
University of Freiburg, Germany

Selfie and the Basics
Christoph M. Kirsch, University of Salzburg, Austria

What are the absolute basics of
computer science that

everyone
should know about and

understand?

1. Identify a concept that you feel
everyone should know about
and understand

2. Write a program that
exemplifies that concept in
different ways

3. List the basics that you need to
know about and understand
to understand that program

selfie.cs.uni-salzburg.at

http://selfie.cs.uni-salzburg.at

...and the Basics:

12 (!) basic principles
essential (!) for understanding
selfie and (?) computer science

What is the meaning
of this sentence?

Selfie as in
self-referentiality

Do people need
to understand
self-referentiality?
Programming languages
resemble languages but are
really just formalisms with
(hopefully) precise semantics

Teaching the Construction of
Semantics of Formalisms

Compilation

Interpretation

Virtualization

Verification

Joint Work

✤ Alireza Abyaneh

✤ Martin Aigner

✤ Sebastian Arming

✤ Christian Barthel

✤ Simon Bauer

✤ Thomas Hütter

✤ Alexander Kollert

✤ Michael Lippautz

✤ Cornelia Mayer

✤ Philipp Mayer

✤ Christian Moesl

✤ Simone Oblasser

✤ Clement Poncelet

✤ Sara Seidl

✤ Ana Sokolova

✤ Manuel Widmoser

Inspiration

✤ Armin Biere: SAT/SMT Solvers

✤ Donald Knuth: Art

✤ Jochen Liedtke: Microkernels

✤ David Patterson: RISC

✤ Niklaus Wirth: Compilers

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]
✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset of C
called C Star (C*) to a tiny subset of MIPS64/RISC-V called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter code
including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster and
can host all of selfie including itself,

4. a tiny C* library called libcstar utilized by all of selfie, and

5. a tiny, experimental SAT solver called babysat.

http://selfie.cs.uni-salzburg.at

Also, there is a…

✤ linker (in-memory only)

✤ disassembler (w/ source code line numbers)

✤ debugger (tracks full machine state)

✤ profiler (#proc-calls, #loop-iterations, #loads, #stores)

Discussion of Selfie recently reached
3rd place on Hacker News

news.ycombinator.com

http://news.ycombinator.com

Code

Book (Draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie

nsf.gov/csforall

computingatschool.org.uk

k12cs.org
bootstrapworld.org

code.org

programbydesign.org

csfieldguide.org.nz

http://nsf.gov/csforall
http://computingatschool.org.uk
http://k12cs.org
http://bootstrapworld.org
http://code.org
http://programbydesign.org
http://csfieldguide.org.nz

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data types other
than int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write

Minimally complex,
maximally self-
contained system
Programming languages
vs systems engineering?

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie.c into x86 selfie executable  
using standard C compiler

(also available for RISC-V machines)

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments

./selfie: with 97779(55.55%) characters in 28914 actual symbols

./selfie: 261 global variables, 289 procedures, 450 string literals

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return

./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a MIPSter executable  
and  

then running that MIPSter executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie.c into a MIPSter executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another MIPSter executable selfie2.m  

(takes ~6 minutes)

Implementing an OS Kernel:
1-Week Homework Assignment

Compiler

Emulator

Formalism

Machine

Compiler

Emulator A

Formalism

Machine

Emulator B

Compiler

Emulator A

Formalism

Machine

Emulator B Emulator C||“OS”

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)

Emulation versus Virtualization

Compiler

Emulator

Formalism

Machine

Compiler

Emulator A

Formalism

Machine

Emulator B

Compiler

Emulator A

Formalism

Machine

Hypervisor

> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)

Ongoing Work

✤ SAT/SMT Solvers (microsat/boolector)
✤ Symbolic Execution Engine (KLEE/SAGE)
✤ Inductive Theorem Prover (ACL2)

1. Large memory and multicore support
2. x86 support through binary translation
3. ARM support?

ISAs

Verification

-> microsat in C* is as fast as in C (forget structs, arrays, &&, ||, goto)

babysat this

./selfie -sat rivest.cnf

./selfie: this is selfie loading SAT instance rivest.cnf

./selfie: 7 clauses with 4 declared variables loaded from rivest.cnf
p cnf 4 7
2 3 -4 0
1 3 4 0
-1 2 4 0
-1 -2 3 0
-2 -3 4 0
-1 -3 -4 0
1 -2 -4 0
./selfie: rivest.cnf is satisfiable with -1 -2 3 4

What is the absolute simplest way of
proving non-trivial properties of

Selfie using Selfie, and
what are these properties?

https://github.com/cksystemsteaching/selfie/tree/vipster

https://github.com/cksystemsteaching/selfie/tree/vipster

Proof Obligation

Emulator Hypervisor

Machine Context Machine Context
=
?

Mixter (T. Hütter, MS Thesis, 2017):
Hybrid of Emulator & Hypervisor

Emulation Virtualization

Machine Context

Machine Context

Hybrid

!
OR

Validation of 
Functional Equivalence?

Emulation Virtualization

Machine Context

Machine Context

Hybrid

?
AND

Verification of 
Functional Equivalence?

Emulation Virtualization

Machine Context

Machine Context

Hybrid

?
=

Selfie and the Basics

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

✤ Building and Using Selfie:
✤ Handling C* Literals:
✤ Program/Machine State:
✤ C*/Command Line Scanners:
✤ C* Parser and Procedures:
✤ Symbol Table and the Heap:
✤ MIPSter Code Generator:
✤ Address Spaces and Storage:
✤ (Composite) Data Types:
✤ MIPSter Boot Loader:
✤ MIPSter Emulator:
✤ MIPSter Hypervisor:

Library

Compiler

Emulator
Hypervisor
SAT Solver

selfie.c

Thank you!

acsd2018.cs.uni-salzburg.at

http://acsd2018.cs.uni-salzburg.at

