute the tree resulting from subsume�M�N�� In tree M we maintain the substitutions fu ��
f�a� b�g� fu �� f�x� c�g� and fu �� f�d� c�g� Tree N contains the substitutions fu �� f�a� c�g�
fu �� f�a� y�g� and fu �� f�z� c�g� Obviously� the substitution fu �� f�a� y�g stored in N
subsumes the substitution fu �� f�a� b�g stored in M � Moreover� fu �� f�z� c�g subsumes the
two substitutions fu �� f�x� c�g and fu �� f�d� c�g� Hence� the tree resulting from subsumption
should be empty�

M u �� f�x�� x��

x� �� a

x� �� b
x� �� c

x� �� �M x� �� d

u ��f�a�b� u��f�x�c� u ��f�d�c�

N u �� f�y�� y��

y� �� a
y� �� �N
y� �� c

y� �� c y� �� �N

u ��f�a�c� u��f�a�y� u ��f�z�c�

Figure ���� Subsumption as an n�m indexing task

We start at the root node of tree M where the function I� establishes the binding fu ��
f�x�� x��g� Considering the root of N the test function U� creates the bindings fy� �� x�� y� ��
x�g� Using the transition SUBSUME we recursively traverse the subtrees� First� we consider the
left subtree in M where the test function I� yields the bindings fx� �� a� x� �� bg� Keeping the
current bindings� the left subtree of N is traversed searching for leaf nodes that correspond to
substitutions more general than fu �� f�a� b�g� Such a substitution is found in fu �� f�a� y�g
and the leaf node representing fu �� f�a� b�g is deleted� The transition SUBSUME is not applicable
any more and from now on the right subtree of M is considered� Since the left subtree of N
does not yield any deletions �because the test function I� must not bind the variable �M �� we
immediately consider the right subtree of N � which is a leaf marked with fy� �� �N � y� �� cg�
Applying function U� on this node yields the bindings fx� �� c� x� �� �Ng� According to the
de
nition of subsume we delete all instances in the right subtree of M � Finally� both subtrees of
M have been deleted and repairing the resulting tree leads to
� i�e� tree M has been completely
deleted�

�� Chapter �� Indexing

����� Union

The union of indexes is considered as an n�m indexing task �Gra��� to maintain two indexes M
and N and to add the substitutions stored in N to M �

De�nition �����
Union of Substitution Trees�
Let M and N be two substitution trees� The sets of variables occurring in the trees must be
disjoint� The function union�M�N� adds the substitutions stored in tree N to M �

union�M�
� �� M

union�M�N� �� add�M�N� ��

The insertion is de
ned using an auxiliary function add�M�N� �� that actually traverses the
trees and that has an additional parameter containing a substitution� The function (� again
returns the
rst element of a tuple�

add�M� ��N � ��� �� �� insert�M� � � �N �

add�M� ��N ��N�� �� �� (�� hM��N � � � �Ni�UNION �

The following transition rule repeatedly modi
es tree M �

UNION�
hM�� � fNg� �i

hadd�M�N� ����� �i

The idea of the de
nition is to traverse tree N and to recompute the stored substitutions�
Whenever a leaf node is reached� we insert the corresponding substitution into tree M using the
regular insertion procedure�

When we
rst thought about inserting a tree into another� we wanted to perform the insertion
in a merge
like manner� We tried to create an algorithm that traverses the two trees in parallel
hoping to be able to do lots of insertions at a time� However� the technique presented above�
which only traverses one of the trees� has to be preferred because the order in which auxiliary
variables are mapped to terms may di�er in two di�erent trees� Suppose� for instance� there is
a path fu �� f�x�� x��g � fx� �� ag � fx� �� bg in M and the substitution represented by the
path fu �� f�y�� y��g�fy� �� cg�fy� �� ag in N has to be inserted� Obviously� the information
that the
rst argument of the codomain is the constant a can be shared� However� a merge
like
algorithm could not detect this� First� we match from f�x�� x�� to f�y�� y�� and create bindings
for x� and x�� Second� we establish the bindings y� �� a and y� �� c� Finally� the test for the
substitution fx� �� bg fails� As a consequence� the resulting tree contains a lot of redundant
information� Moreover� the failure could be detected much earlier if the information on the
substitution to be inserted was complete� Even worse� a merge
like algorithm cannot employ an
insertion heuristic� not even the simple
rst

t technique�

����� Multi�Merge

The multi
merge �Gra��� is a generalization of the merge operation �Ohl��� on two substitution
trees� The merge operation computes the set of compatible substitutions stored in two di�erent

��� Indexing Operations ��

trees� Substitutions are compatible if the codomains of identical variables in the two substitu

tions are simultaneously uni
able� For example� the substitutions fx �� f�u� b�� z �� h�w�g and
fx �� f�a� v�� y �� g�v�g are compatible and the result of the merge of the two substitutions is
the common instance� of the two original substitutions fx �� f�a� b�� y �� g�b�� z �� h�w�g�

Suppose we want to merge three substitution trees M � N � and O� Using the ordinary merge
operation for two trees� we
rst merge M and N � The resulting tree
nally is merged with O�
However� a great advantage of substitution trees is that the merge does not necessarily have to
be performed on just two trees in a single merge operation� Instead of performing two merges
and creating an intermediate result� we use a backtracking algorithm that traverses the three
trees in parallel� In this way� we avoid the creation of intermediate results�

The multi
merge operation takes an arbitrary number of substitution trees and traverses the
trees in parallel� To this end we test nodes on the same level in all of the trees� If a combination
of leaf nodes is reached� the resulting common instance can be stored in a new substitution tree�

De�nition �����
Multi�Merge�
Let TS � f�������� � � � � ��m��m�g be a set of substitution trees with m � �� Let SN be a tuple
with arbitrary arity containing leaf nodes only� The concatenation � of an m
tuple TM and an
n
tuple TN is anm!n
tuple TT � TM �TN � Moreover� let M � ����� be a single substitution
tree and � a substitution� The retrieval function multi�merge is recursively de
ned as follows�

multi�merge�TS� �� multi�TS� ��� �� �����

multi�f�����g� SN� �� �� fSN � �N� j N � search������� ���U�g �����

if
��U��� ��

multi�f���� ��� � � � � ��n� ��� ��n	���n	��� � � � � ��m�j ��m�j�g� SN� �� �� �����

f����� ��� � � � � ��n� ��� ��n	���n	��� � � � � ��m�j ��m�j�� � SNg

�

Nn
���n
� ���� �Nm�j��m�j

multi�fNn	�� � � � � Nm�jg� ����� ��� � � � � ��n� ��� � SN� ��� � � ��m�j�

if � � j 	 m� � and
��� � � � � �m�j � ���U���� �� and 	i� � 	 i � m� j� �i�U��i� ��� � � ��i���

The result of the function multi�merge is a set ofm
tuples wherem is the number of merged
substitution trees� Every m
tuple contains tree nodes which have successfully been passed while
traversing the trees� An m
tuple of leaf nodes represents the successful simultaneous uni
cation
of m substitutions in the trees�

Suppose we perform a multi
merge operation on m substitution trees� The
rst rule ���
initializes the auxiliary function multi with an empty tuple SN of leaf nodes and an empty sub

stitution �� The substitution trees which have
nally been traversed to leaf nodes are considered
in the tuple SN such that the tuple contains these leaf nodes� During the traversal bindings are
established and stored in the substitution ��

The next rule ��� considers the case that m � � substitution trees have successfully been
traversed down to leaf nodes while one substitution tree M still has subtrees� In this case the

�In some applications� e�g� hyperresolution� the unifying substitution fu �� ag itself is also needed�

�� Chapter �� Indexing

function multi performs an n�� retrieval on the tree M � Note that the tuple SN contains the
m� � leaf nodes�

The last rule ��� is performed if there are more than one substitution tree left to be merged
and� of course� if the current node�s substitutions �i are simultaneously uni
able� In general�
there are n trees which have been traversed to leaf nodes and m� j � n trees which still have
subtrees� Note that we only consider n � j trees where j is the number of trees which have
been traversed to leaf nodes before� Obviously� SN is a j
tuple of the according leaf nodes� The
result of this rule is an m
tuple of the current tree nodes together with SN � and all tuples of
subsequent steps� The function multi is called on all permutations of subtrees of the m� j �n
trees� Note that the n leaf nodes are added to the j
tuple SN �

In our application� however� we are interested in the common instances of the uni
able
substitutions� These instances can easily be stored in another substitution tree� Furthermore�
subsumption might be performed on these instances and on formerly produced results� In our
implementation� we integrated insertion and subsumption operations in the multi
merge� These
operations� together with the multi merge itself� have strong impact on Purr�s time and space
performance� We present an algorithm with these features and an example in Chapter ��

����� Selection

The selection is another n�m maintenance operation on two indexes M and N where N must
be a selective substitution tree� The operation corresponds to a set di�erence on indexes in
a way that a set of lightest substitutions in N are added to M � The selected substitutions
are not removed from N � but marked as selected preventing multiple selection� The marked
substitutions in N are still considered for conventional retrieval� We de
ne several auxiliary
functions which maintain the consistency of the selective substitution tree N �

De�nition �����
State of Selection�
Let � be a set of selective substitution trees� The auxiliary predicate allselected��� holds if
all substitutions in the selective substitution trees in � have been selected�

allselected��� ��� 	N � � � N � ����� w� true�

During selection the states s of inner nodes are required to be updated according to the states
of selection of the subtrees� The predicate allselected considers the state of subtrees and
provides the appropriate state for the common ancestor�

De�nition �����
Lightest Subtree�

Let � be a set of selective substitution trees with at least one tree containing unselected entries�
The auxiliary function lightesttree��� returns the selective substitution tree occurring in �
which has the lightest weight w and which contains unselected entries�

N � lightesttree��� if
N � � � N � ����� w� false� and

	M � � nN �M � ��M ��M � wM � false�� wM � w

De�nition �����
Weight of Lightest Subtree�
Let � be a set of selective substitution trees� The auxiliary function lightestweight��� wdef �
returns the weight of the selective substitution tree occurring in � with the lightest weight of

��� Indexing Operations ��

the trees having unselected entries� If there are no trees in � with unselected entries� it returns
the default weight wdef �

w � lightestweight��� wdef � if �allselected��� and ����� w� false� � lightesttree���

or allselected��� and w � wdef

The selection operation considers a selective substitution tree N as being separated into
partitions of di�erent weights� Each partition contains substitutions with identical weight� The
lightest partition can be selected within a single retrieval operation� Note that this operation
also modi
es tree N to provide consistency of N due to De
nition ����� of selective substitution
trees� In particular� a new lightest weight w and the state s are propagated to the root� If
the lightest partition is completely retrieved the weight w in the root of N corresponds to the
weight of the new lightest partition� Thus a single selection operation retrieves at most the
substitutions of the lightest partition�

In the following de
nition we introduce a function selection which provides a transpar

ent selection operation of an arbitrary number of substitutions� We use an auxiliary function
partition which repeatedly retrieves the lightest partition�

De�nition �����
Selection of Substitutions�
Let M be a substitution tree and let N be a selective substitution tree� The sets of variables
occurring in the trees must be disjoint� The function selection�M�N� n� adds the n lightest
substitutions stored in tree N to M and marks these substitutions in N as selected�

selection�M�
� n� �� �M�
� n�

selection�M�N� n� �� (�� h�M�N� n�i�PARTITION �

PARTITION�
h�M�N� n�i

hpartition�M�N� n� ��i
if n � �

The selection is de
ned using a transition rule PARTITION which repeatedly calls the auxiliary
function partition�M�N� n� ��� The function retrieves up to n substitutions of the lightest
partition in N and copies the substitutions toM � The bindings established while traversing tree
N are stored in the substitution �� If the partition contains i substitutions with i 	 n� then the
transition rule PARTITION again calls partition to retrieve the remaining n� i substitutions in
the next lightest partition�

partition�M� ��� �� w� false�� n� �� �� �insert�M� � � ��� ��� �� w� true�� n��� �����

partition�M� ����� w� false�� n� �� �� �����

�M �� ������ lightestweight���� w�� allselected������ n��

if hM� ���� n� �� �� wi�SCAN � hM ����� �� n�� � � �� wi

partition�M�N� n� �� �� �M�N� n� �����

The
rst rule ��� considers tree N as a leaf node with the minimal weight w� The according
substitution is inserted in M and marked as selected in N � Inner nodes of N with unselected

�� Chapter �� Indexing

M

��
w��

s�false

��
w��

s�false

��
w��

s�false

��
w��

s�false

��
w��

s�false

��
w��

s�false

N

��
w��

s�false

��
w��

s�false

��
w��

s�true

��
w��

s�false

��
w��

s�true

��
w��

s�true

O

��
w��

s�false

��
w��

s�false

��
w��

s�true

��
w��

s�true

��
w��

s�true

��
w��

s�true

Figure ���� A Sequence of Selective Substitution Trees

substitutions of weight w are considered in rule ���� The current inner node is updated according
to the lightest weight and to the state of selection of the modi
ed subtrees ��� The transition
system SCAN searches the subtrees in � for unselected substitutions with weight w� The last
rule ��� considers tree N if it contains selected substitutions or too heavy substitutions only�

De�nition ����	
Transition System SCAN�

Let M be a substitution tree and let � and ' be two sets of selective substitution trees� More

over� let � be a substitution containing the established bindings while traversing the trees in '�
The transition system SCAN searches the set ' for trees containing unselected substitutions of
weight w� These trees match the transition rule SELECT which calls the function partition ac

cordingly� The modi
ed trees N � are moved to the set �� Other trees in ' are moved unchanged
to � by the transition rule SKIP�

SELECT�
hM � � � ' � f����� w� false�g� n � �� wi
hM �� �
 fN �g� ' � n�� �� wi

if �M �� N �� n�� � partition�M� ����� w� false�� n� ��

SKIP�
hM� � � ' � f����d� wd� s�g� n� �� wi
hM� �
 f����d� wd� s�g� ' � n� �� wi

A sequence of selective substitution trees in di�erent states of selection is depicted in Fig

ure ���� The entries in tree M are unselected and marked with false� The tree contains three
partitions of substitutions� The entries �� and �� belong to the lightest partition with weight ��
There is one entry �� with weight � and one entry �� with weight ��

Suppose we select two substitutions in M yielding tree N � Obviously� the two lightest entries
�� and �� have been selected and marked with true� The new state has also been propagated to
the common ancestor ��� Note that the root of N contains the new minimal weight ��

The tree O depicts the state of selection if we select another entry in N � The next lightest
entry �� has been selected� The new minimal weight of the tree is ��

�
Parallelism

In general� a program working on a problem which is composed of several �independent� parts
can be divided into concurrent processes with each process working on one part of the problem�
There are cases in which the performance of such a program can be improved with increasing
concurrency� The possible speedup is limited by the degree of dependence inherently to the
problem and by the parallel machine employed� In automated reasoning we can discover a large
variety of such dependencies� They really complicate the investigation of possible improvements�

Concurrent processes working on dependent parts of a problem have to solve these depen

dencies with communication� The more processes work on a problem� the more communication
usually is required� In sum� the main task during the design of a distributed parallel system is to

nd a reasonable balance between the degree of parallelism and the amount of communication
overhead� In other words� we try to
nd an optimal partition of the problem set in order to
obtain a truly e�cient system�

In this chapter we present aspects of parallelism in the context of logic and on the basis of
practical issues� Furthermore� we provide brief presentations of programming environments that
support the development of parallel programs� Finally� we describe the programming library
PVM that was used to implement Purr�

��� Notions of Parallelism

���� Parallelism in Logic

The exploitation of parallelism in the context of automated reasoning requires the investigation of
the relation of logic and parallelism� A detailed discussion of parallelism in logic programming is
provided by Franz Kurfe� �Kur���� He introduces a variety of categories of parallelism� extending
the traditional AND"OR
parallelism usually found in the literature� His categories might help
in the discussion of further improvements of Purr� However� to understand the implementation
of Purr only the knowledge of OR�Parallelism and AND�Parallelism is necessary�

�� Chapter �� Parallelism

OR�Parallelism� In general� OR
parallelism is achieved if possible solutions of a problem are
investigated simultaneously� It su�cies to
nd one solution to solve the whole problem� This
corresponds to the semantics of a logical or
connective� For example� a problem given as a
formula A�B�C is solved if one of the A� B� or C is solved� The
rst found solution represents
a solution for the whole problem� In the context of deduction systems� OR
parallelism refers to
the fact that di�erent paths in the search space are investigated simultaneously� For example�
on the level of clauses OR
parallelism means that di�erent clauses are inferred in parallel�

