
Shaping Process Semantics
(and the JAviator: A Flying MoCC Lab)

Christoph Kirsch
Universität Salzburg

Joint work with Harald Röck and Rainer Trummer
ARTIST Workshop, Zürich, November 2006



© C. Kirsch 2006

The Idea

• we apply traffic shaping technology known 
in the networking community to software 
processes

• software processes invoke system calls to 
access resources, perform I/O, etc.

• we see system calls as network packets

2



© C. Kirsch 2006

Traffic Shaping

3

Queue

Incoming Traffic

Outgoing Traffic

Prioritization

Token
Bucket

Virtual Tokens

Token Rate

Bucket
Capacity

Tokens/Packet



© C. Kirsch 2006

Application Processes

Hardware

K
er

ne
l Se

m
an

tic
s

Pe
rf

or
m

an
ce

Process Shaping

Interrupt
Handling

I/O 
Scheduling

IPC 
Handling

Memory 
Management

Timing 
Calls

I/O Calls IPC Calls Virtual 
Memory

4



© C. Kirsch 2006

Process Shaping

• process shaping changes the order and times 
in which system calls (and potentially other 
side effects of processes) are handled before 
given to any performance-oriented kernel 
subsystems

• process shaping is a MoCC enabler

5



© C. Kirsch 2006 6

Proposal

• we propose the notion of process shaping to 
complement, not replace, the notion of 
serving processes as fast as possible

• we advocate a shift in research attention 
from performance- to semantics-oriented 
handling of software processes



© C. Kirsch 2006 7

Claim

• we claim that faster processors, more 
efficient scheduling, and lower kernel 
latency, in analogy to shorter packet 
transmission times, will make process 
shaping increasingly effective

‣ see ATM versus Gigabit Ethernet

• note that used-to-be-exotic real-time 
patches increasingly make their way into 
general-purpose operating systems



© C. Kirsch 2006

Experiment I

• we run two separate web server processes 
on an unmodified Linux 2.6 server machine 
with Gigabit Ethernet

• two client machines generate workload by 
requesting the same and thus cached 380KB 
file

8





© C. Kirsch 2006

Experiment II

• we run two separate web server processes 
on a process-shaping Linux 2.6 server 
machine with Gigabit Ethernet

• two client machines generate workload by 
requesting the same and thus cached 380KB 
file

10





© C. Kirsch 2006

Experiment I+II

• higher total peak performance without 
process shaping

• but total peak performance more robust 
with process shaping

12





© C. Kirsch 2006

Experiment III

• we run a video-streaming server on a process-
shaping Linux 2.6 server machine with 
Gigabit Ethernet

• to generate background network traffic, we 
also run one of the web servers of 
experiment II on the same machine

• to generate background disk traffic, we also 
run several web servers processing requests 
for a non-cached 1GB file

14





No Shaping



Just Network Shaping



Best “Shape”



© C. Kirsch 2006

Future

16

• Multimedia (Soft Real Time): Can kernel-
level process shaping automatically find the 
best “shape”?

• Control (Hard Real Time): Can kernel-level 
process shaping provide sufficient real-time 
guarantees?



The JAviator Project
javiator.cs.uni-salzburg.at





© C. Kirsch 2006

Experiment IV

• we run helicopter flight control software 
written in Java on IBM’s commercial J9 JVM 
with the real-time garbage collector 
Metronome on top of a Linux 2.6 machine 
with real-time patches applied to the kernel

• joint work with J. Auerbach, D. Bacon, H. 
Röck, and R. Trummer

19



© C. Kirsch 2006 20

First All-Java Flight



© C. Kirsch 2006

Oscillation ;-)

21



Thank you




