
ETHZ Seminar
May 2008

Tiptoe: A Compositional
Real-Time Operating System

Christoph Kirsch
Universität Salzburg

tiptoe.cs.uni-salzburg.at

• Silviu Craciunas* (Programming Model)

• Hannes Payer* (Memory Management)

• Harald Röck (VM, Scheduling)

• Ana Sokolova* (Theoretical Foundation)

• Horst Stadler (I/O Subsystem)

*Supported by Austrian Science Fund Project P18913-N15

http://tiptoe.cs.uni-salzburg.at/
http://tiptoe.cs.uni-salzburg.at/

The JAviator
javiator.cs.uni-salzburg.at

© C. Kirsch 2008

Quad-Rotor Helicopter

© C. Kirsch 2008

© C. Kirsch 2008

Flight Control

© C. Kirsch 2008

Free Flight

© C. Kirsch 2008

“Theorem”

• (Compositionality) The time and space a
software process needs to execute is
determined by the process, not the system
and not other software processes.

• (Predictability) The system can tell how
much time and space is available without
looking at any existing software processes.

© C. Kirsch 2008

“Corollary”

• (Memory) The time a software process
takes to allocate and free a memory object
is determined by the size of the object.

• (I/O) The time a software process takes to
read input data and write output data is
determined by the size of the data.

Outline

1. Programming Model

2. Concurrency Management

3. Memory Management

4. I/O Management

© C. Kirsch 2008

State of the Art

• Traditional real-time process model:

• A set of periodic tasks with deadlines

• Synchronous reactive programs

• Logical execution time (LET) model

• A set of periodic tasks with deterministic
input and output times

© C. Kirsch 2008

Compositionality

• System of tasks with deadlines:

• Existing tasks still meet deadlines even
when adding/removing tasks

• System of LET tasks:

• Existing tasks maintain input and output
times even when adding/removing tasks

© C. Kirsch 2008

Tiptoe Process Model

• Tiptoe processes invoke process actions

• Process actions are system calls and
procedure calls but also just code, which
may have optional workload parameters

• Workload parameters determine the
amount of work involved in executing
process actions

© C. Kirsch 2008

Example

• Consider a process that reads a video
stream from a network connection,
compresses it, and stores it on disk, all in
real time

• The process periodically adapts the frame
rate, allocates memory, receives frames,
compresses them, writes the result to disk,
and finally deallocates memory to prepare
for the next iteration

© C. Kirsch 2008

Pseudo Code
loop {
 int number_of_frames = determine_rate();

 allocate_memory(number_of_frames);
 read_from_network(number_of_frames);

 compress_data(number_of_frames);

 write_to_disk(number_of_frames);
 deallocate_memory(number_of_frames);
} until (done);

© C. Kirsch 2008

Tiptoe Programming Model

• Process actions are characterized by their
execution time and response time in terms
of their workload parameters

• The execution time is the time it takes to
execute an action in the absence of
concurrent activities

• The response time is the time it takes to
execute an action in the presence of
concurrent activities

© C. Kirsch 2008

Compositionality

• System of Tiptoe processes:

• The individual actions of running Tiptoe
processes maintain their response times
even when adding/removing processes

©
 C

. K
ir

sc
h

20
08

Response-Time Function

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired memory allocation performance

Bad

Good

fR(w)

©
 C

. K
ir

sc
h

20
08

Compositional Response!

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired memory allocation performance

Bad

Good

fR(w)

©
 C

. K
ir

sc
h

20
08

Execution-Time Function

Bad

fE(w)

fR(w)

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired concurrent performance actual isolated performance

Utilization Function:

fE(w)
fR(w)

fU(w) =

With

fR(w) = 4 * w (in ms)
fE(w) = 0.4 * w (in ms)

we have that

fU(w) = 10% (for w>0)

Outline

1. Programming Model

2. Concurrency Management

3. Memory Management

4. I/O Management

©
 C

. K
ir

sc
h

20
08 0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

Scheduled Response Time

Bad

fU(w) = 10%

fR(w)

desired concurrent performance actual isolated performance

fE(w)
fS(10)

© C. Kirsch 2008

Scheduling and Admission

• Process scheduling:

• How do we efficiently schedule
processes on the level of individual
process actions?

• Process admission:

• How do we efficiently test schedulability
of newly arriving processes

©
 C

. K
ir

sc
h

20
08

Just use EDF, or not?
action arrives

fR(10)
deadline

fE(10)

action completes
fS(10)

©
 C

. K
ir

sc
h

20
08

Virtual Periodic Resource

π
λ

π
λ

π
λ

π
λ

π
λ

limit: λ
period: π
utilization: λ / π

© C. Kirsch 2008

Tiptoe Process Model

• Each Tiptoe process declares a finite set of
virtual periodic resources

• Each process action of a Tiptoe process
uses exactly one virtual periodic resource
declared by the process

©
 C

. K
ir

sc
h

20
08

Release, Dispatch, Suspend
action arrives action completes

1.release 2.release 3.release

π
λ

1.suspend

π
λ

π
λ

2.suspend

π
λ

π
λ

fR(10)

fS(10)

1.dispatch 2.dispatch 3.dispatch

© C. Kirsch 2008

Scheduling Strategies

• release action upon arrival at the beginning of
next period (release strategy)

• dispatch released actions in EDF order using
periods as deadlines (dispatch strategy)

• suspend running actions until beginning of next
period when limit is exhausted (limit strategy)

∀w∈ED. fS(w) ≤ fR(w) ?