The potential for parallelism is determined by the number of possible inferences and� of
course� by the number of available processors� Maximal OR
parallelism is achieved� if for each
possible inference a new process is initiated� documenting that the amount of potential paral

lelism grows during the search process� Since the number of possible inferences grows expo

nentially with each step in the search space� the speedup is at least limited by the number of
available processors� In practice� however� the communication overhead also has an increasing
in�uence on the overall performance�

AND�Parallelism� If a problem composed of several subproblems is solved if all subproblems
are solved� then AND
parallelism corresponds to the concurrent computation of these subprob

lems� This de
nition corresponds to the semantics of the logical and
connective� A problem
given as a formula A � B � C is solved if each A� B� and C is solved� In the
eld of deduc

tion systems� AND
parallelism refers to the concurrent computation of a single inference� An
example is the concurrent computation of a simultaneous uni
er within an inference rule� The
simultaneous uni
er of substitutions ��� ��� ��� and �� can be computed by unifying two pairs
��� �� and ��� �� concurrently� Finally� the resulting uni
ers ���� and ���� also have to be uni
ed�

Problems arise when the substitutions share variables with each other� For example� incom

patible uni
ers ���� and ���� can be detected by exchanging additional information among the
uni
cation processes� Thus the concurrent processes generally are not independent which lim

its the degree of parallelism� If inferences are represented by clauses� AND
parallelism usually
provides a reasonable speedup only on large clauses�

���� Parallelism in Practice

We now give an overview of notions and basic de
nitions that occur in context with parallel pro

gramming� We discuss the two most important models of parallelism and go on with the general
properties of parallel programs� The de
nitions are mainly based on the work of Hwang �Hwa���
and Carriero and Gelernter �CG����

������� Parallel Programming Models

The parallel programming model in Figure ��� provides a simpli
ed and transparent view of the
computer hardware"software system� A program is a collection of processes forming the basic
computational units of the program� Parallelism is exploited depending on how interprocess
communication �IPC� is implemented�

Shared�Variable Communication� The shared�variable model is based on the use of shared
variables in a common memory for IPC� The shared variable model is also referred to as the

��� Notions of Parallelism ��

Program

Process �

Process �

IPC

Process �

Process �

Figure ���� A Parallel Programming Model

Program

Process �

Process �

Shared Memory

Process �

Process �

Figure ���� Shared
Memory Model

�� Chapter �� Parallelism

shared memory model which actually is a more technical term� Nonetheless� it is commonly
accepted� Shared
variable IPC demands the use of shared memory and mutual exclusion among
multiple processes accessing the same set of variables at a time� Figure ��� depicts the shared

memory model�

Program

Process �

Process �

Messages

Process �

Process �

Figure ���� Message Passing Model

Message�Passing Model� In the message�passing model processes communicate with each
other by passing messages through a network� Since there is no shared memory� mutual exclusion
is not needed� We distinguish synchronous and asynchronous message passing� Synchronous
message passing synchronizes the sender process and the receiver process in time and space� Then
the data is transfered with both processes communicating at the same moment� Asynchronous
message passing does not require that message sending and receiving are synchronized� Instead�
asynchronous communication requires the use of bu�ers to hold the messages along the path
of the connecting channels� Since these message queues are
nite� the sender will eventually
be blocked� On the other side� the receiver process may either be blocked in order to wait
for a certain message or proceed no matter if a message arrived or not� The former is called
nonblocking receive� the latter blocking receive� Figure ��� illustrates the message
passing model�

������� Properties of Parallel Programs

Parallel programs have properties that are described in terms of Dependence� Granularity� La

tency� Communication Patterns� Deadlock� and Load Balancing�

Dependencies� The parallel execution of several program segments requires each segment
to be independent from other segments� The so
called data dependence describes how di�erent
program segments depend on each other concerning the input and output data of these segments�
Data dependence reduces the possible speedup of a parallel program� Concurrent processes
working on dependent segments have to solve the dependence with communication�

��� Notions of Parallelism ��

Granularity� The grain size or the granularity of a parallel program corresponds to the
amount of computation involved in one process contributing to the program� The grain size
determines the smallest program segment chosen for parallel processing� Grain sizes are clas

si
ed as �ne� medium� or coarse� Usually� the
ner the granularity of a program� the higher is
the degree of parallelism� However� a higher degree of parallelism results in high communication
demands and scheduling overhead� Ideally� the granularity of a program is not
xed but can
arbitrarily be selected�

Latency� Latency is a time measure for communication overhead� For example� the time re

quired for two processes to synchronize with each other is called the synchronization latency�
Computational granularity and communication latency are closely related� By balancing gran

ularity and latency� one can in�uence the performance of a parallel program�

� �

� �

� �
unicast

� �

� �

� �
multicast

� �

� �

� �
broadcast

� �

� �

� �
conference

Figure ���� Communication Patterns

Communication Patterns� We specify four types of communication patterns� The one
to

one unicast pattern has one source and one destination� A multicast pattern corresponds to one

to
many communication in which one source sends the same message to multiple destinations�
A broadcast pattern corresponds to the case of one
to
all communication� Finally� the most
generalized pattern is the many
to
many conference communication�

Deadlock� A deadlock situation occurs if a program enters a state in which a process A is
waiting for data to be produced by another process B while B is waiting for data produced by
A� In general� we speak of a deadlock if an arbitrary
long cycle of processes exists such that each
process is waiting for data provided by the previous process in the cycle� Deadlock detection
tries to distinguish deadlock situations from others� For example� some processes might work
slowly or might have been terminated for some reason�

Load Balancing� The problem of load balancing occurs if the amount of parallelism inherent
in a program does not match the parallelism provided by the computer system� For example�
a program that decomposes into four processes will not achieve a higher speedup if more than
four processors are employed� Static scheduling techniques try to
nd a good static distribution
of the processes to processors of a parallel machine�

In sum� the design of e�cient parallel systems involves the reduction of latency� the pre

vention of deadlock� the minimization of blocking in communication patterns� and a reasonable
tradeo� between parallelism and communication overhead�

�� Chapter �� Parallelism

��� Parallel Programming Systems

A few years ago� the development of parallel programs required extremely high e�ort� One
had to invest in expensive parallel hardware and highly specialized programming environments�
Usually� programs developed for a speci
c machine could not be used on other systems�

Parallel programming systems try to abstract from underlying hardware� Sometimes they
even allow heterogeneous clusters of workstations� The portability of programs on top of an ab

stract parallel system has signi
cantly been improved� Nevertheless� abstraction usually implies
a loss of performance which we will discuss later�

Since our parallel prover Purr should run on many di�erent hardware platforms �including
workstation clusters�� we decided to develop the system on top of a parallel programming system�
The following overview sketches the systems we took into consideration�

���� Overview

In this thesis we can only present a small survey on the wide range of parallel programming
systems� An exhaustive collection has been presented by Turcotte �Tur���� A comprehensive
overview of parallel computing issues can also be found on the world wide web �IPC��

Standards� Just before we started to implement Purr� the Message Passing Interface �MPI�
forum developed an interface standard for message passing systems� There is an o�cial world
wide web home page reporting that standard �MPI�� The standard became necessary to improve
the portability of application software from one message passing system to another and� more

over� to improve the commercial development of tools and libraries� A
rst draft of the MPI
standard was published by the MPI Forum �For���� A user
oriented presentation is provided by
Gropp� Lusk� and Skjellum �GLS���� The current MPI standard de
nition is also available in
the o�cial home page �MPI��

However� we did not use the MPI standard in Purr because available implementations have
not been tested as intensive as other parallel programming systems� At this time� MPI supported
less platforms than other systems� Experiments describing the loss of performance or stability
when using an implementation of the MPI standard were not available� Therefore� we considered
other parallel programming systems with the following areas being of major concern�

� Paradigm� i�e� message passing or shared memory�

� E�ciency�

� Support�

� Ease of use�

� Portability� i�e� support of di�erent hardware�

TCGMSG� The Theoretical Chemistry Group Message Passing System �Har��� is a very e�

cient message passing system with communication over direct� point
to
point TCP"IP sockets�
TCGMSG is a simple message passing system providing the user with an easy to use environ

ment� Built in global operations� e�g� global summation� simplify the implementation of data

��� Parallel Programming Systems ��

parallelism� However� global operations are not required in Purr� A signi
cant drawback of
the package is that it seems to be poorly supported�

p�� The package p� �BE��� is a distributed computing environment providing both the pro

gramming of a variety of MIMD machines and the computation in workstation clusters� This
package includes shared memory and message passing primitives� The communication protocoll
is based on dynamic TCP sockets� Just like the TCGMSG package� p� also provides global
operations� The di�erences in the ease of use compared to TCGMSG are relatively small� The
support of p� is better than the support of TCGMSG� p� runs on a wide range of platforms�

PVM� The Parallel Virtual Machine �GBD	��� is a pure message passing system� The PVM
package is the de
facto standard for message passing systems$ it has by far the largest number of
users� As a main di�erence to the other packages� PVM is especially designed for computing on
heterogeneous networks� In addition to dynamic TCP sockets for the communication protocol�
PVM also provides UDP communication� Compared to the other two packages coding in PVM
is more complicated� explicit bu�er management has to be done by the user and task identi
ers
have to be maintained� The support for PVM is outstanding since it is based on the experience
of a large number of users� PVM supports many di�erent platforms�

Linda� There are many packages also supporting the shared memory paradigm� An important
approach is the associative� virtual shared memory system called Linda �Gel���� There are many
implementations for Linda� for example� the commercial product C�Linda or p��Linda �BLL���
which implements Linda on top of p�� There is another public domain implementation of
Linda called POSYBL �Sch���� All these packages �except for p�
Linda� have been compared in
detail �Mat����

������� Assessment

The main reason to prefer the message passing paradigm is that our approach to an inference
system does not require any common data� If we identify nodes in a clause graph with concurrent
processes� communication is represented by exchanging messages via links in the graph�

The TCGMSG package seems to be the most e�cient system of this survey followed by PVM
and p�� The best support and portability is provided by the PVM package� Since the shared

memory based Linda is the most generalized approach� it is the package which is easiest to
use� However� concerning the ease of use the di�erences of the remaining packages are relatively
small�

Finally� the PVM package appeared as a good compromise between e�ciency� support� ease
of use� and portability� PVM is an e�cient message passing system with good support� Unfortu

nately� PVM is not as easy to use as a Linda
based system� However� we only need a fraction of
the capabilities of PVM and thus the e�ort to become familiar with PVM was acceptable� PVM
also supports a large variety of multiprocessor platforms and parallel computing on workstation
clusters� The next section contains some more details about PVM�

�� Chapter �� Parallelism

���� PVM

The PVM �Parallel Virtual Machine� package �GBD	��� is a software system providing dis

tributed processing capabilities with message passing primitives� The system pro
ts from a
large user base and intensive discussion �Mat��� �DGMJ��� �MP����

PVM supports a wide range of di�erent platforms and also a variety of di�erent networks�
The system abstracts from a heterogeneous network of computers to a collection of hosts� Each
processor in the network forms one host independently whether the processor is a single work

station or a processor in a multiprocessor machine� Message routing and data conversion for
incompatible architectures are handled transparently� Thus PVM theoretically permits a net

work of heterogeneous computers to be used as a single parallel computer� a parallel virtual
machine�

The PVM system is composed of two parts� a library of PVM interface functions and a
daemon program� The library contains user
callable routines and must be linked with the
application program� The daemon resides on all machines in the heterogeneous network and
makes up the virtual machine� A PVM console task enables the user to control the virtual
machine� i�e� to add and remove machines� to monitor status information� etc� After making
up a virtual machine� PVM applications may be started� PVM can handle multiple users and
overlapping virtual machine con
gurations�

Next� we focus on a selection of library methods of PVM$ for further details of PVM
see �GBD	���� Purr only requires a small subset of the PVM routines�

Process initiation and

Point
to
point communication�

Process Initiation� In Purr process initiation refers to a master process starting several
slave processes at the beginning of the proof procedure� PVM provides a library call which
spawns a certain number of slave processes� More sophisticated features like the mapping of
speci
c processes to speci
c processors currently are not exploited by Purr� Thus PVM decides
where processes are executed� During the proof the number of slave processes remains
xed until
all processes are terminated by the master process� Thus processes are started at the beginning
of the proof search only�

Communication Requirements� The slave processes in Purr use unicast and multicast
communication patterns� The master process also uses broadcasting to control the slave pro

cesses� Process groups are not needed� A send operation in PVM is composed of two phases�
First� the message has to be packed into a bu�er� The packing routine may perform a data
conversion called XDR encoding in order to avoid incompatibilities in the representation of data
on di�erent architectures� If the user knows that all machines in the network understand the
same format� the data conversion might be disabled� Second� the bu�er contents is sent to its
receiver process� Additionally� for messages consisting of a vector of elements of equal type PVM
provides a more e�cient send operation which includes packing� Since a message in Purr is a
homogeneous vector of integers� this method is used to send messages�

Receiving a message works in the reversed direction� A message is received either with a
blocking or non
blocking routine and has to be unpacked� Unfortunately� PVM only provides

��� Parallel Programming Systems ��

a blocking routine for receiving and unpacking a message simultaneously� In order to enable a
non
blocking receive mechanism with unpacking we use a PVM function which only checks the
message queue for a certain type of message and calls the blocking routine when needed�

�� Chapter �� Parallelism

�
The Prover

In the last three chapters we have presented the theoretical background of Purr� We introduced
a modi
ed unit resulting resolution scheme working on substitution sets� The modi
ed inference
rule addresses the main issues of this work� The investigation of term indexing as a fundamental
base of reasoning operations and the exploitation of parallelism in automated theorem proving�

In the
rst part of this chapter detailed algorithms of the indexing operations in Purr are
presented� The algorithms have been introduced as advanced indexing operations by Graf and
Meyer �GM���� In the second part we investigate the potential for parallelism and combine the
presented ideas such that they can be used in the implementation of Purr�

In the last section we present a data structure called context which can be used to maintain
variable bindings e�ciently� Finally� we discuss how substitution trees can be used as a compact
protocol for the exchange of sets of substitutions among concurrent processes�

��� Indexing Algorithms

We present algorithms for the four indexing operations subsume� union� multi�merge� and
selection� The subsumption operation deletes in one substitution tree all instances of substi

tutions that occur in another substitution tree� The union of two substitution trees integrates
all entries of one tree into the other tree� The multi
merge operation computes simultaneous
uni
ers of substitutions which are stored in several substitution trees� The result of such a
multi
merge is a substitution tree containing the common instances of the uni
ed substitutions�
The selection operation searches a substitution tree for entries with lowest �weight� and adds
these entries to another substitution tree�

����� Subsumption

The subsumption operation is an n�m maintenance task on two indexes M and N � Suppose
index N contains substitutions which have been tested for subsumption and index M contains

�� Chapter �� The Prover

new substitutions� Forward subsumption corresponds to the deletion of all instances of N in M �
To this end we traverseM and N in parallel� During the traversal we map variables occurring in
N to subterms stored in M � This mapping is exactly the same as just looking for generalizations
in a n�� retrieval� Whenever we reach a leaf node in the index M we may delete it� Note that
the deletion in the index M can cause the whole tree to be removed� We obtain backward
subsumption by simply changing the roles of M and N �

Consider the algorithm for subsume depicted in Fig� ���� In our implementations a stack STK
of variable bindings is maintained� The function match�N� STK�BINDINGS� checks if N �s sub

stitution is a generalization of the current bindings� New bindings are established on the stack
STK� The function match reverse�M� STK�BINDINGS� is accordingly de
ned to test whether
M �s substitution is an instance of the bindings� The function backtrack�STK�BINDINGS� resets
the stack STK by popping BINDINGS bindings from it� Note that before the subsumption oper

ation is called the function match reverse�M� STK�BINDINGS� and match�N� STK�BINDINGS�
have been successfully called� In this way we avoid unnecessary recursive calls in the algorithm�

