scal.cs.uni-salzburg.at scalloc.cs.uni-salzburg.at
concurrent data structures concurrent memory allocator

selfie.cs.uni-salzburg.at

leaching Computer Science

Through Self-Referentiality

Christoph Kirsch, University of Salzburg, Austria

Hong Kong University of Science and Technology, January 2017

http://scalloc.cs.uni-salzburg.at
http://scal.cs.uni-salzburg.at
http://selfie.cs.uni-salzburg.at

Joint Work

+ Martin Aigner

+ Christian Barthel

+ Mike Dodds

+ Andreas Haas

+ Thomas Henzinger
+ Andreas Holzer

<+ Thomas Hitter

Michael Lippautz
Alexander Miller
Simone Oblasser
Hannes Payer
Mario Preishuber
Ana Sokolova

Ali Szegin

The Multicore Scalability Challenge

A
linear scalability
positive scalability
high performance
S
O
o
@)
=)
2
il negative scalability
positive scalability
low performance
>

number of cores

operations per ms (more is better)

Timestamped (15) Stack [POPL15

4000 4000

Treiber Stack ---X--- TS-atomic Stack TS-hardware Stack ----v-- - TS-stutter Stack @
EB Stack —H— TS-CAS Stack TS-interval Stack
T T T T T T T T T T T T T T
12000 - 3 12000 -
10000 - . £ 10000 | _
o]
k%
8000 |- . S 8000 - i
=
(2]
6000 - R - E 5000
F 5
2
K}
©
o
Q
o

2000 "zt - A 2000

number of threads number of threads

(a) Producer-consumer benchmark, 40-core machine. (b) Producer-consumer benchmark, 64-core machine.

L.ocal Linearizability [CONCURI16

s £
jj 26 T T T T T T T T T % 26 T T T T T T T T "@
24 - S AUy s
0o, | 2 99 L L@ -
5 20 @ Sl e 5 20 | e |
g 18} e o] E 18t s .
e | =t | S - e -
RS 1 . y 14T 57]
) A 0 12 L]
o, 12 + Len 1 e 10

e 79) L MU o S iy e L BE T B oy =
0 A Lo | & .9 e M X (e @ p— >
= "EA N T Lo e S W e T T G T i e | (P R L 4 -
'4% S| _/.-/'/A I TN o SRR e X % 8 QT;;_’/,"".’ y RV .
= 6 L I e oo X :) 5 & 5% 1
2, S =3 4 2" X -
o 4 + s 4 S D = e]
e : £ e e e e e 00 G
= S ST S e e —— Jemmmme =+ z 244) 20 30 40 50 60 70 80
= 2 10 20 30 40 50 60 70 80

number of threads
number of threads

Treiber =---+---1 LLD TS Stack
MS - IELEFEIDRVIE N ke 1-RA DQ i-—-@—- TS Stack - LLD k-Stack
LCRQ -+ LLD LCRQ raoos k-Stack .RADS e
k-FIFO LLD k-FIFO LL+D Treiber - o -
“queue-like” data structures “stack-like” data structures

Figure b Performance and scalability of producer-consumer microbenchmarks with an increasing
number of threads on a 40-core (2 hyperthreads per core) machine

Name

Lock-based Singly-linked
Michael Scott (MS) Queue
Flat Combining Queue
Wait-free Queue

Linked Cyclic Ring Queue
Timestamped (TS) Queue
Cooperative TS Queue
Segment Queue

Random Dequeue (RD)
Bounded Size k-FIFO
Unbounded Size k-FIFO
b-RR Distributed Queue
Least-Recently-Used (LRU)
Locally Linearizable DQ
Locally Linearizable k-FIFO
Relaxed TS Queue
Lock-based Singly-linked
Treiber Stack
Elimination-backoff Stack
Timestamped (TS) Stack
k-Stack

b-RR Distributed Stack (DS)
Least-Recently-Used (LRU)
Locally Linearizable DS
Locally Linearizable k-Stack
Timestamped (TS) Deque
d-RA DQ and DS

Semantics

strict queue

strict queue

strict queue

strict queue

strict queue

strict queue

strict queue
k-relaxed queue
k-relaxed queue
k-relaxed queue, pool
k-relaxed queue, pool
k-relaxed queue, pool
k-relaxed queue, pool
locally linearizable
locally linearizable
quiescently consistent
strict stack

strict stack

strict stack

strict stack

k-relaxed stack
k-relaxed stack, pool
k-relaxed stack, pool
locally linearizable
locally linearizable
strict deque

strict pool

Year
1968
1996
2010
2012
2013
2015
2015
2010
2010
2013
2013
2013
2013
2015
2015
2015
1968
1986
2004
2015
2013
2013
2013
2015
2015
2015
2013

