
The Chemistry of Concurrent and Distributed Programming Workshop  
Agadir, Morocco, May 2015

Concurrent Data Structures:
Fast but Relaxed versus
Strict but Slow Semantics

Christoph Kirsch
University of Salzburg

Joint work with A. Haas, M.
Lippautz, H. Payer, and A.
Sokolova

Concurrent Data Structures

❖ We are interested in designing
and implementing concurrent
data structures that are fast and
scale on multicore hardware.

4 Processors w/ 10 Cores each w/ 2 Hyperthreads each

128 GB Memory

L3: Cache 24 MB

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

HT HT

HT HT HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

CPU Socket 0

L3: Cache 24 MB

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

HT HT

HT HT HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

CPU Socket 1

L3: Cache 24 MB

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

HT HT

HT HT HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

CPU Socket 2

L3: Cache 24 MB

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

HT HT

HT HT HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

CPU Socket 3

Multicore Scalability
linear scalability

positive scalability
high performance

negative scalability

positive scalability
low performance

th
ro

ug
hp

ut

number of cores

Example
 0

 2000

 4000

 6000

 8000

 10000

 12000

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(a) Very high contention (c = 1000, i = 0)

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(b) High contention (c = 4000, i = 0)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(c) Medium contention (c = 7000, i = 0)

 0

 500

 1000

 1500

 2000

 2500

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(d) Low contention (c = 10000, i = 0)

Fig. 2. Performance and scalablity of producer/consumer microbenchmarks with an increasing
number of threads

Similarly, the results with our high contention scenario, depicted in Figure 2(b),
show that the scalability turnaround is at 30 threads and that both k-FIFO versions
outperform and outscale all other algorithms. As the contention gets less in Figures 2(c)
and 2(d), the turnaround gets shifted to a larger number of threads. The difference in
performance and scalability of all algorithms is less significant with more computational
load. Note that SQ returns up to 2000 times falsely null due to the non-linearizable
emptiness check.

Mandelbrot. We computed and rendered two images of the Mandelbrot set [12] using
producer and consumer threads and a shared data structure to distribute the computation
across multiple cores. The producer threads divide the image into smaller blocks (4x4
pixels in our experiments), write block coordinates in descriptor blocks, and enqueue
the descriptor blocks in the shared data structure. The consumer threads dequeue the
descriptor blocks from the shared data structure, perform the Mandelbrot calculation
on the blocks, and store the results in the corresponding blocks of the final Mandel-
brot image. Hence, the workload between the consumer threads is balanced. We use a
producer-consumer ratio of 1 : 4 in our experiments, i.e. for each producer thread we
add four consumer threads.

The Mandelbrot macrobenchmark results are presented in Figure 3. Each run was
repeated 10 times. We present the average execution time of the 10 runs as our metric
of performance, less execution time is better. Figure 3(a) shows the performance of the
low computational load Mandelbrot benchmark. Low computational load means that

scal.cs.uni-salzburg.at
❖ Scal is a collection of concurrent data structures designed by us (underlined)

and others, plus a benchmarking framework:

❖ Treiber Stack [IBM86]

❖ Timestamped Stack [POPL15], k-Stack (relaxed) [POPL13]

❖ Michael-Scott Queue [PODC96]

❖ LCRQ [PPoPP13], Segment Queue (relaxed) [OPODIS10]

❖ Timestamped Queue [POPL15], Distributed Queue (relaxed) [CF13], k-FIFO
Queue (relaxed) [PaCT13]

❖ Timestamped Deque [POPL15]

❖ …

http://scal.cs.uni-salzburg.at

Timestamping

7

Time Sources

❖ TS-atomic: fetch and increment counter

❖ TS- stutter: stuttering counter (Lamport clock)

❖ TS-hardware: hardware clock

❖ TS-interval: interval hardware clock

❖ TS-CAS: compare-and-swap interval counter

8

2.3 Performance Analysis 19

Treiber Stack
EB Stack

TS-atomic Stack
TS-CAS Stack

TS-hardware Stack
TS-interval Stack

TS-stutter Stack

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(a) High contention benchmark on the 40-
core machine.