� algorithm subsume�tree M �tree N �stack STK�

� begin

� hAssume match reverse�M � and match�N � holdi
� if is leaf�M � then

� if genexist�N� STK� then

� M � �

	 elsif is leaf�N � then

 M � delete instances�M� STK�

� else

�� forall subtrees M � of M do

�� if match reverse�M �� STK�BINDINGSM� then

�� forall subtrees N � of N do

�� if match�N �� STK�BINDINGSN � then

�� � � � � subsume�M �� N �� STK�

�� backtrack�STK�BINDINGSN �

�� backtrack�STK�BINDINGSM �

�	 M � repair�M���

�
 returnM

�� end

Figure ���� Algorithm for subsume

Subsumption has to consider three major situations occurring during the traversal of the
trees� First� in tree M we may
nd a leaf node� In this situation the n�� retrieval operation
genexist checks if tree N contains a generalization of the current bindings in the corresponding
subtree� If this is the case� the leaf node in M is deleted �s� line ��� Second� tree M is not
a leaf node� but the corresponding node in N is� Here we simply call a n�� deletion routine
delete instances that removes all instances of the current bindings in M �s� line ��� Third� if
two inner nodes are considered� we proceed by considering all possible combinations of subnodes
until tree M has been completely deleted or no more combinations are available� Note that in
line �� node M has to be �repaired� if all subtrees of M but one have been deleted� �

�According to de�nition ����� of substitution trees an inner node has at least two sons�

��� Indexing Algorithms ��

����� Union

The union is an n�m maintenance operation of two indexes M and N � The entries stored in tree
N are added to M �

� algorithm union�treeM �treeN �stack STK�

� begin

� bind�N� STK�BINDINGS�

� if is leaf�N � then

� M � insert�M� STK�

� else

	 forall subtrees N � of N do

 M � union�M�N �� STK�

� backtrack�STK�BINDINGS�

�� returnM

�� end

Figure ���� Algorithm for union

Consider the algorithm for union in Fig� ���� In order to reconstruct the substitutions in
tree N � the function bind establishes N �s substitution on the stack �s� line ��� If node N is
a leaf� then insert adds the corresponding substitution� which is represented by the established
bindings� to tree M �s� line ��� If node N is an inner node� then the subtrees of N are recursively
traversed in order to
nd all entries of N �s� line ���

����� Multi�Merge

The multi
merge operation computes the compatible substitutions stored in an arbitrary number
of substitution trees� Substitutions are compatible if the codomains of identical variables in
the substitutions are simultaneously uni
able� To this end the algorithm traverses the trees
in parallel� If a combination of leaf nodes is reached� the resulting common instance of the
substitutions represented by these leaves can be stored in a new substitution tree� Furthermore�
subsumption might be performed thus reducing the amount of substitutions to be maintained�

Consider the algorithm multi�merge in Fig� ��� which employs n�� insertion and subsump

tion operations� The algorithm has four parameters� A substitution tree RES� two ordered
sets CURRENT and NEXT of substitution trees� and a stack STK of bindings� The common
instances resulting from the simultaneous uni
cation are inserted into the substitution tree RES
which does not have to be empty at the beginning� The tree may contain previously obtained
results which are then considered in the subsumption phase of the multi
merge operation� Ini

tially� the ordered set CURRENT contains the substitution trees to be merged whereas the
ordered set NEXT is empty� We assume that the substitutions of the root nodes have been
successfully uni
ed before multi�merge is called� In this way we avoid unnecessary recursive
calls of the algorithm� The variable bindings of the uni
cation are pushed on the stack STK�

The function unify�N� STK�BINDINGS� implements the test for uni
ability by checking for
each assignment xi �� ti of N �s substitution � � f� � � � xi �� ti� � � �g whether xi is uni
able with
ti� The bindings of variables in the uni
er are pushed on the stack STK and are counted in
BINDINGS� This uni
cation considers variable bindings in the terms to be uni
ed� Additionally�
the function backtrack�STK�BINDINGS� resets the stack STK by popping BINDINGS bindings

�� Chapter �� The Prover

� algorithm multi�merge�tree RES�set CURRENT� set NEXT�stack STK�

� begin

� h Let CURRENT � fNi� � � � � Nmg be an ordered set of trees i
� h Let NEXT � fN�� � � � � Ni��g be an ordered set of trees i

� if �N � CURRENT �NEXT � is leaf�N � then

� h Simultaneous Uni�er i
	 if �genexist�RES� STK� do

 delete instances�RES� STK�

� RES � insert�RES� STK�

�� else

�� if CURRENT � � then
�� RES � multi�merge�RES�NEXT� CURRENT� STK�

�� elsif is leaf�Ni� then

�� RES � multi�merge�RES�CURRENT nNi�NEXT � fNig� STK�
�� else

�� h Let ����� � Ni be the root of Ni i
�	 forall N � � � do

�
 if unify�N �� STK�BINDINGS� then

�� RES � multi�merge�RES�CURRENT nNi�NEXT � fN �g� STK�
�� backtrack�STK�BINDINGS�

�� return RES

�� end

Figure ���� Algorithm for multi�merge

from it� After a successful uni
cation at leaf nodes the function genexist performs n�� forward
subsumption using the established bindings� If no generalization of the found common instance
� exists in RES� the function delete instances removes all instances of � from RES by a n��
backward subsumption� Finally� the function insert normalizes and inserts � into the substitution
tree RES� Note that all functions work with bindings instead of really instantiated substitutions�
In this way we delay �and often avoid� the allocation of memory as long as possible�

The main idea of the algorithm multi�merge is to traverse the trees in parallel� All combi

nations of subnodes of the CURRENT set of inner nodes have to be considered� The subnodes
which pass the test for uni
ability are moved to the NEXT set of nodes �s� line ���� If CUR�
RENT is empty we simply exchange CURRENT with the NEXT level �s� line ���� CURRENT
leaf nodes are also moved to the NEXT level in order to uphold the original order of trees
�s� line ���� Each combination of leaf nodes represents a simultaneous uni
er which corresponds
to the established bindings on the stack STK �s� line ���

A sequence of stacks resulting from the simultaneous uni
cation of substitutions stored in
three substitution trees is depicted in Fig� ���� Originally� the stack is empty� Before we start
the multi
merge algorithm� the substitutions of the root nodes have to be uni
ed� resulting
in the bindings pushed on the stack �compare stack �Init��� The sequence A U X denotes

the tree nodes which have been considered in this step� The recursive algorithm is started
on the subnodes of the root nodes� In case it succeeds in testing the current substitution for
uni
ability� the modi
ed stack is marked with �Success�� If a combination of leaf nodes has
been found� �Success� is written boldface� The
rst common instance is fu �� f�d� g�d��g
which is backward subsumed by the second common instance fu �� f�v� g�v��g� The last found

��� Indexing Algorithms ��

A

u �� f�x�� x��

B x� �� a

x� �� ��
x� �� g����

E

x� �� b

C

x� �� c

D

u��f�a�b� u ��f�a�c� u ��f�x�g�x��

�

U

u �� f�y�� g�y���

y� �� ��
y� �� ��

V

y� �� b

y� �� b

W

u��f�y�g�z�� u ��f�b�g�b��

�

X

u �� f���� g�z���

z� �� d

Y

z� �� ��
Z

u��f�v�g�d�� u��f�v�g�v��

Init

y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

A U X

Fail

y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

x� �� a B

Success
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

x� �� ��
x� �� g����

E

Success

�� �� ��
�� �� ��
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

y� �� ��
y� �� ��

V

Success
�� �� d

�� �� ��
�� �� ��
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� d Y

B
ac
k
T
ra
ck

Success
�� �� ��
�� �� ��
�� �� ��
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� �� Z

B
ac
k
T
ra
ck

Success

�� �� b
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

y� �� b

y� �� b
W

Fail

�� �� b
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� d Y

B
ac
k
T
ra
ck

Success
�� �� b

�� �� b
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� �� Z

R
es
et
In
it

Figure ���� Multi
Merge with Three Substitution Trees

�� Chapter �� The Prover

substitution fu �� f�b� g�b��g is forward subsumed by the second� Therefore� the result of the
multi
merge is a substitution tree only containing fu �� f�v� g�v��g�

����� Selection

The selection is an n�m maintenance operation on two indexes M and N � The set of lightest
substitutions occurring in N is added to M � The selected substitutions are not removed from
N � but marked as selected preventing multiple selection� The marked substitutions in N are
still considered for conventional retrieval�

The selection considers a selective substitution tree N as being separated into partitions
of di�erent weights� Each partition contains substitutions with identical weight� The lightest
partition can be selected within a single retrieval operation� Note that this operation also
modi
es tree N to provide consistency of N �In particular� a new lightest weight w and the
state s are propagated to the root�� If the lightest partition is completely retrieved� the weight
w in the root ofN corresponds to the weight of the new lightest partition� Thus a single selection
operation retrieves at most the substitutions of the lightest partition�

� algorithm selection�tree M �tree N �nat n�stack STK�

� begin

� while n � ��N is unselected do

� �M�N� n� � partition�M�N� n� STK�

� return �M�N� n�

� end

Figure ���� Algorithm for selection

The function selection depicted in Fig� ��� implements a selection of n substitutions in
a selective substitution tree N and stores the retrieved substitutions in tree M � The auxiliary
function partition repeatedly retrieves the lightest partition in N �s� line ��� Thus� the number
n of demanded substitutions does not depend on the size of the lightest partition in N �

Consider the algorithm for partition in Fig� ���� We assume that partition is called
only with substitution trees containing unselected substitutions� Furthermore� the current tree
node N in partition always contains substitutions with the lightest weight w� i�e� node N is
marked with weight w� Therefore� a parameter for the lightest weight in tree N is not needed
in the algorithm� In order to reconstruct the selected substitutions in tree N � the function bind

establishes N �s substitution on the stack �s� line ��� If node N is a leaf� then insert adds the
corresponding substitution represented by the established bindings to tree M �s� line ��� Note
that leaf N will be marked as selected �s� line ��� If node N is an inner node� then the subtrees of
N containing unselected entries with the lightest weight w are recursively searched �s� line ����
As the algorithm propagates a new lightest weight and the state of selection from the leaves to
the root� the set �� contains the updated subtrees of N �s� line ���� The new weight of node
N is the lightest weight of the subtrees in �� with unselected entries computed by the function
lightestweight� The function allselected is true if all entries in all subtrees in �� have been
selected �s� line ����

��� The Implementation ��

� algorithm partition�tree M �tree N �nat n�stack STK�

� begin

� h Assume that N has unselected entries i
� bind�N� STK�BINDINGS�

� if is leaf�N � then

� hN � ��� �� w� false�i
	 M � insert�M� STK�

 backtrack�STK�BINDINGS�

� return �M� ��� �� w� true�� n� ��

�� else

�� hN � ����� w� false�i
�� forall subtrees N � of N do

�� if n � ��N � is unselected with weightw then

�� �M�N �� n� � partition�M�N �� n� STK�

�� �� � �� �N �

�� backtrack�STK�BINDINGS�

�	 return �M� ������ lightestweight����� allselected������ n�

�
 end

Figure ���� Algorithm for partition

��� The Implementation

The
rst section gives a brief overview of Purr� As the system operates in three di�erent stages�
the following sections discuss each stage seperately� The
rst stage is the preprocessing in which
the problem set is processed and the clause graph is computed� The following reasoning phase
makes up the central part of the system� The
nal postprocessing includes the generation of a
proof scheme�

����� Overview

The implementation of Purr is based on the master�slave paradigm with message passing�
When Purr is started� a single process called master process is initiated� The master process
executes� controls� and terminates slave processes� In turn� a slave process will not execute
another process� Note that in our approach the master process only initiates a certain number
of slave processes just once� During the run of the system the number of slave processes remains

xed� Finally� the master process terminates all slave processes�

� algorithm master process��le F �

� begin

� h Let CGS � �V�E� be a clause graph i

� CGS � preprocessing�S�

� h Let � be a set of answer substitutions i

� � � reasoning phase�CGS�

	 h Let P be a set of substitutions representing a proof i

 P � postprocessing�CGS���

� end

Figure ���� The Master Process

�� Chapter �� The Prover

Figure ��� shows three main phases of the master process� The
rst step is the preprocessing
which is solely performed by the master process� The result of the preprocessing is a clause graph
CGS derived from the input set S of formulas in the
le F � In the following reasoning phase�
the master process uses the clause graph to determine the number of slave processes and their
interconnections� Then� the master process initiates the slave processes and remains idle until a
proof situation could be detected� Before the master process enters the postprocessing� all slave
processes are suspended� but not terminated� The result of a successful reasoning phase is a
set of answer substitutions �� An answer substitution instantiates one of the query clauses and
represents the last substitution of a successful proof� The following postprocessing substantially
includes the generation of a proof scheme P � The postprocessing solely is a sequential process
directed by the master process� The slave processes merely serve as databases of inferences� In
the following sections we discuss the three phases of the system in detail�

����� Preprocessing

The preprocessing in Purr creates a clause graph� The graph corresponds to the initial set
of clauses� In a
rst step� the master process performs the preprocessing in a solely sequential
computation� Concurrent processing starts after the preprocessing has been
nished�

� algorithm preprocessing��le F �

� begin

� Read in �le F and create set of clauses S

� h Create clause graph CGS according to S i
� CGS � create graph�S�

� h Optimize clause graph CGS i

	 delete tautologies�CGS�

 delete pure�CGS�

� end

Figure ���� The Preprocessing

Consider the preprocessing depicted in Figure ���� First� the master process reads in a
le
F which contains the problem set� Currently� Purr merely supports clause normal form� A
set of clauses S according to the formulas in F is established� The next routine creates the
corresponding clause graph CGS� Finally� the clause graph CGS is further optimized� In the
following� we describe the individual steps in detail�

The Input Process� Since Purr is an experimental system� it requires the input to be a
set of clauses in disjunctive normal form� Additionally� we added a keyword to mark some
clauses as query clauses� Currently� the options of Purr are passed as parameters of the master
process� Experiments with the system showed that the input language should support the user to
individually a�ect the creation of the clause graph� Note that the number of processes and their
interconnections directly depend on the clause graph� It is important to increase or reduce the
�potential� of a clause� i�e� to in�uence the number of processes designated to one clause� Thus
the input language ideally supports an individual marking mechanism of clauses and literals�
However� we discuss this issue later on the basis of experiments�

��� The Implementation ��

Clause Graph Creation� In Purr a clause graph provides information about how clauses
might be used as inference partners in the search process� Each literal in the set of clauses is
associated with a vertex in the graph� The links in the graph explicitly show potential applica

tions of ur
resolution� Consequently� the creation of a clause graph provides the computation of
these links and their corresponding test and send substitutions�

� algorithm create graph�clauses S�

� begin

� h Let CGS � �V� �� be a clause graph corresponding to S i
� V ISITED �� �
� create links�CGS� fvjv � V � query�v�g�

� return CGS

	 end

Figure ���� Create Clause Graph

The algorithm create graph depicted in Figure ��� computes the labelled links on a clause
graph CGS which is initialized with the vertices associated to the literals Li�j in the set of clauses
S� The algorithm create graph introduces a global set of vertices VISITED which contains the
worked
o� vertices�

� algorithm create links�clause graph CGS� vertices Vin�

� begin

� h Let CGS � �V�E� be a clause graph i
� forall vin � Vin n V ISITED do

� V ISITED � V ISITED � fving
� forall vout � V n fving do
	 if �� � literal�vout�� � �literal�vin�� then

 E � E � �vout� split mgu�literal�vout�� literal�vin��� vin�

� create links�CGS� clause�vout� n fvoutg�

�� end

Figure ����� Create all links leading to vertices in Vin

The global set VISITED is used by the algorithm create links depicted in Figure �����
The algorithm is called on the clause graph CGS and the literals of the query clauses� Recall
that links in CGS are solely established in the direction to query clauses� The recursion in
create links is based on the fact that a linked clause can be seen as an intermediate query
clause� The recursive call in line � considers the remaining literals of the currently processed
clause as new goals� The recursion is repeated until a unit clause is reached� The number of
possible links might be reduced by restricting the direction of links from positive to negative
literals� or vice versa� In line � we only have to consider vertices vin associated with positive
literals� or negative literals�

A�mann estimates the complexity of this algorithm to O�n�� �A�m���� Since Purr was not
developed to handle large initial sets of clauses� the square complexity should not become a
problem�

Clause Graph Optimization� Obviously� a clause graph might further be optimized in many
ways� We merely present two optimization routines which have been discussed in Chapter ��

�� Chapter �� The Prover

The
rst routine removes tautologies from the clause graph� A clause is a tautology if the clause
contains two complementary literals linked by an empty uni
er�

� algorithm delete tautologies�clause graph CGS�

� begin

� h Let CGS � �V�E� be a clause graph i
� forall v � V do

� if ��v� ��� ��� w� � E with w � clause�v� then

� E � E n feje � �v�� ��� ��� v�� � E � �v� � clause�v� 	 v� � clause�v��g
	 V � V n clause�v�

 end

Figure ����� Delete tautologies

The tautology algorithm depicted in Figure ���� removes the vertices corresponding to
clauses� which have internal links with empty test and send substitutions� All links connected
to the removed vertices are also deleted� Obviously� the deletion of tautology clauses can be
performed in a single pass process� since further tautologies cannot arise�

The second optimization considers so
called pure literals� Pure literals have neither incoming
nor outgoing links� i�e� the corresponding clauses will never participate the reasoning phase�
Consequently� the vertices and links of these clauses can also be removed from the clause graph�

� algorithm delete pure�clause graph CGS�

� begin

� h Let CGS � �V�E� be a clause graph i

� while v � V � ���v� �� � ��� w� � E ����w� �� � ��� v� � E do

� E � E n feje � �v�� ��� ��� v�� � E � �v� � clause�v� 	 v� � clause�v��g
� V � V n clause�v�

	 end

Figure ����� Delete clauses with pure literals

The purity algorithm depicted in Figure ���� implements the deletion of vertices and links
according to the previous de
nition� In contrast to the deletion of tautologies� the purity al

gorithm has to be performed repeatedly after removing links from the clause graph� since the
deletion of links possibly yields new pure literals� Therefore� removing clauses with pure literals
is a recursive process� Each time a clause is deleted the whole clause graph has to be scanned
again for pure literals�

In sum� the preprocessing computes a transformation of the initial set of clauses into an
optimized clause graph� The
nal state of the clause graph contains all information which is
required to begin the refutation process� Note that the preprocessing may also yield an empty
clause graph� Usually� the set of query clauses has not been properly chosen by the user in this
case� In the next section we discuss the reasoning phase of Purr�

����� Reasoning Phase

The reasoning phase in Purr is based on the distribution of newly inferred unit clauses among
concurrent processes� Each process works on a certain part of the clause graph depending on
the degree of granularity� In Purr
ne granularity with OR
parallelism is obtained if each link

��� The Implementation ��

in the clause graph is processed in parallel� Coarser granularity means that each process works
on all outgoing links of one literal� for example� In this section we focus on these issues in detail�

����� A Sequential Approach

Before we discuss more technical aspects of the reasoning phase� we present a solely sequential
version of Purr�s reasoning phase and point out where parallelism might be obtained�

� algorithm sequential reasoning phase�clause graph CGS�

� begin

� h Let CGS � �V�E� be a clause graph i
� h Initialize the sets REC� MRG� RES� and SNT of CGS i

� loop

� forall C � fclause�v�jv � V and all literals of clause�v� have incoming linksg do

	 if TERMINATE applied on C yields non�empty set � then

 return �

� forall v � V � clause�v� � fu� v�� � � � � vm� vg with m
 � do

�� forall e � �v� �� � ��� w� � E do

�� Apply RESOLVE to e

�� end

Figure ����� Sequential Reasoning in Purr

Consider the algorithm depicted in Figure ����� The initialization procedure in line � cor

responds to the creation of the initial state of the sets REC� MRG� RES� and SNT introduced
in Chapter �� The following loops provide several ways of parallelization� The
rst loop in
line � calls the rule TERMINATE on all clauses which have incoming links on all literals� Obvi

ously� the rule TERMINATE can be processed in parallel� since every process implementing the
rule TERMINATE works on its own clause� One clause will never be processed by several di�erent
processes for termination� Thus processes performing the rule TERMINATE are per de
nition
completely data
independent among themselves�

The parallelization of the loops in the lines � and �� introduces data dependence in the
following way� Consider a clause C � fL�� L�� L�g with three literals� Moreover� let literal L�

and literal L� have several incoming links and let literal L� have two outgoing links� Therefore�
we could employ two concurrent processes performing the rule RESOLVE on the two outgoing
links� Obviously� the two processes depend on the same substitution sets in REC and in MRG

of the literals L� and L�� In order to obtain data independence� each process has to maintain
its own substitution sets� Data dependence among processes for RESOLVE exists as long as there
are several concurrent processes working on the same clause�

Another interdependence occurs if literal L� also has incoming links� In this case a process
performing the rule TERMINATE is applied to clause C� Thus this process has to maintain its
own substitution sets� accordingly� In general� data dependence among processes for RESOLVE
and TERMINATE exists if clauses have incoming links on all literals and outgoing links on some
literals�

Note that there remains another type of data dependence among the processes� This de

pendence corresponds to the links of the clause graph and re�ects the fact that substitutions
have to be exchanged between the substitution sets attached to the clause graph� The degree of
parallelism is reduced if there are directly or indirectly connected processes with varying load

�� Chapter �� The Prover

such that one process has to wait for the output of another process� The waiting process remains
idle and thus does not support the reasoning phase� In fact� this data dependence is the only
remaining dependence in our approach and thus it is responsible for non
linear speedup� For
example� the behavior of processes performing the rule TERMINATE on unit clauses corresponds
to this phenomenon� Such a process is going to receive at most one substitution which obviously
corresponds to a proof situation� Most of the time before the proof is found� this process remains
idle and thus does not support parallelism� We provide a solution for this example later�

Again� consider the loops in line � and ��� The parallelization of both loops yield the
nest
possible granularity with OR
parallelism in this approach� Each link in the clause graph is
processed in parallel with the rule RESOLVE� Further parallelization of the rule RESOLVE would
enter the
eld of AND
parallelism� On the other hand� if we solely parallelize the loop in line
�� we obtain coarser granularity� Then� one process performs the rule RESOLVE on all outgoing
links of one literal� In Purr� we implemented these two levels of parallelism�

Of course� there are more levels of parallelism� For example� one process could work on several
more or all outgoing links of one clause or even more clauses� yielding coarser granularity� In
practice� coarser granularity has to be considered when working with large sets of clauses in
order to reduce the number of concurrent processes�

In sum� the transition rules RESOLVE and TERMINATE can be implemented on di�erent levels
of parallelism� Therefore� our approach provides di�erent granularity levels� The
ner the
granularity� the more copies of substitution sets in the clause graph have to be maintained
in di�erent processes� Consequently� since the substitution sets are generally data
dependent�
more communication is required to maintain data integrity� In practice� if more than one process
works on the same clause� the send operation becomes a multicast operation�

����
 The Parallel Implementation

This section describes the implementation of the transition rules of Chapter �� The application of
transition rules on the substitution sets attached to a clause graph is implemented by concurrent
slave processes� One slave process implements the repeated application of a transition rule on
certain substitution sets in the sets REC� MRG� RES� and SNT�

A slave process which implements the transition rule RESOLVE is called a resolution process� A
resolution process might work on a single link or a collection of links� There is also a second type
of slave process called the terminator process which implements the transition rules TERMINATE
and TRYTERMINATE� A terminator process is required for each clause with incoming links on all
literals in order to provide complete detection of proof situations� If a terminator process
nds
a simultaneous uni
er� a proof message is immediately sent to the master process which in turn
stops all slave processes�

Resolution Process on a Single Link� Consider the algorithm for a resolution process on
a single link depicted in Figure ����� The algorithm mainly re�ects the transition rule RESOLVE

which we introduced in Chapter �� We assume that the source vertex v of the processed link
e belongs to a non
unit clause C� In line �� any vertex u of C n fvg is selected to receive
new substitutions �u� Note that the set �u of newly received substitutions corresponds to the
substitution sets in REC� In practice� �u can always be deleted after the loop has been
nished�
The sets # correspond to the substitution sets in MRG and have to be maintained seperately

��� The Implementation ��

� algorithm resolution process link�link e�

� begin

� h Let e � �v� �� � ��� w� be a link i
� while proof not found do

� h Let u � V � clause�v� � fu� v�� � � � � vm� vg be the current receiver literal i
� h Let
u�
v� � � � � �
vm be already merged indexes for u� v�� � � � � vm� v i
	 receive �u for u

 ���
u�

�
u� � subsume��u�
u�

�
u � union���
u�

�
u�

�� � � multi�merge���
u�
v�� � � � �
vm�

�� h Let �v�w be an index of all resolved substitutions for link e i
�� �v�w � union�subsume����v�w��

�� � � link mgu�select��v�w�� �� ��

�� send � to w

�� end

Figure ����� UR
Resolution on Link �v� ��� ��� w�

in each resolution process� For example� the set #u contains all previously received and merged
substitutions of vertex u�

In line ��� the multi
merge operation computes the simultaneous uni
ers & among the sub

sumed rest ��u of newly received substitutions and all substitutions previously received for the
remaining literals of C� The result & is tested for subsumption and inserted into the set &v�w
of resolved substitutions in RES� Therefore� &v�w is also required to be maintained in each
resolution process� This set contains all previously computed simultaneous uni
ers�

The next step is the selection of �best� substitutions and the following link uni
cation� Recall
that we used the substitution sets in SNT to identify previously selected substitutions� Like the
sets in REC� the sets in SNT are not explicitly required since previously selected substitutions
are identi
ed in &v�w by a special marking mechanism� Finally� the newly selected substitutions
are tested for uni
ability with the test substitution� The successful uni
ers are applied to the
send substitution and the resulting instantiations are collected in �� The resulting set � is sent
to all processes working on vertex w as a receiver literal� Note that the send operation actually
is a multicast operation� because in general several processes may consider vertex w as a receiver
literal�

Figure ���� shows an optimized version of a resolution process for single links� The optimiza

tion concerns the reduction of possible simultaneous uni
ers and the avoidence of intermediate
data� Obviously� we obtain less simultaneous uni
ers if the test substitution for the link is
considered earlier as before since not all simultaneous uni
ers are also uni
able with the test
substitution� Actually� the link uni
cation is an integral part of an optimized multi
merge op

eration� Consequently� we also integrated the instantiation of the send substitution into the
multi
merge� Therefore� the result &v�w contains instantiated send substitutions which belong
to the literal of w instead of substitutions which belong to v� Line �� shows that we merely have
to select substitutions �� The test uni
cation and the send instantiation have been performed
in the multi
merge�

In order to avoid large intermediate data� we also added a simultaneous subsumption test
to the multi
merge� Every new simultaneous uni
er is inserted into &v�w after performing n � �
forward and backward subsumption with &v�w � Note that the simultaneous subsumption test

�� Chapter �� The Prover

� algorithm resolution process link opt�link e�

� begin

� h Let e � �v� �� � ��� w� be a link i
� while proof not found do

� h Let u � V � clause�v� � fu� v�� � � � � vm� vg be the current receiver literal i
� h Let
u�
v� � � � � �
vm be already merged indexes for u� v�� � � � � vm� v i
	 receive �u for u

 ���
u�

�
u� � subsume��u�
u�

�
��
u � union���

u�

�
u�

�� h Let �v�w be an index of all resolved substitutions for link e i

�� �v�w � union�subsume�link mgu�multi�merge���
u�
v� � � � � �
vm�� �� ����v�w��

�� � � select��v�w�

�� send � to w

�� end

Figure ����� Optimized UR
Resolution on Link �v� ��� ��� w�

also provides subsumption among new simultaneous uni
ers� In fact� this test is one of the most
important reduction methods in Purr�

Resolution Process on Some Links� In the following we discuss the algorithm for a re

solution process working on all outgoing links of one literal together� Recall that this type of
resolution process yields coarser granularity� i�e� the number of required resolution processes is
reduced while the amount of computation per resolution process is increased�

� algorithm resolution process literal opt�vertex v�

� begin

� while proof not found do

� h Let u � V � clause�v� � fu� v�� � � � � vm� vg be the current receiver literal i

� h Let
u�
v�� � � � �
vm be already merged indexes for u� v�� � � � � vm� v i
� receive �u for u

	 ���
u�

�
u� � subsume��u�
u�

u � union���
u�

�
u�

� h Let �v�fw����� �wng be an index of all resolved substitutions for all outgoing links of v i

�� �v�fw����� �wng � union�subsume�multi�merge���
u�
v� � � � � �
vm���v�fw����� �wng��

�� � � select��v�fw����� �wng�

�� forall e � �v� �� � ��� w� � E do

�� � � link mgu��� �� ��

�� send � to w

�� end

Figure ����� Optimized UR
Resolution on Literal Associated with v

Figure ���� depicts an already optimized algorithm� Obviously� the multi
merge operation
has to be performed only once for all links� In order to obtain a common representation of si

multaneous uni
ers for all links� we introduce a set &v�fw� ���� �wng which contains the simultaneous
uni
ers before the link uni
cation is performed� In other words� the substitutions in &v�fw����� �wng

belong to the literal of v� This approach provides more potential subsumption on simultaneous
uni
ers than the representation of uni
ers seperated into sets &v�wi for each outgoing link� In

��� The Implementation ��

the next step� substitutions ' are selected out of &v�fw� ���� �wng for the following send operation�
Finally� the instantiated send substitutions � have to be computed seperately for each link�

Note also that this approach shows a certain degree of unfairness� Consider a resolution
process working on a literal with outgoing links a and b� The test substitutions of the two links
are denoted by �a and �b� We assume that the test substitution �a provides a signi
cantly higher
probability for a successful link uni
cation with simultaneous uni
ers than �b� For example� �b
only contains ground terms while �a only contains variables in its codomain� The select operation
in line �� does not consider this di�erence� For instance� ten best entries could have been selected
for the send operation� but only one entry is uni
able with both test substitutions while the
other � entries are uni
able with �a only� In other words� in our example link a usually allows
more substitutions per send operation than link b depending on the probability of successful link
uni
cations�

The current implementation of Purr does not consider this unfairness� If we hold on the
approach of a common set &v�fw����� �wng� one problem in a solution is to provide the information
about which entries have been delivered on which links� Another approach is to provide separated
sets &v�wi for the simultaneous uni
ers� In the worst case� this approach yield sets &v�wi which
are more or less copies of each other�

� algorithm terminator process clause�vertices C�

� begin

� while proof not found do

� h Let u � C � fu� v�� � � � � vmg be the current receiver literal i
� h Let
u�
v� � � � � �
vm be already merged indexes for u� v�� � � � � vm i

� receive �u for u

	 ���
u�

�
u� � subsume��u�
u�

u � union���
u�

�
u�

� � � multi�merge���
u�
v�� � � � �
vm�

�� if � �� � then

�� send � to Master Process

�� end

Figure ����� Termination on Clause C

Terminator Process on a Clause� Figure ���� shows an algorithm for a terminator process
working on a clause C� A terminator process also performs input subsumption on the received
substitutions� see the transition rule TRYTERMINATE in Chapter �� The following multi
merge
operation searches simultaneous uni
ers which provide a successful instantiation of clause C to
the empty clause� A proof is obtained if at least one simultaneous uni
er could be computed�
The answer is immediately sent to the master process which in turn invokes the postprocessing�

Terminator Process on Unit Resolvents� The termination on clauses with many literals
usually performs poor� since the multi
merge operation is di�cult and many concurrent reso

lution processes produce a large amount of information which cannot be handled e�ciently�
Therefore� we introduce another termination approach referred to as unit terminator process� A
unit terminator process implements the well
known unit con�ict method� This approach also
provides a solution to the problem of idle terminator processes working on unit clauses which
we mentioned before�

�� Chapter �� The Prover

� algorithm terminator process unit�predicate P �

� begin

� while proof not found do

� h Let
pos and
neg be already merged indexes i

� h
pos contains substitutions belonging to positive units�
neg respectively i
� receive �

	 if � belongs to positive units then

 ����
�
pos� � subsume���
pos�

�
pos � union����
�
pos�

�� � � binary merge����
neg�

�� else

�� ����
�
neg� � subsume���
neg�

��
neg � union����
�
neg�

�� � � binary merge����
pos�

�� if � �� � then

�� send � to Master Process

�	 end

Figure ����� Termination on Units with Predicate P

Again� the clause graph provides su�cient information in order to determine on which pred

icate symbols a unit con�ict might be detected� Note that we cannot completely discard termi

nation on clauses in general� Clauses which do not participate in the search� but have incoming
links for all literals� are still required to be tested for termination� Nonetheless� termination
processes on unit clauses and the according resolution processes for their incoming links are
no more required� Instead� we use a unit terminator process for each predicate symbol which
occurs in a literal with incoming and outgoing links in the clause graph� Note that for predicate
symbols occurring in literals connected to unit clauses� a unit terminator process is also required�

The algorithm for a unit terminator process is depicted in Figure ����� The binary merge op

eration in line � and �� computes the unit con�ict between two sets containing the substitutions
of complementary literals� Note that the received substitutions in a unit terminator process can
be discarded� if one of the sets #pos or #neg does not receive any unit resolvents except for the
initial instances of the unit clauses�

In sum� the unit terminator approach improves the empty clause detection by reducing
redundancies in the original concept�

����� Initiation� Control� and Termination

The following section describes the technical aspects of slave process initiation� control� and
termination performed by the master process� Recall that we continue to discuss the algorithm
of the master process right after the preprocessing�

The individual steps of the master process are depicted in Figure ����� There are mainly
three phases� The
rst stage is the startup of the required slave processes� The following stage
is the control of the parallel system� Finally� the third stage performs the suspension of all slave
processes�

��� The Implementation ��

� algorithm reasoning phase�clause graph CGS�

� begin

� h Let CGS � �V�E� be a clause graph i
� Count number of required slave processes in CGS

� Spawn slave processes

� Initialize slave processes

	 Start slave processes

 Collect intermediate output and wait for proof message �

� Suspend slave processes

�� return �

�� end

Figure ����� Start and Control of the Parallel System

The Number of Slave Processes� The number of slave processes is determined by the
clause graph and� under restrictions� by the user�s choice which part of the clause graph should
be processed by a single slave� Since the clause graph directly depends on the problem type�
the user�s in�uence on the level of granularity is limited� The current implementation provides
two levels� Either each slave process works on a single link� or each slave process works on all
outgoing links of one literal yielding coarser granularity�

Slave Process Initiation� All slave processes are initiated at a time� PVM provides the
required method and thus determines on which processor the slaves will run� An open problem
is the speci
c distribution of slave processes on di�erent processors in the parallel machine� A
better matching of the �expected� potential of a slave process and the processor�s performance
together with the properties of the network would certainly improve the overall performance
and load balance of the system� Obviously� the estimation of both the process� load and the
produced amount of communication is non
trivial�

In order to estimate the load of a process� we consider the multi
merge as the most expensive
operation� The amount of computation during the multi
merge increases with the number
and size of indexes to be merged and the number of shared domain variables in the indexes�
The number of indexes and their common domain variables are
xed and directly problem

dependent� The number of entries in the indexes directly depends on the amount of received
information� i�e� on the behavior of other slave processes and the network�s capabilities� And thus
the number of entries in the indexes is directly associated with the amount of communication and
is also indirectly problem
dependent� Therefore� we are faced with a variety of interdependencies
between cpu load� communication� and the properties of the problem and the hardware� We
further discuss these issues in Chapter � with the help of some experiments�

In the following we work with the trivial approach� i�e� slave processes are randomly spawned
over the parallel machine�

Slave Process Initialization� The master process has to initialize the slave processes after
they have successfully been started on the parallel machine� First� optional settings are trans

mitted� Thereafter� the required clause graph information is sent� For a single slave process we
have�

�� Chapter �� The Prover

�� Routing information� i�e� process identi
cations of the master process and all processes
which are directly connected to this process�

�� The variable domain of each literal of the processed clause�

�� The test and send substitutions of the processed links�

Note that exact information about the literal terms of the processed clauses is not required� This
fact stresses the concept of Purr which models the reasoning phase solely based on indexes�
The concept of literals and clauses is not needed anymore�

Starting Slave Processes� Recall that the initial state of the sets REC� MRG� RES� and
SNT introduced in Chapter � represents the beginning of the reasoning phase� The initial
state of the sets corresponds to the distribution of all send substitutions that come from links
originating in unit clauses� The master process searches the clause graph for unit clauses with
outgoing links and sends the appropriate send substitutions to the processes which work on the
connected literals� The slave processes with direct connections to unit clauses will immediately
start reasoning�

Waiting for Proof Messages� The remaining work of the master process merely consists of
general control of the slave processes and the collection and printing of their output� The col

lection of slave process output in a distributed environment is a non
trivial problem� Especially�
when output of asynchronous slave processes has to be listed in a speci
c order�

During the reasoning phase the user may ask the master process to dump detailed statistics of
the slave processes� Therefore� the master process broadcasts a request for statistics to all slave
processes and� thereafter� collects the output generated by the slave processes� A slave process
suspends its work when such a request has been received� The desired output is generated
and the process resumes computation� Sometimes the output of one slave process arrives in
several packages at the master process� These output packages might be interrupted by output
packages originating from other slave processes yielding an unreadable output� Therefore� the
master process has to focus on the output of one slave process and may proceed only if the
output is completed�

In this context� another problem arises when the master process has to wait for a slave
process� For example� some slave processes usually spend a lot of time in the multi
merge
operation� The result is an unacceptably long delay until the generation of slave output starts�
In order to avoid repeatedly probing for request messages during intensive operations in slave
processes� we employ the concept of signals� A signal causes a process to suspend the current
work and to execute a so
called signal handler� When the signal handler is
nished the process
resumes the current work� Note that a signal handler might perform strictly restricted operations
only� since the current state of the interrupted process is uncertain�

Consequently� the master process actually broadcasts signals instead of request messages to
the slave processes� In turn� when a slave process receives a speci
c signal� its signal handler
immediately sets a certain global variable which is also accessable in the normal process con

text� Therefore� we exchanged a time
consuming probe operation against a variable access� For
example� the global variable may also be accessed during a multi
merge operation� When the
variable is set� the multi
merge is suspended and the request can be served� This concept yields

��� The Implementation ��

a better answer performance� even when some slave processes are under heavy load� On the
other hand� signal handling might reduce the portability of the system�

In addition to the output collection� the master process also provides a shut down routine�
Like the output collection� a controlled shut down of all slave processes is also implemented with
signals�

Another task of the master process is to wait for proof messages sent by terminator processes�
When the master process receives a proof message the reasoning phase is
nished and the
postprocessing begins�

Suspension� The next operation of the master process after receiving a proof message is to
suspend all slave processes� The suspension is achieved by broadcasting a wait message or� as
an optimized approach� by broadcasting signals to all slave processes� The optimized suspension
mechanism does not only provide faster generation of a proof� but also improves precision of
timing information� since the amount of unuseful computation is reduced� Recall that we use
signals to immediately interrupt large scale operations like the multi
merge� After the slave
processes received the suspension command they are ready to answer the requests of the master
process�

����� Postprocessing

The postprocessing mainly performs the grabbing of a proof� It is a solely sequential process
since all slave processes are forced to wait for requests of the master process one after another�
During the postprocessing the resolution processes merely work as databases on the produced
substitutions while the terminator processes wait for termination� The whole operation is con

trolled by the master process� Figure ���� shows the algorithm of the master process in detail�

� algorithm postprocessing�clause graph CGS � set ��

� begin

� h Let CGS � �V�E� be a clause graph i
� h Let � be a set of answer substitutions i
� forall � � � do

� h Let O be the origin list of � i
	 apply � to appropriate query clause and print

 collect proof���O�

� Collect output and terminate slave processes

�� end

Figure ����� The Postprocessing

Proof Generation� In general� the proof message sent by a terminator process may contain
several di�erent answer substitutions each representing a di�erent proof� Actually� a terminator
process uses a modi
ed multi
merge operation which only searches for the
rst existance of a
simultaneous uni
er� Possible subsequent simultaneous uni
ers of the current multi
merge oper

ation are not considered� but the multi
merge operation is immediately stopped� Nevertheless�
we present the general algorithm of the proof collection� Thus in line � all answer substitutions
are considered for the generation of a proof�

�� Chapter �� The Prover

� algorithm collect proof�substitution �� list O�

� begin

� h Let O be a list of pairs p i
� h Let p � �pid� n� be a pair of a process id and a number i

� forall p � �pid� n� � O do

� if pid belongs to master process then

	 print appropriate unit clause

 else

� query process pid for substitution n and its origin list

�� h Let �p be the substitution n in process pid i

�� h Let Op be the origin list of �p i
�� collect proof��p� Op�

�� apply �p to appropriate literal and print

�� end

Figure ����� Recursive Proof Generation

The algorithm collect proof depicted in Figure ���� implements the collection of the in

volved substitutions of a proof in a distributed environment� The reconstruction of a proof
requires a data structure which provides information about the origin of a substitution� There

fore� a substitution � is associated with a pair �pid� n� of a process identi
cation number pid
and a unique number n within this process� In other words� the pair �pid� n� together with �

means that the process with id pid inferred � as the nth produced substitution� The indexing
conveniently associates an inserted substitution with any kind of information� Nearly every
index in Purr contains substitutions associated with these pairs�

The index containing the result of a multi
merge operation is the only exception� Each sub

stitution � in this index is required to provide information about which substitutions contributed
to the creation of �� Therefore� in this case we extend a single pair to a list of pairs called the
origin list� The length of the origin list corresponds to the number of literals of the processed
clause� The
rst pair corresponds to the original pair� i�e� the
rst pair contains the pid and n
of the process which performs the multi
merge operation� The rest of the origin list contains the
pairs of the substitutions which contributed to the creation of the simultaneous uni
er� Thus a
request for �pid� n� is answered by the process pid by searching the index containing simultane

ous uni
ers for substitution n� The process answers with the found substitution and the rest of
the associated origin list� Note that substitutions selected for a send operation are associated
with the
rst pair of the origin list only�

The collect proof procedure is a recursion which traverses the proof tree until unit clauses
are reached� Obviously� a substitution associated with the pid of the master process corresponds
to a unit clause� On the other hand� a substitution associated with the pid of a resolution process
corresponds to a unit resolvent with a origin list� In line � the process pid is requested to answer
with the substitution itself and its origin list� Then the origin list is recursively processed until
unit clauses are reached�

In the implementation of Purr� the proof tree is not printed immediately� but stored in
an appropriate data structure providing better output format� For example� repeated unit
resolvents can easily be printed only once� We also added a verifyable output format� This
format can be interpreted by a script program which in turn uses another theorem prover to
verify the single steps of the proof�

��� The Implementation ��

Termination� The
nal output collection is implemented as discussed before� Each slave
process produces statistical output including timing information� The timing information is
seperately collected by the master process in order to compute the total cpu time consumption
of all slave processes� Finally� all slave processes are terminated by a regular termination message
instead of signals since the slave processes are currently idle�

����
 Options in Purr

Finally� we discuss the most important options in Purr� We distingiush traditional parameters
like the subsumption switch and options controlling the special indexing operations and the
communication of Purr� Most of the following options are used in many resolution based
theorem provers�

� The forward�backward subsumption can be seperately turned o�� The default is on for
both subsumption operations�

� A limit on the weight of the produced substitutions can be imposed� During the multi

merge generated substitutions exceeding the limit are discarded� The default is no limit�
This limit can also be introduced automatically by an assessment mechanism presented in
the theorem prover Otter �McC���� Initially� a
xed amount of memory� say �� MBytes
of RAM� is available� When one third of this memory has been
lled� a limit is imposed
on the number of symbols in deduced clauses"substitutions� The limit referred to as
max is selected by computing the maximum size of the formulas"substitutions contained
in the smallest �) of all set of support formulas or of all substitutions stored in the tree
containing the simultaneous uni
er in a resolution process� Every tenth iteration of the
main loop a prospective new limit m is calculated in the same way� If m 	max� the limit
is reset to m� McCune arrived at the values �

� and �) by trial and error�

� A limit on the weight of the substitutions to be sent can be imposed� The selection of
substitutions only considers substitutions lighter than this limit� If there are no appropriate
candidates� the selection chooses only one lightest substitution in order to keep the system
running� This technique prevents too heavy substitutions to be considered for subsequent
resolution steps if no better candidates are available� Instead� the system restricts the use
of heavy substitutions and tries to
nd lighter substitutions� Note that all substitutions
including the heavy substitutions are tested for termination� The default is no limit�

� A limit on the proof level restricts the depth of the search space� Substitutions with a
creation path deeper than the limit are discarded� The default is no limit�

� The output of given� kept� and received substitutions can be turned on� Note that the
output of slave processes has to be redirected to the master process� An e�cient solution
is to send the output also as compact indexes of substitutions instead of ready formatted
output� The generation of a readable format can also be performed by the master process�
The default is no output�

� The output of time and space statistics of the slave processes can be requested� The
default is no statistics�

�� Chapter �� The Prover

Since Purr works with indexes of substitutions as the fundamental data structure in the
system� we also developed options on the level of indexes and indexing operations�

� The number of multi�merges�send operation determines how many multi
merges have
to be performed before a selection and send operation is initiated� The default is one
multi
merge per send operation� Depending on the problem� more multi
merges per send
operation prevents too heavy substitutions to be considered for subsequent resolution steps�
Note that the e�ect is similar to the weight limit on substitutions that are to be sent�

� The number of indexes�receive operation corresponds to the length of the receive queue
of indexes� Before a slave process starts the multi
merge it receives indexes for one literal
in the nucleus until the queue of the literal is full� The queue is sorted according to the
minimal weight of the entries in the indexes� The e�ect is that indexes with lighter entries
are considered
rst� The default is one index per receive operation�

� The number of given substitutions�send operation determines the size of the sent in

dexes� The default is ten substitutions per send operation� The usual size of a sent index
ranges between
ve and
fty substitutions�

��� Techniques

In this section we discuss two di�erent low
level aspects of our implementation� Both methods
crucially improve the performance of Purr� The
rst technique called contexts addresses the
e�cient maintenance of variable bindings� This method also improves the renaming of vari

ables� In the second part we present an e�cient transformation procedure of substitution trees
into process
independent form� The transformation provides the communication protocol with
indexes among distributed processes�

����� Contexts

We present a technique called contexts which has been introduced by McCune for the theorem
proverOtter �McC���� Contexts allow the use of the same variables in actually variable disjoint
terms or substitutions� Even substitution trees containing the same variables can be considered
as variable disjoint with contexts�

A context is a data structure containing variable bindings� To this end we associate every
new variable with a unique natural number� With this number we access a context that actually
is an array containing an arbitrary maximum of binding elements� A binding element contains
a pointer to a term and the name of a context� Thus contexts are similar to the notion of a
substitution� Note that the number of possible variables is limited to the size of the smallest
context�

Consider the example depicted in Figure ����� We employ two contexts C� and C� for the
uni
cation of the terms t� � f�x� g�y� z�� z� and t� � f�g�x� y�� y� x�� We assume that both
terms t� and t� are variable disjoint� Using the contexts C� and C� the terms do not have to be
renamed� Variables occurring in t� are bound in C� whereas variables occurring in t� are bound
in C�� An important technical aspect is that a context is accessed by the unique number of a
variable� In our example the variable x corresponds to the natural number �� variable y to ��

��� Techniques ��

� x g�x� y�
�
� z x

�
�

C�

C�

C�

�
� y g�y� z�
�
�
�

C�

C�

Figure ����� Two Contexts C� and C� with Bindings

and so on� This detail provides an e�cient access of variable bindings that really improves the
performance of the system�

In order to extract the common instance of the two terms� we simply apply the bindings in
context C� to the term t� and rename the variables yielding the term f�g�x� g�y� x��� g�y� x�� x��
Note that we also use contexts to rename variables e�ciently� To this end we add an extra
renaming slot to each binding element of the contexts� In Purr variable renaming always
corresponds to normalization since substitution trees represent normalized terms or substitutions
more e�ectively� We obtain a normalized term by renaming the variables in a speci
c order�
Here� the order is determined by the unique number of every variable� Renaming always is
started with variable x which corresponds to the natural number ��

�

� �

� �

�

�

� �

� �

�

�

� �

� �

�

� �

� �

x

y

X

Z

X

Y

U

Y

Z

x

CCommon C� C� C� CResult

Figure ����� The Multi
Merge Operation with Three Substitution Trees

Multi�Merge� In Purr all operations involving the maintenance of variable bindings use
contexts� In particular� the multi
merge operation can be supported by contexts very e�ciently�
Consider the example depicted in Figure ����� We employ
ve contexts in order to merge
three substitution trees� The context CCommon maintains the common variables occurring in
the nucleus� Common variables of the nucleus are denoted by lowercase characters x� y� and
so on� Variables that belong to the electrons are referred to as private variables denoted by
uppercase characters X � Y � and so on� The private variables occurring in the substitutions
of the three trees as well as the index variables of the trees are maintained seperately in the
contexts C�� � � � � C�� Finally� context CResult contains the variables of the resulting substitution
tree� The integrated subsumption and insertion operations of the multi
merge use the context

�� Chapter �� The Prover

CResult� The other n�m indexing operations use contexts accordingly�

Test Uni�cation and Send Instantiation� The splitted uni
er �� � �� of two connected
literals containing a test substitution � and a send substitution � is also computed using contexts�
The computation merely corresponds to the uni
cation of literals followed by the extraction of
substitutions� Here� we also distinguish variables occurring in the two di�erent literals by using
common and private variables� We will show that two variable types su�ce to represent the
required test and send substitutions as well as the substitutions being uni
ers or ur
resolvents�
Variables with indices �s� and �r� of the original approach in Chapter � are replaced�

�� � fx �� f�f�y��g P �x� f�y�� z� �P �f�x�� f�y�� a�

v� v�

� x f�X�
�
� z a

�
�

CCommon

CTest

CTest

�
�
�
�
�

CSender

� X f�y�
�
�
�
�

CTest

CSender

�� � fx �� f�X�� y �� Xg

� � fx �� f�X�� z �� ag

� � fx �� X� y �� yg

Figure ����� Test Uni
cation and Send Instantiation

Figure ���� depicts a fragment of an example which has been discussed in the last section
of Chapter �� The literals P �x� f�y�� z� and �P �f�x�� f�y�� a� belong to the same clause and
are connected by the internal link �v�� ��� ��� v��� The common variables of the test substitution
� � fx �� f�X�� z �� ag belong to the sender literal� The private variables like the variable X
belong to the receiver literal�

Since only the codomain of the send substitution � � fx �� X� y �� yg is a�ected by the
send instantiation� we consider the common variables of the codomain as being di�erent from
the variables in the domain� Therefore� the variable y in the codomain of the send substitution
� is di�erent from the variable y in the domain which� however� implicitly means that the send
substitution conforms to the de
nition of substitutions� The common variables in the codomain
�like the variable y� belong to the same common variables in the test substitution � while the
private variables belong to the private variables in � �

We consider the send operation of the ur
resolvent �� � fx �� f�f�y��g to the literal v�
receiving the substitution �� � fx �� f�X�� y �� Xg� Actually� we unify the ur
resolvent
P �x� f�y�� z��� with the receiver literal �P �f�x�� f�y�� a� of a nucleus and extract the according
uni
er ��� This operation corresponds to the
rst send operation in the original example depicted
in Figure ����

For the test uni
cation with the test substitution � and the ur
resolvent �� three contexts are
required� The context CCommon maintains the common variables� i�e� the lowercase variables of �
and ��� The private variables of �� are bound in the context CSender whereas the private variables
of � are bound in the context CTest� The test uni
cation
rst establishes the assignments
fx �� f�X�g and fz �� ag of � in the context CCommon� The context of the codomain terms is

��� Techniques ��

the context CTest� Then �� successfully is uni
ed with respect to these bindings yielding the
binding fX �� f�y�g with CSender being the context of f�y��

The following send instantiation applies the bindings of the context CTest to the codomain of
the send substitution � yielding the substitution � � fx �� f�y�� y �� yg� Depending on context
and type� the variables in this substitution have to be renamed or converted from common type
to private type and vice versa� Unbound common variables like the variable y in � are converted
to private variables and then renamed yielding the substitution �� � fx �� f�X�� y �� Xg�
The conversion is due to the interpretation that common variables like the variable y belong
to the sender literal� Unbound private variables are converted depending on their context�
Private variables of the test substitution simply are converted to common variables because
these variables actually belong to variables of the receiver literal� Private variables of the ur

resolvents are not converted but renamed� Assignments of the send substitution that become
assignments of the form fx �� xg are omitted�

In sum� contexts provide an e�cient and �exible technique for the maintenance of variable
bindings and for other operations involving variable handling like renaming and conversion�

����� Indexing and Process Communication

In the distributed theorem prover Purr indexes are used in the communication protocol� We
now present a transformation of substitution trees and the underlying term structure to a
process
independent representation� This representation can be transmitted between processes�
After receiving the process
independent form� it is transformed back into the internal represen

tation of substitution trees�

Sender

�

� �

� �

� � � � �

�

� �

� �

Receiver

internal independent internal

Figure ����� Process Communication

Early experiments withPurr showed that sending the new substitutions one by one produces
too much communication overhead� In order to improve the communication performance of the
system� the number of messages had to be decreased� As the prover produces substitution sets in
each resolution step anyway� it is straightforward to exchange substitution sets among processes
instead of single substitutions�

Process�independent Representation� A process
independent representation of substitu

tion trees does not contain absolute addresses� Therefore� a procedure which yields an inde

pendent representation has to transform absolute into relative addresses� This transformation
should enable us to reconstruct the substitution tree after transmission� The independent data
structure has to be as simple as possible in order to send and receive a whole index at a time�
Such a data structure is a vector of uniform elements�

�� Chapter �� The Prover

����� Transformation of Substitution Trees

In Purr both substitution trees and terms are internally represented as recursive tree structures�
Thus the transformation maps the tree representation of indexes and terms to a �at vector
representation� The recursive structure can be represented in a vector by relative instead of
absolute addresses� The vector itself is designed as a simple array of integers� We informally
present the transformation procedure in a top
down manner�

�� � fu �� f�x�� x��g

�� � fx� �� a� x� �� bg �� � fx� �� b� x� �� ��g

I subst���� � L subst���� � data L subst���� � data

Figure ����� Transformation of a Substitution Tree

Substitution Trees� We only consider standard substitution trees� The extention to other
types of substitution trees is straightforward� An example of a transformation is depicted in
Figure �����

An inner node of a substitution tree consists of a substitution and a list of subtrees� Instead
of subtrees� leaf nodes refer to a list of entries which correspond to inserted variants of the
same substitution� First� a �ag �I� indicates that the following node is an inner node� A �ag
�L� indicates a leaf node� Thereafter� the node�s substitution � is transformed to subst����
As the number of subnodes or entries is arbitrary� the number is inserted to the vector as
a reconstruction reference� Finally� if the current node is an inner node the transformation
recursively starts on the subnodes� Otherwise� a transformation procedure is called for all
entries of the leaf node� In our example� both leaf nodes contain one entry indicated by � in the
transformation�

This concept is extendable as long as there is a transformation for the indexed data� For
example� if history information is added to each entry of an index the transformation of leaf
nodes has to consider the transformation of history information accordingly�

� � fx �� f�g�a�� b�� y �� g�f�z� c��g � x term�x�� y term�y��

Figure ����� Transformation of a Substitution

Substitutions� A substitution � consists of a
nite set of variable
term pairs� See Figure ����
for an example� The internal representation of a substitution is a list of variable
term pairs� We
transform a substitution into a vector of symbols such that the number of variable
term pairs
is stored
rst� Then each pair is transformed with the transformed variable symbol followed by
the transformed term�

��� Techniques ��

t � f�g�a�� b� f g a b

Figure ����� Transformation of a Term

Terms� Consider the example in Figure ����� In Purr terms are represented in a conventional
tree structure� A term consists of a top symbol and a pointer to an argument list containing
terms� The string representation of a term corresponds to a process
independent representation�
Thus the transformation maps each symbol in a term to the vector in a speci
c order� e�g� depth

rst� A term is reconstructed according to the transformation order and the known�
xed arity
of function symbols�

Symbols� A symbol is represented by an integer value� Variables are positive integers� Con

stant and function symbols are negative� The least signi
cant bits of an integer are used to
encode di�erent types of variables �common or private� or the arity of the function symbols�
Obviously� the integer representation of symbols is process
independent� Therefore� the trans

formation of symbols is trivial�

����� Assessment

In many experiments Purr showed best performance in the range of �� to ��� entries per index
which means that a vector of �� to �� kB is needed� The transformation to the vector represen

tation yielded an average compression level of about one third compared to the original memory
consumption of a substitution tree with conventional terms� The time needed to transform a
tree in both directions is negligible compared to operations like the multi
merge or subsumption�

�� Chapter �� The Prover

�
Experiments

In this chapter we show that our prototype implementation of Purr is able to achieve very high
performance� To this end� we present a selection of experiments that focus on the e�ect of both
indexing and parallelism on the systems overall performance�

The impact of indexing on Purr�s performance is investigated by a
rst set of experi

ments� which use the well
known Condensed Detachment principle introduced by C� A� Mered

ith �LMM	���� Our experiments are based on problem sets that have been presented by William
McCune and Larry Wos �MW���� With respect to the experiments reported in that paper we
will compare Purr and the theorem prover Otter �McC���

In order to investigate increasing degree of parallelism� we also performed experiments on
problem sets that consist of more initial clauses than the condensed detachment examples� in
order to investigate an increasing degree of parallelism� Experiments cover the well
known Sam�s
Lemma �MOW��b� and the Steam�Roller �Pel��� problems� The axiomatization of all problems
were taken from the TPTP Problem Library �SSY����

Experiments covering all problem sets of the TPTP library which are refutable by ur

resolution cannot be performed automatically because Purr�s implementation is still unstable�
The main problem is that the prover has been developed as a pure distributed system which is
very di�cult to debug� The current implementation cannot simulate concurrency using a single
sequential process� At least errors related to the complex indexing operations could be found
more easily in a sequential process� Nevertheless� our results have been veri
ed automatically
by a shell script using the theorem prover Otter�

	�� Indexing

Term indexing supports fast access to and maintenance of large databases in automated the

orem provers� Therefore� the investigation of indexing methods within an automated theorem

�� Chapter �� Experiments

prover is supported by problem sets which require the prover to create and maintain a large
knowledge base during the search process� The study of logic calculi with condensed detachment
is recognized as a very challenging
eld for theorem provers� Some problems that arise in this
context are extremely di�cult� i�e� a huge number of inferences has to be drawn� Additionally�
all problems in this area can be processed by a single process of Purr providing a fair basis for
the comparison with sequential theorem provers like Otter�

In the following we merely provide the
rst
order axiomatization of the condensed detach

ment inference rule� A detailed theoretical background of condensed detachment has been
presented by J� Lukasiewicz �*Luk����

De�nition �����
Condensed Detachment�
For a binary function symbol i and a unary predicate symbol P � P� condensed detachment is
de
ned as�

	x	y�P �i�x� y��� P �x�� P �y��

which corresponds to the clause normal form�

f�P �i�x� y����P �x�� P �y�g

Condensed Detachment combines detachment �modus ponens� and instantiation for a binary
operation i� This binary operation usually represents the implication or equivalence within a
calculus� The unary predicate P applied to a subformula � is interpreted as �� is a theorem�
or �� holds�� Therefore� the condensed detachment inference rule can be used to derive new
theorems or axioms within a certain calculus�

Our experiments with condensed detachment
t into a speci
c presentation scheme� In
particular� the structure of the clause graph that corresponds to the experiment�s axiomatization
remains almost unchanged� Only axioms and theorems represented by unit clauses change�
Therefore� the number of employed processes in these experiments is
xed� The degree of
di�culty is solely determined by the axioms and the denied theorem�

Implicational Propositional Calculus� The problems are presented in the following way�
Given the formulas

�IC
�� i�x� x� �IC
�� i�i�x� y�� i�i�y� z�� i�x� z���
�IC
�� i�x� i�y� x�� �IC
�� i�x� i�i�x� y�� y��
�IC
�� i�i�i�x� y�� x�� x� �IC
JL� i�i�i�x� y�� z�� i�i�z� x�� i�u� x���

each holding in IC� Each of the sets fIC
��IC
��IC
�g and fIC
JLg axiomatizes IC� The problems
�� �� depicted in Table ��� are to derive each system from the other� For example� problem ���
IC
JL�IC
�� is to
nd a refutation of the clauses�

f�P �i�x� y����P �x�� P �y�g Condensed Detachment
fP �i�i�i�x� y�� z�� i�i�z� x�� i�u� x����g IC
JL
f�P �i�i�a� b�� i�i�b� c�� i�a� c����g Denial of IC
� �skolemized�

The corresponding clause graph for the proof of IC
JL�IC
� is depicted in Figure ���� The
denied theorem IC
� is marked with ��� and thus represents the only query clause� Axiom IC
JL
is connected to the condensed detachment clause representing a possible inference� Obviously�

��� Indexing ��

the internal links �v�� ���� ���� v�� and �v�� ���� ���� v�� represent by far the highest potential
concerning the computation of inferences� Link �v�� ���� ���� v�� merely expects one substitution
which corresponds to a successful refutation�

IC
JL P �i�i�i�x� y�� z�� i�i�z� x�� i�u� x���� v�

CD �P �i�x� y��

v�

�P �x�

v�

P �y�

v�

�

IC
� �P �i�i�a� b�� i�i�b� c�� i�a� c����

v�

����
���fx��i�i�x�y��z��y ��i�i�z�x��i�u�x��g

����
���fx��i�i�i�x�y��z��i�i�z�x��i�u�x���g

���fy ��Xg

���fx��Xg

���fy ��i�X�Y �g

���fx ��X�y ��Y g

���fy ��i�i�a�b��i�i�b�c��i�a�c���g

����

Figure ���� Clause Graph of the Problem IC
JL�IC
�

Recall that our approach provides various degrees of granularity� In fact� Purr can work
on the clause graph either with a single resolution process for all outgoing links of a literal or
with resolution processes for each particular link� Experiments with resolution processes for all
outgoing links of a literal are denoted by PurrLiteral
n� The number n denotes the number of
available processors� Experiments providing resolution processes for each link are denoted by
PurrLink
n�

In practice� two slave processes are employed using PurrLiteral
n on the condensed detach

ment examples� One slave process is the resolution process� the other process is a unit terminator
process for the predicate P � The current implementation of PurrLink
n does not support the
unit termination concept� PurrLink
n yields four slave processes for the condensed detachment
experiments� Three resolution processes work on the three outgoing links of v� and one clause
terminator observes v�� Note that in the current example the unit termination concept could
reduce the number of slave processes to three since the resolution process for link � is actually
not required� In other words� the resolution process on link � and the clause terminator process
on v� could be combined to one unit terminator process on predicate P �

Nonetheless� the four slave processes in the PurrLink
n approach only provide a degree of
parallelism of two since the two resolution processes working on internal links consume by far
the most cpu time� We observe a similar behavior of PurrLiteral
n which provides almost no

�� Chapter �� Experiments

parallelism since here the unique resolution process is dominant�

Test Conditions� In the following tables �fail� indicates that no proof has been found within
four hours with a maximum of �� Mb for all processes� The reported times are the seconds
needed to
nd a refutation on a SuperSparc �� computer with two processors� In order to
obtain experiments with n � � on the two processor machine we estimate the elapsed real time
by summing up the cpu ticks needed in all processes involved� The times for experiments with
n � � are real times� Note that this timing method does not provide exact results� But it
su�ces to compare the di�erent con
gurations of Purr� Otter uses hyperresolution without
backward subsumption� Purr employs the restriction of unit resulting resolution to positive
unit clauses� which in this case is equivalent to hyperresolution� as can be seen in Figure ����
Purr uses a limit of �� substitutions per message� Backward subsumption is also switched o��

(Theorem Otter PurrLiteral
� PurrLink
� PurrLink
�

�� IC
��IC
��IC
� � IC
JL �� �� �� ��

�� IC
JL � IC
� � � � �

�� IC
JL � IC
� � � � �

�� IC
JL � IC
� �� � � �

�� IC
JL � IC
� ���� ���� ���� ����

�� IC
JL � IC
� ��� ��� ��� ���

Figure ���� Experiments with the Implicational Propositional Calculus

Consider the column for PurrLiteral
� in Figure ���� Purr employs one resolution process
and one unit terminator process in this con
guration� In these experiments the resolution process
consumes almost all cpu
seconds during the run� The most time
consuming operation within the
resolution process is the multi
merge� The unit terminator merely has to perform a n�� indexing
operation for uni
able partners of the denied theorem in the set of produced inferences� The
costs of this test are small compared to the multi
merge operation� Thus Purr runs sequentially
in this con
guration providing a basis for the comparison to the sequential Otter system�
Although Purr produces communication overhead� it shows better performance�

The two columns for PurrLink
� and PurrLink
� contain the proof times for Purr working
with two resolution processes on condensed detachment� Obviously� a maximum speedup of two
might be obtained in this con
guration� The times of PurrLink
� compared to PurrLiteral
�
are nearly doubled since the multi
merge operation on condensed detachment is employed twice
in the PurrLink
� con
guration�

The PurrLink
� con
guration again achieves similar results as the sequential variant of
PurrLiteral
�� The proof times of PurrLink
� corresponds to a speedup of about ��� compared
to the proof time of PurrLink
��

Detailed Statistics� For a more detailed analysis consider the time and space statistics
of a single resolution process depicted in Figure ���� These statistical data have been ob

tained by trying to prove problem ��� i�e� IC
JL�IC
�� with PurrLiteral
�� Recall that in the
PurrLiteral
� setting a single resolution process works on both internal links �v�� ���� ���� v�� and
�v�� ���� ���� v��� Statistical data about the according unit terminator process is omitted due to
its minor contribution to time and space consumption� Actually� the unit terminator process