Scal: A Benchmarking Suite for Concurrent Data Structures [NETYS15]

Ref
(1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[8]
[9]
[9]

[10]

[10]

[11]

[11]
[71]
[1]

[12]

[13]
[6]

[14]

[10]

[10]

[11]

[11]
[71]

[10]

https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lockbased_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/flatcombining_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/wf_queue_ppopp12.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lcrq.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/cts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/segment_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/random_dequeue_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/boundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/unboundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_partrr.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lru_distributed_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_local_linearizability.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/dyn_distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/unboundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/rts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/scal/src/datastructures/lockbased_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/elimination_backoff_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/kstack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_partrr.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lru_distributed_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_local_linearizability.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/dyn_distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/kstack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_deque.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_1random.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h

Scalloce: Concurrent Memory Allocator

scalloc.cs.uni-salzburg.at |OOPSLATS

Core 1 Core 2

Concurrent
Free List and

Virtual Spans

Core 3 Core 4

http://scalloc.cs.uni-salzburg.at

Computer Science for Everyone

leaching the

absolute basics!

W hat are the

absolute basics?

What 1s

Computer
Science?

To Create Meaning with a Machine

What 1s the

meaning of this
sentence?

Semantics and Self-Referentiality

Twelve Basic
Principles

Where does the meaning of bits come from?

Semantics

Why is information encoded this way rather than that way?

Encoding

What is computation really?

State

How do we forget state regularly?

Regularity

How can we forget state in reverse?

Stack

How do we forget unbounded state?

Name

What is the difference between programming and computing?

What is the nature of digital memory?

Memory

What is the semantics of code without running it?

How do we even use an incomplete system?

Bootstrapping

What is the cost of interpretation?

Interpretation

How can we get rid of it?

Virtualization

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C¥) to a tiny subset of MIPS32 called MIPSter,

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C¥) to a tiny subset of MIPS32 called MIPSter,

2. aself-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C¥) to a tiny subset of MIPS32 called MIPSter,

2. aself-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science

selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C¥) to a tiny subset of MIPS32 called MIPSter,

2. aself-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and

4. atiny C* library called libcstar utilized by all of selfie.

http://selfie.cs.uni-salzburg.at

Website

selfie.cs.uni-salzburg.at

Book (Draft)

leanpub.com /selfie

Code

github.com / cksystemsteaching / selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie

SRR NN eSO e T 1 e v S
T S
TSIEE ERE g
IEAE @

=
n: = 0
C = (BRI

°
4

PEWICON G)

el i (R R (e
R e G (R o e Tt R
s sl iale <eus C1F)
IENGIENE Fs=ase

R e, o il
Yk e g

G EHE1ENRE] RE S

5 statements:

assignment
while
if
return
procedure()

SR = B0 el 1T 1 e O e Sulse
Tl
TSIEE ERE g
TEWE @

i
A = U
Cc = (BRI

°
4

PEWICON G)

Al =0 S e el s e N O 2
R e G (R o e Tt R
e a A Tale e)
IENGIENE Fs=ase

TRk e =
Yk e g

G EHE1ENRE] RE S

5 statements:

assignment
while
if
return
procedure()

shigyi

?tOl .(lnt o no data structures,
R L . | |
' : Justinttandiiviee
IEIRE TS .
int c; and dereferencing:
the * operator |

ilas= ' (s
n = 0;
Q= (SaE)
el e (=S U S

A== O e WL R (€ L e

aEs e Ve 10N

return -1;

TR e =
Yk e g

BEE G SEe

5 statements: LILE (’fltct)i ,(in e no data structures,
ol oIV : . .
assignment R just intiandiEnis
while et and dereferencing:
if the * operator |
return e il ezt
rocedure() n =0
P @R = Eh (= ST
e et i=" e
il S B S (e S e (e
s sl iale <eus C1F)

return -1;

TRk e =
Yk e g

G EHE1ENRE] RE S

5 statements: LILE gtoi (1n e no data structures,
assignment iEE r11: just intiandiEnis
while et and dereferencing:
if the * operator |
return Tass O V_J_“,f"-"’ﬁ”'
procedure() L S &

o= (§4i);

while (c !'= 0) {
IRl g e 3§ A o T E AL S e
s Aralie < 1)
SHE e A

1 o L i
e e R e 9

integer arithmetics jswmemmeedly

pointer arithmetics |===§p

G TR W Ees

5 statements: LILE gtoi (1n e no data structures,
assignment iEE r11: just intiandiEnis
while et and dereferencing:
if the * operator |
return et =IO ROl
procedure() 2 2 S’ character literals
string literals
e et i=" e
i T el S S e S (et
s sl iale <eus C1F)
QSN B Aak
| integer arithmetics jmewmmeedlyp i = 1 + 1;
pointer arithmetics === $c = *(sti);