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 8 16 24 32 40 48 56 64

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(b) High contention benchmark on the 64-
core machine.

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(c) Low contention benchmark on the 40-
core machine.

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 8 16 24 32 40 48 56 64
o

p
e

ra
tio

n
s

p
e

r
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

(d) Low contention benchmark on the 64-
core machine.

Figure 2.5: TS stack performance on the 40-core machine (left) and on the 64-core
machine (right) in the producer-consumer benchmark.

the data structure. We measure performance as total execution time of the bench-
mark. Figures show the total execution time in successful operations per millisecond
to make scalability more visible. All numbers are averaged over 5 executions. To avoid
measuring empty removal, operations that do not return an element are not counted.

The contention on the data structure is controlled by a busy wait between two
operations of a thread. In the high-contention scenario the busy wait is 1 µs, in the
low-contention the busy wait is 10 µs long. We do not show any results without the
busy wait because in these measurements machine artifacts of the memory system
dominate the results.

2.3.1 Performance and Scalability Results

Figures 2.5a and 2.5b show performance and scalability in the producer-consumer
benchmark where half of the threads are producers and half of the threads are con-
sumers. In the discussion we focus on the high-contention measurements. Results in
the low-contention benchmarks are similar, but less pronounced – see Figure 2.5c and

2.3 Performance Analysis 25

 0

 2000

 4000

 6000

 8000

 10000

 12000

0 3000 6000 9000 12000 15000
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

n
u

m
b

e
r

o
f

re
tr

ie
s

(l
e

ss
 is

 b
e

tt
e

r)

delay in ns

Performance TS-interval Stack
Retries TS-interval Stack

Performance TS-CAS Stack
Retries TS-CAS Stack

Figure 2.9: High-contention producer-consumer benchmark using TS-interval and TS-
CAS timestamping with increasing delay on the 64-core machine, exercising 32 pro-
ducers and 32 consumers.

time. However this does not decrease the number of tryRem retries significantly. The
reason is that without a delay there is more contention on the global counter of the
timestamping algorithm. Therefore the performance of the TS-CAS timestamping
algorithm with a delay is actually better than the performance without a delay.

Similar to the TS-interval stack with a delay time beyond 7.5 µs the performance
decreases again. This is the point where an average push operation becomes slower
than an average pop operations.

Semantics
vs.

Non-Determinism
vs.

Performance

Order Deviation (Queues) [RACES12]
❖ We record the times when enqueue and dequeue operations are

invoked on a concurrent queue

❖ For each element E inserted by an enqueue operation invoked at
time Te and removed by a dequeue operation invoked at time Td
we compute the order deviation of E as:

❖ the number of elements that were inserted by enqueue
operations invoked before Te and removed by dequeue
operations invoked after Td

❖ We present the average order deviation of all elements inserted
and removed in a run

106 Non-determinism of Concurrent Data Structures

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LC
R
Q

TS-atom
ic

TS-C
AS

TS-hardw
are

TS-interval

TS-stutter

C
TS

R
TS

1R
R
 D

Q

2R
R
 D

Q

1R
A D

Q

k-FIFO

a
ve

ra
g

e
 o

rd
e

r
d

e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt

e
r)

1.8

9.9

66.2

25.0

15.6

20.4
17.6

24.7

16.7
19.2

8.8

20.8

13.8

22.9

2924.0

47.0

(a) High-contention producer-consumer
benchmark on the 40-core machine.

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LC
R
Q

TS-atom
ic

TS-C
AS

TS-hardw
are

TS-interval

TS-stutter

C
TS

R
TS

1R
R
 D

Q

2R
R
 D

Q

1R
A D

Q

k-FIFO

a
ve

ra
g

e
 o

rd
e

r
d

e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt

e
r)

4.8 5.2

47.1

18.6

6.9

16.4
13.6

15.6
12.6

16.0

6.7

14.5 12.9 13.9

1358.5

25.9

(b) High-contention producer-consumer
benchmark on the 64-core machine.

