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“Theorem”

• (Compositionality) The time and space a 
software process needs to execute is 
determined by the process, not the system 
and not other software processes.

• (Predictability) The system can tell how 
much time and space is available without 
looking at any existing software processes.
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“Corollary”

• (Memory) The time a software process 
takes to allocate and free a memory object 
is determined by the size of the object.

• (I/O) The time a software process takes to 
read input data and write output data is 
determined by the size of the data.
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State of the Art

• Traditional real-time process model:

• A set of periodic tasks with deadlines

• Synchronous reactive programs

• Logical execution time (LET) model

• A set of periodic tasks with deterministic 
input and output times
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Compositionality

• System of tasks with deadlines:

• Existing tasks still meet deadlines even 
when adding/removing tasks

• System of LET tasks:

• Existing tasks maintain input and output 
times even when adding/removing tasks
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Tiptoe Process Model

• Tiptoe processes invoke process actions

• Process actions are system calls and 
procedure calls but also just code, which 
may have optional workload parameters

• Workload parameters determine the 
amount of work involved in executing 
process actions
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Example

• Consider a process that reads a video 
stream from a network connection, 
compresses it, and stores it on disk, all in 
real time

• The process periodically adapts the frame 
rate, allocates memory, receives frames, 
compresses them, writes the result to disk, 
and finally deallocates memory to prepare 
for the next iteration
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Pseudo Code
loop {
  int number_of_frames = determine_rate();

  allocate_memory(number_of_frames);
  read_from_network(number_of_frames);

  compress_data(number_of_frames);

  write_to_disk(number_of_frames);
  deallocate_memory(number_of_frames);
} until (done);
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Tiptoe Programming Model

• Process actions are characterized by their 
execution time and response time in terms 
of their workload parameters

• The execution time is the time it takes to 
execute an action in the absence of 
concurrent activities

• The response time is the time it takes to 
execute an action in the presence of 
concurrent activities
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Compositionality

• System of Tiptoe processes:

• The individual actions of running Tiptoe 
processes maintain their response times 
even when adding/removing processes
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Compositional Response!
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Execution-Time Function
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Utilization Function:

fE(w)
fR(w)

fU(w) =



With

fR(w) = 4 * w (in ms)
fE(w) = 0.4 * w (in ms)

we have that

fU(w) = 10% (for w>0)
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Scheduling and Admission

• Process scheduling:

• How do we efficiently schedule 
processes on the level of individual 
process actions?

• Process admission:

• How do we efficiently test schedulability 
of newly arriving processes
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Tiptoe Process Model

• Each Tiptoe process declares a finite set of 
virtual periodic resources

• Each process action of a Tiptoe process 
uses exactly one virtual periodic resource 
declared by the process
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Scheduling Strategies

• release action upon arrival at the beginning of 
next period (release strategy)

• dispatch released actions in EDF order using 
periods as deadlines (dispatch strategy)

• suspend running actions until beginning of next 
period when limit is exhausted (limit strategy)



∀w∈ED. fS(w) ≤ fR(w) ?



∀w∈ED.
fE(w) + (π-λ) * (⎡fE(w) / λ⎤- 1)

≤ fS(w) ≤
(π-1) + π * (⎡fE(w) / λ⎤-1) + π

if

∑P maxR(λPR/πPR) ≤ 1
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Tiptoe Compositionality

∀fS,fS’.∀w∈ED.
0 ≤⎮fS(w) - fS’(w)⎮≤ 2π - 2

if

∑P maxR(λPR/πPR) ≤ 1
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Logical Response Time

worst case (any): 2π - 2
best case (LRT): π - 1



With λ / π = cU, we know that
∀w∈UD. fS(w) ≤ fR(w) + π

if
π divides fR(w) evenly

and

∑P maxR(λPR/πPR) ≤ 1



∀w∈UD. fS(w) ≤ fR(w) + π



Utilization Function:

fE(w) - dE

fR(w) - dR
fU(w) =

(if fR(w) > dR)



For example, with
fR(w) = 4 * w + 4 (in ms)

fE(w) = 0.4 * w + 0.2 (in ms)
we have again

fU(w) = 10% (for w>0)

fR(1) = 8ms but only 125fps
fR(24) = 100ms yet 240fps
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With λ / π = cU, we know that
∀w∈UD. fS(w) ≤ fR(w)

if
0 < π ≤ dR - dE / cU, and

π divides dR and fR(w)-dR evenly,

and ∑P maxR(λPR/πPR) ≤ 1
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Scheduling Algorithm

• maintains a queue of ready processes ordered 
by deadline and a queue of blocked processes 
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them 
from one queue to another queue
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list array matrix
ordered-insert O(n) Θ(log(t)) Θ(log(t))
select-first Θ(1) O(log(t)) O(log(t))
release O(n2) O(log(t) + n · log(t)) Θ(t)

4

list array matrix
time O(n2) O(log(t) + n · log(t)) Θ(t)
space Θ(n) Θ(t + n) Θ(t2 + n)

3

Time and Space

n: number of processes   t: number of time instants
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Current/Future Work

• Concurrent memory management

• I/O subsystem

• Java bytecode VM



Thank you