G EHE1ENRE] RE S

5 statements: LILE gtoi (1n e no data structures,
assignment iEE r11: just intiandiEnis
while et and dereferencing:
if the * operator
return s w057 e P
P S 2 i 8 ’ character literals

ing literals

el el Gt == . 4
s o e GEise R (€ S s
Al 3 Tale <S80k
N EINE Rl B

| = I
— s a9

integer arithmetics jmesmmmmmeiliy :
pointer arithmetics {======p

G EHE1ENRE] RE S

5 statements:
assignment
while
if

return

procedure()

integer arithmetics e '
pointer arithmetics |===§p

SRR NN eSO e T 1 e v S
T S
IRt
IELERACk
=

c = *(S+1i);

while (c != 0)

TG =t e A o O P

s sl iale <eus C1F)
return

= I

G EHE1ENRE] RE S

— s a9

*

{

_1;

no data structures,
Justinttandiiviee
and dereferencing:

the * operator

character literals
ing literals

no bitwise operators
no Boolean operators

1 1 1 *
5 statements: LR (’fltct)l ,(lnt Sl no data structures,
ol Sl . . .
1 *
assignment iy just int and 1r.1t
while et and dereferencing:
if the * operator
return s -0 N Ty
procedure() L R Charact literals
ing literals
oAt = e = =0 £
s o e GEise R (€ S s
s sl iale <eus C1F)
QSN B Aak
integer arithmetics jmmmrmmee b Sl B Sl no bitwise operators
pointer arithmetics {==~=—-gp C = * (5+1); no Boolean operators

G EHE1ENRE] RE S

library: exit, malloc, open, read, write

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

—_

L0 0 N U AW

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

1. Building Selfie

—_

L0 0 N U AW

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

2. Encoding C* Literals

—_

L0 0 N O W N e

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

3. Program/Machine State

—_

L0 0 N O W N e

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

4. C*/Command Line Scanners

—_

L0 0 N U AW

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

5. C* Parser and Procedures

—_

L0 0 N O W N e

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

6. Symbol Table and the Heap

—_

L0 0 N O W N e

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

7. MIPSter Code Generator

—_

L0 0 N O W N e

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

8. Arrays versus Lists

—_

L0 0 N O W N e

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

9. Composite Data Types

—_

L0 0 N O W N e

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

10.MIPSter Boot Loader

—_

L0 0 N O W N e

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor
11. MIPSter Emulator

selfie.cC

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

L0 0 N O W N e

(]
A L]

11. Interpretation

12.Virtualization

Selfie and the Twelve Principles

Library

Compiler

Emulator

Hypervisor

selfie.cC

12.MIPSter Hypervisor

—_

L0 0 N O W N e

Semantics
Encoding
State
Regularity
Stack

Name

Time

Memory

Type
Bootstrapping

11. Interpretation
12. Virtualization

> make
cc -w —-m32 -D'main(a,b)=main(a,charkxxargv)' selfie.c -o selfie

bootstrapping selfie using standard C compiler

> MAKE
cc—m32 -D'main(a,b)=main(a, charxxargv)' selfie.c -0 selfie

bootstrapping selfie using standard C compiler

> make
cC —w—D'main(a,b)=main(a,char>|<>|<argv)' selfie.c -0 selfie

bootstrapping selfie using standard C compiler

> make

cc -w —-m32]-D'main(a,b)=main(a, charkxxargv)'| selfie.c -o selfie

bootstrapping selfie using standard C compiler

> ./selfie
./selfie: usage: selfie { -c { source } | -0 binary | -s assembly
| -1 binary } [(-=m | =d | =y | -min | -mob) size ...]

selfie usage

> ,/selfie

./selfie: usage: selfie {| -0 binary | -s assembly
| =1 binary } [(-=m | =d T =y [=min | -mob) size ...]

selfie usage

> ,/selfie

./selfie: usage: selfie { -c { source } || —-s assembly

| =L binary } [(-=m | =d | =y | -min | -mob) size ...]

selfie usage

> ,/selfie

./selfie: usage: selfie { -c { source } | -o binary |
| -Ubinary ¥ [(-m | -=d | =y | —min | -mob) size ...

selfie usage

> ./selfie

./selfie: age: selfie { —-c { source } | -o binary | —-s assembly
||-1 binary|} [(-m | =d | -y | -min | -mob) size ...]

selfie usage

> ,/selfie

./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -1 binary } I (El -d | =y | -min | -mob)...]