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LC
R
Q

TS-atom
ic

TS-C
AS

TS-hardw
are

TS-interval

TS-stutter

C
TS

R
TS

1R
R
 D

Q

2R
R
 D

Q

1R
A D

Q

k-FIFO

a
ve

ra
g

e
 o

rd
e

r
d

e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt

e
r)

1.7

10.1

58.1

22.2

10.3

18.1
14.0

17.2

12.3
16.4

6.3

13.5

7.8

18.8

2280.1

28.2

(c) Low-contention producer-consumer
benchmark on the 40-core machine.

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LC
R
Q

TS-atom
ic

TS-C
AS

TS-hardw
are

TS-interval

TS-stutter

C
TS

R
TS

1R
R
 D

Q

2R
R
 D

Q

1R
A D

Q

k-FIFO

a
ve

ra
g

e
 o

rd
e

r
d

e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt

e
r)

4.3 5.0

47.6

18.1

4.6

13.3
10.3

12.8
9.1

11.8

2.6

9.2

3.0

10.8

1787.0

17.2

(d) Low-contention producer-consumer
benchmark on the 64-core machine.

Figure 7.1: Order deviation in the producer-consumer benchmark on the 40-core ma-
chine with 40 producers and 40 consumers (left), and on the 64-core machine with 32
producers and 32 consumers (right).

tions of the TS queue. However, the benchmark is still interesting for the other data
structure implementations, and we include it for completeness.

7.4 Evaluation

7.4.1 Overall Order Deviation

Figure 7.1 shows the order deviation in the producer-consumer benchmark with 40
producers and 40 consumers on the 40-core, and with 32 producers and 32 consumers
on the 64-core machine, averaged over 5 runs. The error bars show the standard
deviation. The low standard deviation of most data structures indicates that the
measurement method is stable.

7.4 Evaluation 109

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LCRQ

TS-atom
ic

TS-CAS

TS-hardware

TS-interval

TS-stutter

CTS
RTS

1RR DQ

2RR DQ

1RA DQ

k-FIFO

a
ve

ra
g
e
 o

rd
e
r

d
e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt
e
r)

2.0

6.4

34.6

13.9

9.1 7.7
9.7

2.1

7.9 9.2 7.8 7.8 6.6

17.0

2858.5

35.2

(a) High contention multiple-producer
single-consumer benchmark on the 40-
core machine.

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LCRQ

TS-atom
ic

TS-CAS

TS-hardware

TS-interval

TS-stutter

CTS
RTS

1RR DQ

2RR DQ

1RA DQ

k-FIFO

a
ve

ra
g
e
 o

rd
e
r

d
e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt
e
r)

2.2
5.1

27.2

10.8

5.7
1.6

7.7

1.5

6.3 5.2

0.3 1.0
3.4

12.0

2466.4

21.8

(b) High contention multiple-producer
single-consumer benchmark on the 64-
core machine.

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LCRQ

TS-atom
ic

TS-CAS

TS-hardware

TS-interval

TS-stutter

CTS
RTS

1RR DQ

2RR DQ

1RA DQ

k-FIFO

a
ve

ra
g
e
 o

rd
e
r

d
e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt
e
r)

1.9

6.4

31.4

12.4

3.7 3.4

8.4

0.4

6.3 7.9

3.4 3.4 3.3

17.2

2871.7

24.4

(c) Low contention multiple-producer
single-consumer benchmark on the 40-
core machine.

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LCRQ

TS-atom
ic

TS-CAS

TS-hardware

TS-interval

TS-stutter

CTS
RTS

1RR DQ

2RR DQ

1RA DQ

k-FIFO
a
ve

ra
g
e
 o

rd
e
r

d
e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt
e
r)

2.4
4.9

23.8

10.2

2.6
0.2

6.1

0.3

4.9
1.3 0.2 0.2 0.1

9.5

2426.9

16.3

(d) Low contention multiple-producer
single-consumer benchmark on the 64-
core machine.

