
Hong Kong University of Science and Technology, January 2017

Teaching Computer Science
Through Self-Referentiality
Christoph Kirsch, University of Salzburg, Austria

scalloc.cs.uni-salzburg.at
concurrent memory allocator

scal.cs.uni-salzburg.at
concurrent data structures

selfie.cs.uni-salzburg.at

http://scalloc.cs.uni-salzburg.at
http://scal.cs.uni-salzburg.at
http://selfie.cs.uni-salzburg.at

Joint Work

✤ Martin Aigner

✤ Christian Barthel

✤ Mike Dodds

✤ Andreas Haas

✤ Thomas Henzinger

✤ Andreas Holzer

✤ Thomas Hütter

✤ Michael Lippautz

✤ Alexander Miller

✤ Simone Oblasser

✤ Hannes Payer

✤ Mario Preishuber

✤ Ana Sokolova

✤ Ali Szegin

The Multicore Scalability Challenge

linear scalability

positive scalability
high performance

negative scalability

positive scalability
low performance

th
ro

ug
hp

ut

number of cores

Timestamped (TS) Stack [POPL15]

Treiber Stack
EB Stack

TS-atomic Stack
TS-CAS Stack

TS-hardware Stack
TS-interval Stack

TS-stutter Stack

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(a) Producer-consumer benchmark, 40-core machine.

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 8 16 24 32 40 48 56 64

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(b) Producer-consumer benchmark, 64-core machine.

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(c) Producer-only benchmark, 40-core machine.

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 8 16 24 32 40 48 56 64

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(d) Producer-only benchmark, 64-core machine.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(e) Consumer-only benchmark, 40-core machine.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 8 16 24 32 40 48 56 64

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(f) Consumer-only benchmark, 64-core machine.

Figure 5: TS stack performance in the high-contention scenario on 40-core machine (left) and 64-core machine (right).

push operations of the TS-atomic stack and the TS-stutter
stack, which means that the delay in the TS-interval time-
stamping is actually shorter than the execution time of the
TS-atomic timestamping and the TS-stutter timestamping.
Perhaps surprisingly, TS-stutter, which does not require
strong synchronisation, is slower than TS-atomic, which is
based on an atomic fetch-and-increment instruction.

Pop performance. We measure the performance of pop
operations of all data-structures in a consumer-only bench-
mark where each thread pops 1,000,000 from a pre-filled
stack. Note that no elimination is possible in this bench-
mark. The stack is pre-filled concurrently, which means in
case of the TS-interval stack and TS-stutter stack that some
elements may have unordered timestamps. Again the TS-
interval stack uses the same delay as in the high-contention
producer-consumer benchmark.

Figure 5e and Figure 5f show the performance and
scalability of the data-structures in the high-contention
consumer-only benchmark. The performance of the TS-
interval stack is significantly higher than the performance of
the other stack implementations, except for low numbers of
threads. The performance of TS-CAS is close to the perfor-
mance of TS-interval. The TS-stutter stack is faster than the
TS-atomic and TS-hardware stack due to the fact that some
elements share timestamps and therefore can be removed in
parallel. The TS-atomic stack and TS-hardware stack show
the same performance because all elements have unique
timestamps and therefore have to be removed sequentially.
Also in the Treiber stack and the EB stack elements have to
be removed sequentially. Depending on the machine, remov-
ing elements sequentially from a single list (Treiber stack)
is sometimes less and sometimes as expensive as removing
elements sequentially from multiple lists (TS stack).

Local Linearizability [CONCUR16]
A. Haas et al. XX:11

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80m
ill

io
n

op
er

at
io

ns
pe

r
se

c
(m

or
e

is
be

tt
er

)

number of threads

MS
LCRQ

k-FIFO

LL+D MS
LLD LCRQ

LLD k-FIFO

1-RA DQ

“queue-like” data structures

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80m
ill

io
n

op
er

at
io

ns
pe

r
se

c
(m

or
e

is
be

tt
er

)

number of threads

Treiber
TS Stack

k-Stack
LL+D Treiber

LLD TS Stack
LLD k-Stack

1-RA DS

“stack-like” data structures

Figure 5 Performance and scalability of producer-consumer microbenchmarks with an increasing
number of threads on a 40-core (2 hyperthreads per core) machine

Scal benchmarking framework [11, 12]. Scal uses preallocated memory (without freeing it)
to avoid memory management artifacts. For all measurements we report the arithmetic mean
and the 95% confidence interval (sample size=10, corrected sample standard deviation).