selfie usage

> ,/selflie
./selfie: usage: selfie_{ -c { source } | -o binary | -s assembly
| =1 binary } [(-m ||-d}| -y | -min | -mob)|size|...]

selfie usage

> ,/selfie

./selfie: usage: selfie { - source } | —o binary | -s assembly
| =1 binary } [(=m | =d || -=y| | -min | -mob)|size|...]

selfie usage

> ,/selfie

./selfie: usage: selfie { -c { source } | -o binarv | -s assembly
| =1 binary } [(=m | -d | -y ||—mob)...]

selfie usage

> ,/selfie

./selfie: usage: selfie { -c { source } | —o binarv | —-s assembly
| =L binary } [(-m | =d | -y | -min |)...]

selfie usage

compiling selfie with selfie (takes seconds)

> ,/selfie —-c selfie.c
./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments
./selfie: with 97779(55.55%) characters in 28914 actual symbols
./selfie: 261 global variables, 289 procedures, 450 string literals
./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return
./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

compiling selfie with selfie (takes seconds)

> —-c selfie.c
./selfie:| this is selfie's starc compiling selfie.c

./selfie:] 176408 characters read in 7083 lines and 969 comments
./selfie:] with 97779(55.55%) characters in 28914 actual symbols
./selfie:] 261 global variables, 289 procedures, 450 string literals
./selfie:] 1958 calls, 723 assignments, 57 while, 572 if, 243 return
./selfie:] 121660 bytes generated with 28779 instructions and 6544
pytes of data

compiling selfie with selfie (takes seconds)

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ,/selfie -c selfie.c -m 2 -c selfie.c
./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c
selfie.c: exiting with exit code @ and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
® and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

>|./selfie —c selfie.c|-m 2 —-c selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c
selfie.c: exiting with exit code @ and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
® and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ./selfie —cC selfie.c—c selfie.cC

./selfie: this is selfie's starc compiling selfie.c

selfie.c: this is selfie's starc compiling selfie.c
selfie.c: exiting with exit code @ and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
® and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> . /selfie -c -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

selfie.c:| this is selfie's starc compiling selfie.c

selfie.c:| exiting with exit code @ and 1.05MB of mallocated memory
./selfie: this is selfie's mipster terminating selfie.c with exit code
® and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ,/selfie —-c selfie.c -m 2

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: exiting with exit code @ and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
® and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ,/selfie -c selfie.c -m 2 -c selfie.c
./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code @ and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
® and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ,/selfie -c selfie.c -m 2 -c selfie.c
./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code @ and 1.05MB of mallocated memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

compiling selfie with selfie and generating an executable selfiel.m
that is then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)

> ./selfie —c selfie.c -0 selfiel.m —-m 2 —-c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)

>|./selfie —c selfie.c|-0 selfiel.m —-m 2 —-c selfie.c -0 selfie2.m

selTie: 060 bytes wit 3//9 1nstructions and 6544 bytes of data
wrltten into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c|-o selfiel.m|-m 2 —c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)

> ,/selfie —-c selfie.c -0 selfiel.m—c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c —o|selfiel.m|-m 2|-c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

selfiel.m:| this is selfie's starc compiling selfie.c
selfiel.m:| 121660 bytes with 28779 instructions and 6544 bytes of data
ritten infkto selfie2.m

selfiel.m:| exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)

> ./selfie —c selfie.c -0 selfiel.m —-m 2|-c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

elfiel.m: this is selfie's starc compiling selfie.c

elfiel.m: 121660 bytes with 28//9 1instructions and 6544 bytes of data
ritten into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)

> ./selfie —c selfie.c -0 selfiel.m —-m 2 —-c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)

> ./selfie —c selfie.c -0 selfiel.m —-m 2 —-c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)

> ./selfie —-c selfie.c -m 2 —-c selfie.c —-m 2 —-c selfie.cC

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)

> |./selfie —c selfie.c|-m 2 —-c selfie.c —m 2 —-c selfie.cC

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)

> ./selfie —cC selfie.c—c selfie.c —m 2 —-c selfie.cC

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)

> ,/selfie —-c selfie.c -m 2—m 2 —c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)

> ./selfie —-c selfie.c -m 2 -cC selfie.c—c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)

> ./selfie —-c selfie.c —-m 2 —-c selfie.c —m 2

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)

compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a
virtual machine to compile selfie again (takes ~12 minutes)

> ,/selfie —-c selfie.c —-m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a
virtual machine to compile selfie again (takes ~12 minutes)

> ,/selfie —-c selfie.c —-m 2 -c selfie.c @—c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a
virtual machine to compile selfie again (takes ~12 minutes)

kL
-
>
-
=
qu
IS
e