Figure 7.2: Order deviation in the multiple-producer single-consumer benchmark on
the 40-core machine with 40 producers (left), and on the 64-core machine with 32
producers (right).

benchmark it is even as much as the order deviation introduced by TS-interval time-
stamping and nearly as much as introduced by TS-CAS timestamping. This is surpris-
ing as both these timestamping algorithms introduce non-determinism with the weaker
timestamp order, whereas the TS-atomic queue avoids this kind of non-determinism.
With less contention on the atomic counter, the order deviation of the TS-atomic
queue decreases more than the order deviation of the TS-interval queue and the
TS-CAS queue (Figure 7.2c). On the 64-core machine the use of an atomic fetch-
and-increment instruction introduces only insignificant order deviation. Therefore the
order deviation of the TS-atomic queue, the CTS queue, the RTS queue, and 1RR DQ
is lower than on the 40-core machine.

7.4 Evaluation 111

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LC
RQ

TS-atom
ic

TS-C
AS

TS-hardw
are

TS-interval

TS-stutter

CTS
RTS

1R
R DQ

2R
R DQ

1R
A DQ

k-FIFO

a
ve

ra
g
e
 o

rd
e
r

d
e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt
e
r)

1.9

7.1

36.0

13.9

7.7

17.4 17.0 18.0 18.7 19.9

2.1

24.5

5.5

16.2

2811.8

35.4

(a) High-contention single-producer mul-
tiple consumer benchmark on the 40-core
machine.

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LC
RQ

TS-atom
ic

TS-C
AS

TS-hardw
are

TS-interval

TS-stutter

CTS
RTS

1R
R DQ

2R
R DQ

1R
A DQ

k-FIFO

a
ve

ra
g
e
 o

rd
e
r

d
e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt
e
r)

3.2
5.2

25.9

10.5

5.4

17.1 17.1 17.0 15.5 17.1

0.3

18.5

1.0

11.0

2392.3

22.8

(b) High-contention single-producer mul-
tiple consumer benchmark on the 64-core
machine.

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LC
R
Q

TS-atom
ic

TS-CAS

TS-hardware

TS-interval

TS-stutter

CTS
RTS

1R
R
 D

Q

2R
R
 D

Q

1R
A DQ

k-FIFO

a
ve

ra
g
e
 o

rd
e
r

d
e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt
e
r)

2.2

7.0

31.7

12.4

3.4

16.0 15.8 17.2 17.2
19.3

0.9

23.0

5.4

15.3

3099.7

24.3

(c) Low-contention single-producer mul-
tiple consumer benchmark on the 40-core
machine.

 0

 10

 20

 30

 40

 50

 60

 70

FC W
F

M
S

LB LC
R
Q

TS-atom
ic

TS-CAS

TS-hardware

TS-interval

TS-stutter

CTS
RTS

1R
R
 D

Q

2R
R
 D

Q

1R
A DQ

k-FIFO
a
ve

ra
g
e
 o

rd
e
r

d
e
vi

a
tio

n
 (

lo
w

e
r

is
 b

e
tt
e
r)

3.3
5.1

24.9

9.4

2.0

15.0 14.9 15.0 14.6 15.1

0.2

17.2

0.1

12.4

2540.9

16.4

(d) Low-contention single-producer mul-
tiple consumer benchmark on the 64-core
machine.

Figure 7.3: Order deviation in the single-producer multiple-consumer benchmark on
the 40-core machine with 40 producers (left), and on the 64-core machine with 32
producers (right).

interaction between enqueue and dequeue operations or additional contention on the
memory. For the MS queue the backo� algorithm is the reason why the order deviation
in the producer-consumer benchmark is more than the sum of the order deviation in
the other benchmarks. Without backo� algorithm the order deviation of the queue
would be less than the sum of the order deviation introduced by its operations.

Thank you