In our experiments, we consider the linearizable queues Michael-Scott queue (MS) [32]
and LCRQ [34] (improved version [35]), the linearizable stacks Treiber stack (Treiber) [40]
and TS stack [14], the k-out-of-order relaxed k-FIFO queue [26] and k-Stack [21] and linear-
izable well-performing pools based on distributed queues using random balancing [17] (1-RA
DQ for queue, and 1-RA DS for stack). For each of these implementations (but the pools)
we provide LLD variants (LLD LCRQ, LLD TS stack, LLD k-FIFO, and LLD k-Stack) and,
when possible, LL+D variants (LL+D MS queue and LL+D Treiber stack). Making the
pools locally linearizable is not promising as they are already distributed. Whenever LL+D
is achievable for a data structure implementation � we present only results for LL+D � as,
in our workloads, LLD � and LL+D � implementations perform with no visible di�erence.

We evaluate the data structures on a Scal producer-consumer benchmark where each
producer and consumer is configured to execute 106 operations. To control contention,
we add a busy wait of 5µs between operations. The number of threads is configured to
range between 2 and 80 (number of hardware threads) half of which are producers and half
consumers. To relate performance and scalability we report the number of data structure
operations per second. Data structures that require parameters to be set are configured
to allow maximum parallelism for the producer-consumer workload with 80 threads. This
results in k = 80 for all k-FIFO and k-Stack variants (40 producers and 40 consumers
in parallel on a single segment), p = 80 for 1-RA-DQ and 1-RA-DS (40 producers and
40 consumers in parallel on di�erent backends). The TS Stack algorithm also needs to be
configured with a delay parameter. We use optimal delay (7µs) for the TS Stack and zero
delay for the LLD TS Stack, as delays degrade the performance of the LLD implementation.

Figure 5 shows the results of the producer-consumer benchmarks. Similar to experi-
ments performed elsewhere [14, 21, 26, 34] the well-known algorithms MS and Treiber do
not scale for 10 or more threads. The state-of-the-art linearizable queue and stack algorithms
LCRQ and TS-interval Stack either perform competitively with their k-out-of-order relaxed
counter parts k-FIFO and k-Stack or even outperform and outscale them. For any imple-
mentation �, LLD � and LL+D � (when available) perform and scale significantly better
than � does, even slightly better than the state-of-the-art pool that we compare to. The best
improvement show LLD variants of MS queue and Treiber stack. The speedup of the locally
linearizable implementation to the fastest linearizable queue (LCRQ) and stack (TS Stack)

Scal

Name Semantics Year Ref
Lock-based Singly-linked
List Queue

strict queue 1968 [1]

Michael Scott (MS) Queue strict queue 1996 [2]

Flat Combining Queue strict queue 2010 [3]

Wait-free Queue strict queue 2012 [4]

Linked Cyclic Ring Queue
(LCRQ)

strict queue 2013 [5]

Timestamped (TS) Queue strict queue 2015 [6]

Cooperative TS Queue strict queue 2015 [7]

Segment Queue k-relaxed queue 2010 [8]

Random Dequeue (RD)
Queue

k-relaxed queue 2010 [8]

Bounded Size k-FIFO
Queue

k-relaxed queue, pool 2013 [9]

Unbounded Size k-FIFO
Queue

k-relaxed queue, pool 2013 [9]

b-RR Distributed Queue
(DQ)

k-relaxed queue, pool 2013 [10]

Least-Recently-Used (LRU)
DQ

k-relaxed queue, pool 2013 [10]

Locally Linearizable DQ

(static, dynamic)

locally linearizable
queue, pool

2015 [11]

Locally Linearizable k-FIFO
Queue

locally linearizable
queue

2015 [11]

Relaxed TS Queue quiescently consistent

queue (conjectured)

2015 [7]

Lock-based Singly-linked
List Stack

strict stack 1968 [1]

Treiber Stack strict stack 1986 [12]

Elimination-backoff Stack strict stack 2004 [13]

Timestamped (TS) Stack strict stack 2015 [6]

k-Stack k-relaxed stack 2013 [14]

b-RR Distributed Stack (DS) k-relaxed stack, pool 2013 [10]

Least-Recently-Used (LRU)
DS

k-relaxed stack, pool 2013 [10]

