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The Idea

• we apply traffic shaping technology known 
in the networking community to software 
processes

• software processes invoke system calls to 
access resources, perform I/O, etc.

• we see system calls as network packets
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Traffic Shaping
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Application Processes
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Process Shaping

• process shaping changes the order and times 
in which system calls (and potentially other 
side effects of processes) are handled before 
given to any performance-oriented kernel 
subsystems

• process shaping is a MoCC enabler
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Proposal

• we propose the notion of process shaping to 
complement, not replace, the notion of 
serving processes as fast as possible

• we advocate a shift in research attention 
from performance- to semantics-oriented 
handling of software processes
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Claim

• we claim that faster processors, more 
efficient scheduling, and lower kernel 
latency, in analogy to shorter packet 
transmission times, will make process 
shaping increasingly effective

‣ see ATM versus Gigabit Ethernet

• note that used-to-be-exotic real-time 
patches increasingly make their way into 
general-purpose operating systems
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Experiment I

• we run two separate web server processes 
on an unmodified Linux 2.6 server machine 
with Gigabit Ethernet

• two client machines generate workload by 
requesting the same and thus cached 380KB 
file
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Experiment II

• we run two separate web server processes 
on a process-shaping Linux 2.6 server 
machine with Gigabit Ethernet

• two client machines generate workload by 
requesting the same and thus cached 380KB 
file

10





© C. Kirsch 2006

Experiment I+II

• higher total peak performance without 
process shaping

• but total peak performance more robust 
with process shaping

12





© C. Kirsch 2006

Experiment III

• we run a video-streaming server on a process-
shaping Linux 2.6 server machine with 
Gigabit Ethernet

• to generate background network traffic, we 
also run one of the web servers of 
experiment II on the same machine

• to generate background disk traffic, we also 
run several web servers processing requests 
for a non-cached 1GB file
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Future
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• Multimedia (Soft Real Time): Can kernel-
level process shaping automatically find the 
best “shape”?

• Control (Hard Real Time): Can kernel-level 
process shaping provide sufficient real-time 
guarantees?
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Experiment IV

• we run helicopter flight control software 
written in Java on IBM’s commercial J9 JVM 
with the real-time garbage collector 
Metronome on top of a Linux 2.6 machine 
with real-time patches applied to the kernel

• joint work with J. Auerbach, D. Bacon, H. 
Röck, and R. Trummer
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First All-Java Flight
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Oscillation ;-)
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