��� Indexing ��

REC� ����
Subsumed� �� �����)�
MRG� ���� ������)�
Memory� �����kB

Union� �� sec
Subsumption� �� sec

v�

REC� ����
Subsumed� �� �����)�
MRG� ���� ������)�
Memory� �����kB

Union� �� sec
Subsumption� �� sec

v�

Inferred� �������
Weighted� ������� ������)�
Subsumed� ������� ������)�
RES� ����� ����)�
Memory� ����kB

Merge� ���� sec
Subsumption in M�� ��� sec

v�

SNT� ����

SNT� ����

Figure ���� Statistics of the Resolution Process in PurrLiteral
� on Problem IC
JL�IC
�

consumes only a few seconds of cpu
time� Note that this example is a good representative for
the behavior of Purr on condensed detachment�

The presentation of statistical data resembles the original clause graph in Figure ���� The
nodes v� and v� contain information on the input behavior of the resolution process� Both nodes
produce identical data due to the properties of condensed detachment� The process received ����
substitutions on each node and performed forward subsumption in �� seconds with almost no
e�ect� The remaining ���� substitutions were inserted into a ����� kilobytes substitution tree
in �� seconds�

Node v� provides information about the generation of new inferences performed on the
received substitutions� About ��� million new clauses were inferred� The automatic weight
control rejected ��) of these clauses� Forward subsumption avoided the maintenance of ��) of
the new inferences� Note that forward subsumption represents the most expendable part of the
multi
merge ���� seconds for forward subsumption of ���� seconds for the whole computation
of new inferences�� Only ���) of all new inferences were kept and inserted into a ��� megabytes
substitution tree� The strategy selected ���� inferences for both outgoing links for subsequent
resolution steps� Note that all ����� saved inferences were sent to the unit terminator process
for testing unit con�icts�

We observe that the multi
merge operation consumes by far most of the cpu
time and its
result also consumes most of the memory� The forward subsumption within the multi
merge
takes about ����) of the overall merge time� The impact of subsumption on the amount of kept
inferences is very strong� Due to this observation the subsumption test has been integrated into
the multi
merge operation� New inferences are kept in memory only if they passed the weighing
and subsumption tests�

With an increasing size of the kept inferences the subsumption test becomes more time

consuming� Nevertheless� experiments with very large substitution trees �several hundreds of
megabytes� still show reasonable inference rates�

�� Chapter �� Experiments

Equivalential Calculus� The formulas in the left column hold in the equivalential calculus
�EC�� Each of the formulas in the right column is a single axiom for the equivalential calculus�

�EC
�� e�e�e�x� y�� e�z� x��� e�y� z��
�EC
�� e�e�x� e�y� z��� e�e�x� y�� z��
�EC
�� e�e�x� y�� e�y� x��
�EC
�� e�e�e�x� y�� z�� e�x� e�y� z���

�YQL� e�e�x� y�� e�e�z� y�� e�x� z���
�YQF� e�e�x� y�� e�e�x� z�� e�z� y���
�YQJ� e�e�x� y�� e�e�z� x�� e�y� z���
�UM� e�e�e�x� y�� z�� e�y� e�z� x���
�XGF� e�x� e�e�y� e�x� z��� e�z� y���
�WN� e�e�x� e�y� z��� e�z� e�x� y���
�YRM� e�e�x� y�� e�z� e�e�y� z�� x���
�YRO� e�e�x� y�� e�z� e�e�z� y�� x���
�PYO� e�e�e�x� e�y� z��� z�� e�y� x��
�PYM� e�e�e�x� e�y� z��� y�� e�z� x��
�XGK� e�x� e�e�y� e�z� x��� e�z� y���
�XHK� e�x� e�e�y� z�� e�e�x� z�� y���
�XHN� e�x� e�e�y� z�� e�e�z� x�� y���

Problems ��
�� depicted in Figure ��� are to start with each single axiom and to derive the
system that precedes it in our listing� The results are similar to the experiments obtained with
the implicational calculus� Additionally� Purr
nds a refutation for problem �� where Otter
fails� Since Purr selects the
rst ten substitutions as given whereas Otter always chooses only
a single clause as given at a time� Purr shows a di�erent search behavior� It considers more
clauses than only a single lightest clause for subsequent resolution steps�

(Theorem Otter PurrLiteral
� PurrLink
� PurrLink
�

�� EC
��EC
� � EC
� ���� �	�� ���� ����

�� EC
��EC
� � EC
� 	� 	� 	� 	�

�� YQL � EC
� 	� 	� 	� 	�

�� YQL � EC
� ��� ��� ��� ���

�� YQF � YQL 	� ��� 	� 	�

�� YQJ � YQF ���� ��� ��� ���

�� UM � YQJ ����� ���� ����� ����

�� XGF � UM 	� 	� 	� 	�

�� WN � XGF ���� ���� ���� ����

�� YRM � WN ����� ���� ���� ����

�� YRO � YRM ���� ���� ���� ���

�� PYO � YRO ����� ���� ���� ����

�� PYM � PYO ���� ���� ���� ����

�� XGK � PYM fail ���� ����� ����
�� XHK � XGK fail fail fail fail

�� XHN � XHK ����� ����� ���� �	��

Figure ���� Experiments with the Equivalential Calculus

R Calculus� Each of the following formulas is a single axiom for the R calculus�

��� Indexing ��

�QYF� e�e�e�x� y�� e�x� z��� e�z� y��
�YQM� e�e�x� y�� e�e�z� y�� e�z� x���
�WO� e�e�x� e�y� z��� e�z� e�y� x���
�XGJ� e�x� e�e�y� e�z� x��� e�y� z���

Problems ��
�� depicted in Figure ��� are to show the four formulas equivalent in a circular
manner� The results also correspond to the other experiments presented before�

(Theorem Otter PurrLiteral
� PurrLink
� PurrLink
�

�� YQM � QYF 	� 	� 	� 	�

�� WO � YQM ��� ��� ��� 	�
�� XGJ � WO fail fail fail fail

�� QYF � XGJ ���� ��� ��� 	�

Figure ���� Experiments with the R Calculus

Two�Valued Sentential Calculi� The CN calculus is a version of the two
valued sentential
calculus� We present three challenging examples� The operators i and n are intended to mean
implication and negation� Each of the following formulas holds in CN�

�CN
�� i�i�x� y�� i�i�y� z�� i�x� z���
�CN
�� i�i�n�x�� x�� x�
�CN
�� i�x� i�n�x�� y��
�CN
��� i�i�n�x�� z�� i�i�y� z�� i�i�x� y�� z���
�CN
��� i�i�x� i�n�y�� z��� i�x� i�i�u� z�� i�i�y� u�� z����
�CN
CAM� i�i�i�i�i�x� y�� i�n�z�� n�u���� z�� v�� i�i�v� x�� i�u� x���

Lukasiewicz axiomatized CN with fCN
��CN
��CN
�g� The three problems �� �� in Table ���
are to derive CN
��� CN
��� and CN
CAM from fCN
��CN
��CN
�g�

(Theorem Proof Time Inferred Stored Memory Rate

�� CN
��CN
��CN
� � CN
�� ���h ���mio ����� ��Mb ����
�� CN
��CN
��CN
� � CN
�� ����h ���mio ���mio ���Mb ����
�� CN
��CN
��CN
� � CN
CAM fail after ���h � ���mio ���Mb �

Figure ���� Experiments with PurrLiteral
� on the Two
Valued Sentential Calculus

For the experiments in Table ��� we employed a SuperSparc �� computer with a maximum
memory of ��� megabytes RAM� The results show that Purr is able to operate at the limits
of currently available workstation hardware� The system even has a reasonable fast inference
rate when working on problem �� after
lling ���Mb of memory with one substitution tree
containing about ��� million clauses� The average inference rate of about ���� inferences per
second in problem �� and still ���� inferences per second in problem �� also reveal the advantages
of the employed indexing techniques�

�� Chapter �� Experiments

The di�culties with the problems �� �� arise due to relatively long denied theorems� Most
of the proof time the system works with short clauses� since Purr prefers to infer with the
shortest clauses� Thus the di�culties increase with the length of the theorem� However� some
of the short clauses are involved in the proof and therefore have to be taken into account� Purr

nds a refutation for the problems �� and �� if we limit the number of symbols per unit clause
to the number of symbols of the denied theorem�

	�� Parallelism

The exploitation of parallelism in automated theorem proving is truely a challenging task� Many
experimental runs of Purr were needed to create a prover which performs well even on large
clause sets� Note that our condensed detachment examples were relatively easy to master� since
their parallelization potential is small� The condensed detachment examples with PurrLink
�
represent only a
rst steps towards massive parallelism�

In this section we present the results of three problems with larger clause sets� The compu

tation were executed on a multiprocessor machine containing four SuperSparc processors�

Sam�s Lemma� We used an axiomatization of the well
known Sam�s Lemma �MOW��b� con

tained in the TPTP library� It consists of �� clauses with �� clauses being unit clauses� All
clauses contain only constants and variables� Function symbols do not occur� Purr creates
�� slave processes in the PurrLiteral
� con
guration� Each non
unit clause is represented by a
resolution process� Additionally� a single unit terminator process is required to detect termina

tion�

The �� slave processes consumed �� cpu
seconds to
nd a proof with length ��� The elapsed
real time was � seconds with four processors yielding a speedup of about three� This result
converges the theoretical speedup of four on the employed machine�

Schubert�s Steam�Roller� The axiomatization of Schubert�s Steam
Roller �Pel��� contained
in the TPTP library consists of �� clauses� Six clauses are unit clauses� Purr creates �� slave
processes in the PurrLiteral
� con
guration� The non
unit clauses are represented by a single
resolution process� Additionally� two non
unit clauses are processed by two and three resolution
processes since the clauses have outgoing links at more than one literal� A single unit terminator
process is required to detect termination�

The �� slave processes consumed about ��� cpu
seconds to
nd a proof with �� steps� The
elapsed real time also was ��� seconds with four processors yielding no speedup� This result is
due to the overhead for the creation of the slave processes�

Group Theory� The clause set depicted in Figure ��� belongs to the domain of group theory�
We proof that if the square of every element is the identity� the system is commutative� The
exact axiomatization of this problem also has been taken from the TPTP library� The equality
relation is de
ned by the re�exivity� symmetry� and transitivity axioms�

Purr demands six processes� Five resolution processes work on the symmetry� transitivity�
and the three substitution axioms� One unit terminator process is used for the equality symbol�

��� Parallelism ��

Axioms
Units�

Re�exivity fequal�x� x�g
Left Identity fequal�multiply�identity� x�� x�g
Right Identity fequal�multiply�x� identity�� x�g
Left Inverse fequal�multiply�inverse�x�� x�� identity�g
Right Inverse fequal�multiply�x� inverse�x��� identity�g
Associativity fequal�multiply�multiply�x� y�� z��multiply�x�multiply�y� z���g

Axioms
Non�Units�

Symmetry f�equal�x� y�� equal�y� x�g
Transitivity f�equal�x� y���equal�y� z�� equal�x� z�g
Inverse Substitution f�equal�x� y�� equal�inverse�x�� inverse�y��g
Multiply Substitution f�equal�x� y�� equal�multiply�x� z�� multiply�y� z��g
Multiply Substitution f�equal�x� y�� equal�multiply�z� x�� multiply�z� y��g

Hypotheses

Squareness fequal�multiply�x� x�� identity�g
a times b is c fequal�multiply�a� b�� c�g

Theorem

Prove� b times a is c f�equal�multiply�b� a�� c�g

Figure ���� Clause Set in Group Theory

Altogether� the six processes consumed �� cpu
seconds� The elapsed real time was �� seconds
with PurrLiteral
� yielding a speedup of about one and a half�

The somewhat disappointing speedup is due to the di�erent shape of the involved clauses�
Obviously� the resolution process for the transitivity axiom has to perform the most complex
merge operation since this axiom is the only one with three literals� The remaining resolution
processes actually do not perform any merge� Consequently� the transitivity process consumes
most of the cpu
time while other processes remain more or less idle waiting for new information�
This e�ect directly corresponds to the data dependence inherently to the problem� Therefore�
in our approach improved speedup for this problem is di�cult to achieve�

Since Purr is an asynchronous parallel system� the maintenance of unprocessed messages
may become a problem� Consider the transitivity axiom� The negative literals of this axiom
are connected to all positive literals in the clause set� Thus the transitivity process receives
new inferences from all resolution processes including the messages created by itself� However�
this process cannot receive and process all created information� Most of the data is collected in
growing message queues� This e�ect becomes a serious problem when running Purr on more
di�cult problems with large clause sets�

�� Chapter �� Experiments

�
Conclusion

We have presented the theoretical background and implementational details of the distributed
theorem prover Purr� The prover has been developed in order to investigate indexing techniques
and to exploit parallelism in automated reasoning� Both indexing and distributed processing
have been proved to be powerful means for accelerating theorem proving systems�

We have extended the unit resulting resolution rule to work on sets of substitutions� To
this end� we introduced a clause graph� The nodes of the clause graph correspond to literals
in the clause set that represent the problem to be solved� Two literals are connected by a link
if the literals are complementary and uni
able� In other words� connected literals are possible
ur
resolution partners� The clause graph does not change during the reasoning phase�

New ur
resolvents are represented by substitutions which are collected in sets of substitutions�
These substitution sets are attached to nodes and links in the clause graph� We have shown
that substitution sets can be represented by indexes in a natural and elegant manner� In
Purr indexes become the fundamental data structure instead of the usual clauses and literals�
New ur
resolvents are exchanged among substitution sets in the form of indexes� Reasoning

based operations like subsumption and the computation of simultaneous uni
ers are extended
to set operations based on indexing techniques� Moreover� the unit resulting resolution rule is
concurrently applied to di�erent nuclei�

High Inference Rate� In all experiments in Chapter � Purr showed very competitive behav

ior compared to Otter even on single processor machines� First� the n�m indexing techniques
in Purr improve the performance compared to the standard n�� indexing techniques� The n�m
indexing techniques also have been tested in isolation on large sets of substitutions by Graf and
Meyer �GM���� Second� Purr has a slightly di�erent search behavior due to the selection of
whole sets of given clauses� Accordingly� Purr performs a limited breadth

rst search which
sometimes results in extremely short proof times�

The impact of parallelism on the inference rate has not yet been examined as much as the
experiments on single processor systems� Our tests merely suggest a reasonable behavior of

�� Chapter 	� Conclusion

Purr on two and four processor machines� Experiments on massively parallel hardware are
future work�

Large Sets of Inferences� In Chapter � we also presented experiments in which Purr had
to maintain extremely large inference sets containing millions of substitutions� However� the
system showed a reasonable fast inference rate� Typically� the substitution trees containing the
ur
resolvents of a resolution process become very large� Thus the n�� subsumption and insertion
operations integrated into the multi
merge operation are a�ected as well as the selection of
given substitutions� Therefore� we conclude that these operations also perform well on huge
substitution trees�

Indexing Supports Distributed Automated Reasoning� In Chapter � we presented a
transformation of substitution trees into process
independent form� The process
independent
representation of a substitution tree corresponds to a string of integer values which can directly
be transmitted between parallel processes� This representation usually saves one third of the
memory allocated for the substitution tree with conventional term representation�

Decentralized Distributed Processing� The parallel concept of Purr is based on a de

centralized structure of processes� There is no central process for subsumption or any other
time
consuming operation� Every process performs subsumption by itself� High locality of the
individual process reduces the probability of bottlenecks� However� the tradeo� between re

ceiving and processing information is still a problem for processes with complex operations and
many input channels� Nevertheless� avoiding central subsumption seems to improve the possible
speedup signi
cantly�

Balance of Parallelism and Communication is Di�cult� An optimal balance of paral

lelism and communication will achieve the best possible speedup� The right balance depends
on the problem and on the hardware employed� This work only addresses the problem
related
balancing� To this end� we developed two variants of Purr� One variant employs resolution
processes for each link in the clause graph whereas the other variant uses resolution processes for
each literal with outgoing links� The former variant achieves
ner granularity than the latter�
Ideally� the granularity is not
xed but can arbitrarily be selected� In this work �exible gran

ularity turned out to be a very important feature in order to study parallelism in automated
reasoning� Another open problem is to decide in advance which granularity achieves better
speedup than others� Currently� Purr cannot associate processes with di�erent granularity to
the clause graph�

Bibliography

�AO��� Grigorios Antoniou and Hans J�urgen Ohlbach� Terminator� In Alan Bundy� editor�
Proc� of �th International Joint Conference on Arti�cial Intelligence	 IJCAI�
�	
Karlsruhe� pages ��� ���� �����

�A�m��� U� A�mann� Parallele Modelle f�ur Deduktionssysteme� PhD thesis� In
x� K�oln�
�����

�BB��� K�H� Bl�asius and H�J� B�urckert� Deduktionssysteme� Oldenbourg� �����

�BE��� Ralph M� Butler and L� Lusk Ewing� Monitors� messages� and clusters� the p� par

allel programming system� Technical report� University of North Florida� Argonne
National Laboratory� http�""www�mcs�anl�gov� �����

�BLL��� Ralph M� Butler� Alan L� Leveton� and Ewing L� Lusk� p�
linda� A portable imple

mentation of linda� Technical Report MCS
P���
����� University of North Florida�
Argonne National Laboratory� �����

�CG��� Nicholas Carriero and David Gelernter� How to write parallel programs � a �rst
course� MIT Press� Cambridge� MA� �����

�CS��� C�L� Chang and J�R� Slagle� Using rewriting rules for connection graphs to prove
theorems� Arti�cial Intelligence� ������ ���� �����

�DGMJ��� Jack J� Dongarra� Al Geist� Robert Manchek� and Weicheng Jiang� Using PVM ���
to run grand challenge applications on a heterogeneous network of parallel comput

ers� In Richard F� Sincovec� David E� Keyes� Michael R� Leuze� Linda R� Petzold�
and Daniel A� Reed� editors� Proceedings of the
th SIAM Conference on Parallel
Processing for Scienti�c Computing� pages ��� ���� Norfolk� VI� March ����� SIAM
Press�

�Eis��� Norbert Eisinger� Completeness	 Con�uence	 and Related Properties of Clause
Graph Resolution� Research Notes in Arti
cial Intelligence� Pitman Ltd�� London�
�����

�For��� The MPI Forum� MPI� A message passing interface� In Bob Borchers� editor�
Proceedings of the Supercomputing ��� Conference� pages ��� ���� Portland� OR�
November ����� IEEE Computer Society Press�

�GBD	��� Al Geist� Adam Beguelin� Jack Dongarra� Weicheng Jiang� Robert Manchek� and
Vaidy Sunderam� PVM � parallel virtual machine� a user�s guide and tutorial for

�� BIBLIOGRAPHY

network parallel computing� Scienti
c and engineering computation series� MIT
Press� Cambridge� MA� �����

�Gel��� David Gelernter� Generative communication in Linda� acm Transactions on Pro�
gramming Languages and Systems �TOPLAS�� ������� ���� January �����

�GLS��� William Gropp� Ewing Lusk� and Anthony Skjellum� Using MPI � portable par�
allel programming with the message�passing interface� Scienti
c and engineering
computing series� MIT Press� Cambridge� MA� �����

�GM��� P� Graf and C� Meyer� Extended path
indexing� Technical Report MPI
I
��
����
Max
Planck
Institut f�ur Informatik� Saarbr�ucken� Germany� December ����� Full
version of �Gra��a��

�GM��� P� Graf and C� Meyer� Advanced indexing operations on substitution trees� �����
Submitted to CADE
���

�Gra��a� P� Graf� Extended path
indexing� In ��th Conference on Automated Deduction�
pages ��� ���� Springer LNAI ���� �����

�Gra��b� P� Graf� Substitution tree indexing� Technical Report MPI
I
��
���� Max
Planck

Institut f�ur Informatik� Saarbr�ucken� Germany� ����� Full version of �Gra����

�Gra��� P� Graf� Substitution tree indexing� In
th International Conference on Rewriting
Techniques and Applications RTA���� pages ��� ���� Springer LNCS ���� �����

�Gra��� P� Graf� Term Indexing� Springer LNAI series� ����� To appear�

�Har��� R� J� Harrison� Portable tools and applications for parallel computers� International
Journal of Quantum Chemistry� ������ ���� �����

�Hwa��� Kai Hwang� Advanced computer architecture� parallelism	 scalability	 programmabil�
ity� McGraw
Hill� New York� �����

�IPC� Current world wide web home page for the internet parallel computing archive�
http���www�hensa�ac�uk�parallel��

�Kow��� Robert Kowalski� A proof procedure using connection graphs� Journal of the ACM�
��������� ���� October �����

�Kur��� Franz Kurfe�� Parallelism in logic � its potential for performance and program
development� Arti
cial intelligence� Vieweg� Wiesbaden� �����

�LMM	��� E�J� Lemmon� C�A� Meredith� D� Meredith� A�N� Prior� and I� Thomas� Cal

culi of pure strict implication� Technical report� Canterbury University College�
Christchurch� ����� Reprinted in Philosophical Logic� Reidel� �����

�*Luk��� J� *Lukasiewicz� Selected Works� North Holland� ����� Edited by L� Borkowski�

�Mat��� T� G� Mattson� Programming environments for parallel computing� A comparison
of cps� linda� p�� pvm� posybl� and tcgmsg� In Hesham El
Rewini and Bruce D�
Shriver� editors� Proceedings of the ��th Annual Hawaii International Conference

BIBLIOGRAPHY ��

on System Sciences� Volume � � Software Technology� pages ��� ���� Los Alamitos�
CA� ����� IEEE Computer Society Press�

�McC��� W� McCune� Otter ��� reference manual and guide� Report ANL
�� �� Argonne
National Laboratory� January �����

�MOW��a� J�D� McCharen� R� Overbeek� and L� Wos� Complexity and related enhancements
for automated theorem
proving programs� Computers and Mathematics with Appli�
cations� ��� ��� �����

�MOW��b� J�D� McCharen� R� Overbeek� and L� Wos� Problems and experiments for and with
automated theorem proving programs� IEEE Transactions on Computers C����
��
pages ��� ���� �����

�MP��� Joseph W� Manke and James C� Patterson� Message passing performance of intel
paragon� ibm sp� and cray t�d using pvm� In David H� Bailey� Petter E� Bj+rstad�
John E� Gilbert� Michael V� Mascagni� Robert S� Schreiber� Horst D� Simon� Vir

ginia J� Torczon� and Layne T� Watson� editors� Proceedings of the ��th Conference
on Parallel Processing for Scienti�c Computing� pages ��� ���� Philadelphia� �����
SIAM Press�

�MPI� Current world wide web home page for the message passing interface standard�
http���www�mcs�anl�gov�mpi��

�MW��� W� McCune and L� Wos� Experiments in automated deduction with condensed
detachment� In ��th International Conference on Automated Deduction� pages ���
���� Springer� LNAI ���� �����

�Ohl��� H�J� Ohlbach� Abstraction tree indexing for terms� In Proceedings of the �th Euro�
pean Conference on Arti�cial Intelligence� pages ��� ���� Pitman Publishing� Lon

don� August �����

�Pel��� Francis Je�ry Pelletier� Seventy

ve problems for testing automatic theorem provers�
Journal of Automated Reasoning� �������� ���� ����� Errata� Journal of Automated
Reasoning� �������� ���������

�Rob��� J�A� Robinson� Automated deduction with hyper
resolution� International Journal
of Comp� Mathematics� ����� ���� �����

�Sch��� G� Schoinas� Issues on the implementation of programming system for distributed
applications� Technical report� University of Crete� �����

�SSY��� Geo� Sutcli�e� Christian Suttner� and Theodor Yemenis� The TPTP problem li

brary� In Alan Bundy� editor� Proceedings of the ��th International Conference on
Automated Deduction� volume ��� of LNAI� pages ��� ���� Berlin� ����� Springer�

�Tur��� Louis H� Turcotte� A survey of software environments for exploiting networked com

puting resources� Technical report� Engineering Research Center for Computational
Field Simulation� P�O� Box ����� Mississippi State� MS ������ �����

��� BIBLIOGRAPHY

Index

Symbols
MRG � � � � � �set of merged substitution sets � � � � � ���
REC � � � � � �set of received substitution sets � � � � � ���
RES � � � � � � set of resolved substitution sets � � � � � ���
SNT � � � � � � � set of sent substitution sets � � � � � � � ��
� � � � � � � � � � � � � join of substitutions � � � � � � � � � � � � �
s � � � � � � � � � � � � � � � � state �ag � � � � � � � � � � � � � � � � ��
j � � � � � � � � � � � sequence concatenation � � � � � � � � � � � �
�jU � � � � � � � � � � restricted substitution � � � � � � � � � � �
� � � � � � � � � � � � � � send substitution � � � � � � � � � � � � ���
� � � � � � � � � � merge of substitution sets � � � � � � � � � ��
� � � � � � � � � � � �merge of substitutions � � � � � � � � � � ���
� � � � � � � � � � � � � � test substitution � � � � � � � � � � � � � ��
w� � � � � � � � � � � � � � � � �weight � � � � � � � � � � � � � � � � ���
arity�t� � � � � � � � � � � � �arity of a term � � � � � � � � � � � ��
COD��� � � � � � � codomain of a substitution � � � � � � �
depth�t� � � � � � � � � � � �depth of a term � � � � � � � � � � ��
DOM��� � � � � � � � domain of a substitution � � � � � � � �

 � � � � � � � � � � � � � � � empty tree � � � � � � � � � � � � � � � ��
F � � � � � � � � � � � � � function symbols � � � � � � � � � � � � � �
IM��� � � � � � � � � � image of a substitution � � � � � � � � � �
nodes�T � � � � � � � � � � � nodes of a tree � � � � � � � � � � ��
O�t� � � � � � � � � � � � positions of a term � � � � � � � � � � � �
P � � � � � � � � � � � � � predicate symbols � � � � � � � � � � � � � �
sons�T � � � � � � � � � � � � sons of a tree � � � � � � � � � � � ��
top�t� � � � � � � � � � �top symbol of a term � � � � � � � � � ��
T � � � � � � � � � � � � � � � set of terms � � � � � � � � � � � � � � � �
V � � � � � � � � � � � � � variable symbols � � � � � � � � � � � � � �
VAR�t� � � � � � � � � � � variables in term t � � � � � � � � � � �
V� � � � � � � � � � indicator variable symbols � � � � � � � � � �
G � � � � � � � � test function generalizations � � � � � � � � ��
I � � � � � � � � � � � test function instances � � � � � � � � � � � ��
U � � � � � � � � test function uni�able terms � � � � � � � � ��
V � � � � � � � � � � � test function variants � � � � � � � � � � � ��

A
alogrithms

notation of ���

and
parallelism ��
atom ��

B
blocking receive ��
broadcast communication pattern � � � � � � � ��

C
clash ���

direct ���

indirect ���
clause ��

query ���

unit �
clause graph ���� ��� ��

creation of ��

directed ��
initial state ��

labeled directed � � � � � � � � � � � � � � � � ���� ��
optimization of ��
undirected ��

codomain �
common variable ���
communication ���� ��

indexing and ���
interprocess ���

pattern ��
broadcast ���
conference ��

multicast ��
unicast ��

complementary ��

condensed detachment � � � � � � � � � � � � � � ��� 	�
conference communication pattern � � � � � � ���

constant �
context ��

��� INDEX

D
deadlock ��

detection ��
dependence ��

data ��
domain �

F
father ���
function symbol �

G
generalization ���
given substitution ���
grain size ��
granularity ���

coarse ��

ne ��
medium ��

graph ���
acyclic ���
clause � � � � � � � � � � � � � � � � �see clause graph
directed ��
directed acyclic � � � � � � � � � � � � � � � � see tree
labeled ��
labeled directed � � � � � � � see clause graph
path in ��
undirected ��

group theory ���

H
hyperresolution ��

I
image �
indexing ��

classi
cation of ��
maintenance of type n�� and n�m � � � ��
retrieval of type ���� n��� and n�m� � � ��
substitution tree ��

indicator variable ��
input subsumption ��
instance ��
internal link ��

interprocess communication � � � � � � � � � � � � � ��
IPC � � � � � � � �see interprocess communication

L
labeled link ��
latency ��
Ldcg � � � � see clause graph� labeled directed
lightest substitution ���
lightest subtree ��

weight of ��
linear term ��
link

internal ���
labeled ��

literal ��
receiver ���
sender ��

load balancing ��
Lst � � � � � � � � � � � � see substitution tree� linear

M
master process ��
master"slave paradigm � � � � � � � � � � � � � � � � � � ��
matcher ��
merged substitution ���
message passing interface � � � � � � � � � � � � � � � ��
message queue ��
message
passing model � � � � � � � � � � � � � � � � � � ��

asynchronous ��
synchronous ��

mgu � � � � � � � � � � � � � � � see most general uni
er
most general uni
er ��

splitted ��� ��
MPI � � � � � � � � � �see message passing interface
multi
merge ���� ��

n�m algorithm ��
n�m indexing task � � � � � � � � � � � � � � � � � � ��

multicast communication pattern � � � � � � � ���

N
nonblocking receive ��
normalization ��

of substitutions ��
of terms ��

INDEX ���

O
occur
check ��
options ��
or
parallelism ��
origin list ��
Otter ���� ��
output subsumption ���

P
parallel programming model � � � � � � � � � � � � ���

message
passing ���
shared
memory ��
shared
variable ��

parallel programming system � � � � � � � � � � � � ��
C
Linda ��
p� ��
p�
Linda ���
POSYBL ��
PVM ��� ��
TCGMSG ��

parallelism
and
 ��
in logic ��
in practice ��
or
 ���

position ��
postprocessing ��
predicate symbol �
preprocessing ��
private variable ��
process ��

communication and indexing � � � � � � � � ��
independent representation � � � � � � � � � ���
master ���
resolution ���
slave ���
terminator ���
unit terminator ��

program ��
Prolog ��
proof generation ��
Purr �
PVM ��

Q
query clause ��

R
reasoning phase ��
received substitution ��
receiver literal ��
renaming ��
resolution

unit resulting ��
resolution process ��

on a single link ��
on some links ��

resolved substitution ��
restriction ��

S
sam�s lemma ����
�
selection ��

n�m algorithm ��
n�m indexing task � � � � � � � � � � � � � � � � � � ��

send instantiation � � � � � � � � � � � � � � � ��� ��� ��
send substitution ���� ��
sender literal ���
sent substitution ��
Sest � � � � � � � � see substitution tree� selective
set of support ���
shared
memory model � � � � � � � � � � � � � � � � � � ���

Linda ���
shared
variable model ��
signal ���
signal handler ���
slave process ��
son ��
SOS � see set of support
speedup ���� ��
state �ag ��
state of selection ��
static scheduling ��
steam
roller ����
�
strategy ��
substitution ��

compatible ���� ��
composition of �
given ��
idempotent �
join of �
lightest ��
merge of ��

��� INDEX

merged ��
process
independent � � � � � � � � � � � � � � � � ��
received ��
resolved ��
sent ��

substitution sets
merge of ��

substitution tree ��
in Purr ��
linear ��
process
independent � � � � � � � � � � � � � � � � ��
selective ��� ��
weighted ���

substitution tree indexing � � � � � � � � � � � � � � � ��
subsumption ��

n�m algorithm ��
n�m indexing task � � � � � � � � � � � � � � � � � � ��
input ��
output ���
transition system ��

symbol
process
independent � � � � � � � � � � � � � � � � ��

synchronization latency � � � � � � � � � � � � � � � � � ��

T
term �

arity �
at position �
depth �
ground ��
linear �
position in �
process
independent � � � � � � � � � � � � � � � � ��

terminator process ��
on a clause ��
on unit resolvents ��

test substitution ��� ��
test uni
cation � � � � � � � � � � � � � � � � � � ��� ��� ��
top symbol ��
TPTP problem library � � � � � � � � � � � � � � � � � � ��
transition system

PURR with subsumption � � � � � � � � � � � � � ��
PURR without subsumption � � � � � � � � � � ��
SUBSUMPTION ��

tree ���
ordered ��

U
unicast communication pattern � � � � � � � � � ���
uni
able ��
uni
er ��
union ��

n�m algorithm ��
n�m indexing task � � � � � � � � � � � � � � � � � � ��

unit ��
unit resulting resolution � � � � � � � � � � � � � � � � ���

on substitution sets � � � � � � � � � � � � � � � � � ��
unit terminator process � � � � � � � � � � � � � � � � � ��

V
variable �

common ��
indicator ���
private ��

vertex ��

W
weight ��
Wst � � � � � � � � see substitution tree� weighted