Locally Linearizable DS

(static, dynamic)

locally linearizable
stack, pool

2015 [11]

Locally Linearizable k-Stack locally linearizable
stack

2015 [11]

Timestamped (TS) Deque strict deque
(conjectured)

2015 [7]

d-RA DQ and DS strict pool 2013 [10]

Scal: A Benchmarking Suite for Concurrent Data Structures [NETYS15]

https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lockbased_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/flatcombining_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/wf_queue_ppopp12.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lcrq.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/cts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/segment_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/random_dequeue_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/boundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/unboundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_partrr.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lru_distributed_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_local_linearizability.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/dyn_distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/unboundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/rts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/scal/src/datastructures/lockbased_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/elimination_backoff_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/kstack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_partrr.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lru_distributed_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_local_linearizability.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/dyn_distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/kstack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_deque.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_1random.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h

Scalloc: Concurrent Memory Allocator
scalloc.cs.uni-salzburg.at [OOPSLA15]

Concurrent
Free List and
Virtual Spans

Core 1 Core 2

Core 3 Core 4

http://scalloc.cs.uni-salzburg.at

Computer Science for Everyone

Teaching the
absolute basics!

What are the
absolute basics?

What is
Computer
Science?

To Create Meaning with a Machine

What is the
meaning of this
sentence?

Semantics and Self-Referentiality

Twelve Basic
Principles

Where does the meaning of bits come from?

Semantics

Why is information encoded this way rather than that way?

Encoding

What is computation really?

State

How do we forget state regularly?

Regularity

How can we forget state in reverse?

Stack

How do we forget unbounded state?

Name

What is the difference between programming and computing?

Time

What is the nature of digital memory?

Memory

What is the semantics of code without running it?

Type

How do we even use an incomplete system?

Bootstrapping

What is the cost of interpretation?

Interpretation

How can we get rid of it?

Virtualization

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and

4. a tiny C* library called libcstar utilized by all of selfie.

http://selfie.cs.uni-salzburg.at

Code

Book (Draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

character literals
string literals

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

character literals
string literals

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building SelfieLibrary

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Arrays versus Lists

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Arrays versus Lists
9. Composite Data Types

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Arrays versus Lists
9. Composite Data Types
10.MIPSter Boot Loader

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Arrays versus Lists
9. Composite Data Types
10.MIPSter Boot Loader
11.MIPSter Emulator

Library

Compiler

Emulator

Hypervisor

selfie.c

Selfie and the Twelve Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Arrays versus Lists
9. Composite Data Types
10.MIPSter Boot Loader
11.MIPSter Emulator
12.MIPSter Hypervisor

Library

Compiler

Emulator

Hypervisor

selfie.c

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie using standard C compiler

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie using standard C compiler

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie using standard C compiler

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie using standard C compiler

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

compiling selfie with selfie (takes seconds)

> ./selfie -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments

./selfie: with 97779(55.55%) characters in 28914 actual symbols

./selfie: 261 global variables, 289 procedures, 450 string literals

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return

./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

compiling selfie with selfie (takes seconds)

> ./selfie -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments

./selfie: with 97779(55.55%) characters in 28914 actual symbols

./selfie: 261 global variables, 289 procedures, 450 string literals

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return

./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

compiling selfie with selfie (takes seconds)

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

compiling selfie with selfie and generating an executable selfie1.m
that is then executed to compile selfie again generating another

executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfie1.m
that is then executed to compile selfie again generating another

executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfie1.m
that is then executed to compile selfie again generating another

executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfie1.m
that is then executed to compile selfie again generating another

executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfie1.m
that is then executed to compile selfie again generating another

executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfie1.m
that is then executed to compile selfie again generating another

executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfie1.m
that is then executed to compile selfie again generating another

executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfie1.m
that is then executed to compile selfie again generating another

executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie with selfie and generating an executable selfie1.m
that is then executed to compile selfie again generating another

executable selfie2.m (takes ~6 minutes)

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile

selfie again (takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile

selfie again (takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile

selfie again (takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile

selfie again (takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile

selfie again (takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile

selfie again (takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile

selfie again (takes ~24 hours)

compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a 

virtual machine to compile selfie again (takes ~12 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a 

virtual machine to compile selfie again (takes ~12 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a 

virtual machine to compile selfie again (takes ~12 minutes)

Thank you!

