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To Create Meaning with a Machine
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meaning of this
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Semantics and Self-Referentiality



Twelve Basic
Principles




Where does the meaning of bits come from?

Semantics



Why is information encoded this way rather than that way?

Encoding



What is computation really?

State



How do we forget state regularly?

Regularity



How can we forget state in reverse?

Stack



How do we forget unbounded state?

Name



What is the difference between programming and computing?



What is the nature of digital memory?

Memory



What is the semantics of code without running it?



How do we even use an incomplete system?

Bootstrapping



What is the cost of interpretation?

Interpretation



How can we get rid of it?

Virtualization



Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:



http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C¥) to a tiny subset of MIPS32 called MIPSter,



http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C¥) to a tiny subset of MIPS32 called MIPSter,

2. aself-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,



http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C¥) to a tiny subset of MIPS32 called MIPSter,

2. aself-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and



http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science

selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C¥) to a tiny subset of MIPS32 called MIPSter,

2. aself-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and

4. atiny C* library called libcstar utilized by all of selfie.
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> make
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bootstrapping selfie using standard C compiler
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./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments
./selfie: with 97779(55.55%) characters in 28914 actual symbols
./selfie: 261 global variables, 289 procedures, 450 string literals
./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return
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compiling selfie with selfie and then running that executable to
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compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)



> ,/selfie -c selfie.c -m 2 -c selfie.c
./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code @ and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
® and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)



> ,/selfie -c selfie.c -m 2 -c selfie.c
./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code @ and 1.05MB of mallocated memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)



compiling selfie with selfie and generating an executable selfiel.m
that is then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)



> ./selfie —c selfie.c -0 selfiel.m —-m 2 —-c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)



>|./selfie —c selfie.c|-0 selfiel.m —-m 2 —-c selfie.c -0 selfie2.m

selTie: 060 bytes wit 3//9 1nstructions and 6544 bytes of data
wrltten into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)



> ./selfie -c selfie.c|-o selfiel.m|-m 2 —c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)



> ,/selfie —-c selfie.c -0 selfiel.m—c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)



> ./selfie -c selfie.c —o|selfiel.m|-m 2|-c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

selfiel.m:| this is selfie's starc compiling selfie.c
selfiel.m:| 121660 bytes with 28779 instructions and 6544 bytes of data
ritten infkto selfie2.m

selfiel.m:| exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)



> ./selfie —c selfie.c -0 selfiel.m —-m 2|-c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

elfiel.m: this is selfie's starc compiling selfie.c

elfiel.m: 121660 bytes with 28//9 1instructions and 6544 bytes of data
ritten into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)



> ./selfie —c selfie.c -0 selfiel.m —-m 2 —-c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)



> ./selfie —c selfie.c -0 selfiel.m —-m 2 —-c selfie.c -0 selfie2.m

./selfie: this is selfie's starc compiling selfie.c
./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c
selfiel.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

compiling selfie with selfie and generating an executable selfiel.m
that 1s then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)



compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)



> ./selfie —-c selfie.c -m 2 —-c selfie.c —-m 2 —-c selfie.cC

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)



> |./selfie —c selfie.c|-m 2 —-c selfie.c —m 2 —-c selfie.cC

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)



> ./selfie —cC selfie.c—c selfie.c —m 2 —-c selfie.cC

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)



> ,/selfie —-c selfie.c -m 2—m 2 —c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)



> ./selfie —-c selfie.c -m 2 -cC selfie.c—c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)



> ./selfie —-c selfie.c —-m 2 —-c selfie.c —m 2

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)



compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a
virtual machine to compile selfie again (takes ~12 minutes)



> ,/selfie —-c selfie.c —-m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a
virtual machine to compile selfie again (takes ~12 minutes)



> ,/selfie —-c selfie.c —-m 2 -c selfie.c @—c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a
virtual machine to compile selfie again (takes ~12 minutes)
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