∀w∈ED.
fE(w) + (π-λ) * (⎡fE(w) / λ⎤- 1)

≤ fS(w) ≤
(π-1) + π * (⎡fE(w) / λ⎤-1) + π

if

∑P maxR(λPR/πPR) ≤ 1

© C. Kirsch 2008

Tiptoe Compositionality

∀fS,fS’.∀w∈ED.
0 ≤⎮fS(w) - fS’(w)⎮≤ 2π - 2

if

∑P maxR(λPR/πPR) ≤ 1

© C. Kirsch 2008

Logical Response Time

worst case (any): 2π - 2
best case (LRT): π - 1

With λ / π = cU, we know that
∀w∈UD. fS(w) ≤ fR(w) + π

if
π divides fR(w) evenly

and

∑P maxR(λPR/πPR) ≤ 1

∀w∈UD. fS(w) ≤ fR(w) + π

Utilization Function:

fE(w) - dE

fR(w) - dR
fU(w) =

(if fR(w) > dR)

For example, with
fR(w) = 4 * w + 4 (in ms)

fE(w) = 0.4 * w + 0.2 (in ms)
we have again

fU(w) = 10% (for w>0)

fR(1) = 8ms but only 125fps
fR(24) = 100ms yet 240fps

©
 C

. K
ir

sc
h

20
08

Intrinisic Delay

dR

dE

9.8 ms

100 mstime(ms)

dR = 4 ms

number of frames

dE = 200µs

cU = 10%

fE(w) = 0.4w + 0.2

fR(w) = 4w + 4

0 4 8 12 16 20 24

1

With λ / π = cU, we know that
∀w∈UD. fS(w) ≤ fR(w)

if
0 < π ≤ dR - dE / cU, and

π divides dR and fR(w)-dR evenly,

and ∑P maxR(λPR/πPR) ≤ 1

© C. Kirsch 2008

Scheduling Algorithm

• maintains a queue of ready processes ordered
by deadline and a queue of blocked processes
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them
from one queue to another queue

©
 C

. K
ir

sc
h

20
08

list array matrix
ordered-insert O(n) Θ(log(t)) Θ(log(t))
select-first Θ(1) O(log(t)) O(log(t))
release O(n2) O(log(t) + n · log(t)) Θ(t)

4

list array matrix
time O(n2) O(log(t) + n · log(t)) Θ(t)
space Θ(n) Θ(t + n) Θ(t2 + n)

3

Time and Space

n: number of processes t: number of time instants

© C. Kirsch 2008

50 150 250 350 450 550 650

0.5

1

1.5

2

2.5

3

3.5

4

4.5
bitmap_array_avg
list_avg
matrix_avg

50 150 250 350 450 550 650

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300 bitmap_array_max

list_max
matrix_max

50 150 250 350 450 550 650

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

bitmap_array_stddev
list_stddev
matrix_stddev

Max

Scheduler Overhead

Average Jitter

© C. Kirsch 2008

0 33 65 98 131 180 229 278 327

5

20

100

500

2000

10000

50000

200000

1000000

0 33 65 98 130 179 228 276 325

5

20

100

500

2000

10000

50000

200000

1000000

0 33 67 100 150 200 250 300 349

5

20

100

500

2000

10000

50000

200000

List Array Matrix

Execution Time Histograms

© C. Kirsch 2008

0 33 67 100 150 200 250 300 349

5

20

100

500

2000

10000

50000

200000

List
Releases per Instant

Process Release Dominates

0 73 146 255 365 474 584 693

5

20

100

500

2000

10000

50000

200000

1000000

©
 C

. K
ir

sc
h

20
08

2
0

2
5

2
10

2
15

2
20

matrix

matrix-tree

array

list
2

5 2
8 2

11 2
14

5KB

100KB

5MB

100MB

1GB

memory usage

KB

time instants (t)

memory usage

Memory Overhead

©
 C

. K
ir

sc
h

20
08

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5
10
15
20
25
30
35
40
45
50
55
60
65
70

late_strategy_response
early_strategy_response

5 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

100
late_strategy_idle
early_strategy_idle

5 10 20 30 40 50 60 70 80 90

50
100
150
200
250
300
350
400
450
500
550
600
650
700 late_strategy_response

early_strategy_response

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

10

20

30

40

50

60

70

80

90

100
late_strategy_idle
early_strategy_idle

Release Strategies

Idle
Time

Response
Time

Outline

1. Programming Model

2. Concurrency Management

3. Memory Management

4. I/O Management

Outline

1. Programming Model

2. Concurrency Management

3. Memory Management

4. I/O Management

Current/Future Work

• Concurrent memory management

• I/O subsystem

• Java bytecode VM

Thank you

