%5&' s 5

On the Self in Selﬁe

Christoph M. Kirsch

INESC-ID 2018 Lisbon, Portugal, October 2018

selfie.cs.uni-salzburg.at

http://selfie.cs.uni-salzburg.at

What is the meaning
of this sentence?

Selfie as in

self-referentiality

Interpretation

Compilation

Teaching the Construction of
Semantics of Formalisms

Virtualization

Verification

Joint Work

+ Alireza Abyaneh + Cornelia Mayer
+ Martin Aigner + Philipp Mayer

+ Sebastian Arming #+ Christian Moesl
+ Christian Barthel + Simone Oblasser
+ Simon Bauer + Clement Poncelet
+ Thomas Hiitter + Sara Seidl

+ Alexander Kollert + Ana Sokolova

+ Michael Lippautz + Manuel Widmoser

Insprration

+ Armin Biere: SAT /SMT Solvers
+ Donald Knuth: Art

+ Jochen Liedtke: Microkernels

+ Hennessy / Patterson: RISC

+ Niklaus Wirth: Compilers

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 10k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset of C called C Star
(C*) to a tiny subset of RISC-V called RISC-U,

2. aself-executing emulator called mipster that executes RISC-U code including itself
when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster and can host all of
selfie including itself,

4. a self-executing symbolic execution engine called monster that executes RISC-U code
symbolically when compiled with starc which includes all of selfie,

5. atiny C* library called libcstar utilized by all of selfie, and

6. a tiny, experimental SAT solver called babysat.

http://selfie.cs.uni-salzburg.at

Selfie supports the official 64-bit RISC-V toolchain

and runs on the spike emulator and the pk kernel

Also, there 1s a...

+ linker (in-memory only)

%+ disassembler (w/ source code line numbers)

+ debugger (tracks full machine state w/ rollback)

+ profiler (#proc-calls, #loop-iterations, #loads, #stores)

+ ELF boot loader (same code for mipster /hypster)

(Code as Prose

uint64_t left_shift(uint64_t n, uint64_t b) {

return n * two_to_the_power_of(b);

}
uint64_t right_shift(uint64_t n, uint64_t b) {

return n / two_to_the_power_of(b);

}

uint64_t get_bits(uint64_t n, uint64_t i, uint64_t b) {

if (1 == 0)
return n % two_to_the_power_of(b);
else

return right_shift(left_shift(n, CPUBITWIDTH - (i + b)), CPUBITWIDTH - b);

Discussion of Selfie reached
3rd place on Hacker News

http://news.ycombinator.com

Website

selfie.cs.uni-salzburg.at

Code

github.com / cksystemsteaching / selfie

Slides (250 done, ~200 todo)

selfie.cs.uni-salzburg.at/slides

Book (draft)

leanpub.com / selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie
http://selfie.cs.uni-salzburg.at/slides

& oot [UInEBA E atoi (uint64. t A5)f A0 datatypes other
: HiareA i than uint64 t and
ass1gn.ment uint64_t n; Uinted t o dnle
w}.ule Sl dereferencing:
ret11f1rn . . the ™ operator
L ocedure() 2 : 8 & character literals

e literals

whi

return —1;

integer arithmetics jmwi |

’ — o no bitwise operators
pointer arithmetics [

= o ety no Boolean operators

J

e bllne 1

library: exit, malloc, open, read, write

J

Minimally complex,
maximally self-
contaied system

Programming languages
VS systems engineering?

> make

cc -w -m64 -D'main(a,b)=main(a,charxxargv)"

bootstrapping selfie.c into x86 selfie executable
using standard C compiler

> ./selfie

./selfie: usage: fle {|-c_{ source }|||-o0 binary |m
||1-1 binary|} [| —d ~min —mo Size|

selfie usage

- /settie [setrie]

./selfie:

./selfie:
./selfie:
./selfie:
./selfie:
/selfie:

b

ytes of

this is selfie's starc compiling selfie.c

176408 characters read in 7083 lines and 969 comments
with 97779(55.55%) characters in 28914 actual symbols

261 global variables, 289 procedures, 450 string literals
1958 calls, 723 assignments, 57 while, 572 if, 243 return
121660 bytes generated with 28779 instructions and 6544
data

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie —c

./selfie: this is selfie's starc compiling selfie.c

compiling selfie.c with x86 selfie executable into a RISC-U executable
and

then running that RISC-U executable tg compile selfie.c again
(takes ~6 minutes)

> ./selfie —c selfie.c|-o0 selfiel.m|-m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c
oytes wit 3/79 1nstructions ana

ritten into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c

elfiel.m: 121660 bytes with 28779 1instructions and 6544 bytes of data
ritten into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie.c intoa RISC-U executable selfiel .m
and
then running selfiel.mto compile selfie.c
into another RISC-U executable selfie2 .m
(takes ~6 minutes)

./selfie —c selfie.c

compiling selfie.c with x86 selfie executable
and
then running that executable to compile selfie.c again
and

then running that executableta compile selfie.c again
(takes ~24 hours)

> ,/selfie —-c selfie.c —-m 2 -c selfie.c @—c selfie.c

compiling selfie.c with x86 selfie executable
and
then running that executable to compile selfie.c again
and

then hosting that executable in g
(takes ~12 minutes)

alaugcfine to compile selfie.c again

Now That’s a Selfie!

selfie compiler (RISC-V)
selfie hypervisor (RISC-V)
selfie hypervisor (RISC-V)

selfie emulator (RISC-V)
selfie emulator (x86) spike emulator (x86) + pk kernel (RISC-V)

Self-Execution: works out of the box!

uint64_1 encode_r_format()int64_t funct7, uint64_t rs2, uint64_t rsl, uint64_t funct3, uint64_t rd, uint64_t opcode) {

return left_shift(left_shift(left_shift(left_shift(left_shift(funct7, 5) rs2, 5) + rsl, 3) + funct3, 5) rd, 7) + opcode;
}

uint64_t get_funct7(uint64_t instruction) { Synergy With Compiler

return get_bits(instruction, 25, 7);
}

uint64_t get_rs2(uint64_t instruction) { in the Same ﬁle

return get_bits(instruction, 20, 5);
}

uint64_t get_rsl(uint64_t instruction) { iS Still SurpriSingly

return get_bits(instruction, 15, 5);
}

uint64_t get_funct3(uint64_t instruction) { COOI!

return get_bits(instruction, 12, 3);
}

uint64_t get_rd(uint64_t instruction) {
return get_bits(instruction, 7, 5);

}

uint64_t get_opcode(uint64_t instruction) {
return get_bits(instruction, @, 7);

}

void{(decode_r_format()) {
fun = _get fyp ir);

rs2 get_rs2(ir);
rsil = get_rs1(ir);
funct3 = get_funct3(ir);
rd = get_rd(ir);
imm = 0;

RISC-U Machme State

context

32x 64-bit
CPU registers

|
1x 64-bit
program counter

4GB of
byte-addressed

64-bit-word-aligned
main
memory

Virtual Memory in Seltie

4GB of MBs of
byte-addressed 4KB-paged byte-addressed
64-bit-word-aligned — 7 64-bit-word-aligned
virtual on demand physical

memory memory

Code Execution and Exceptions

Ty sddda
add sub mul
1V remy

1 sé
sltu beg
jal Jale

13+1 instructions: d

division-by-0

aoe f ault execute .
bag emulator =% context exit
timer interrupt <) open
System call exception <C all read

write
bk

M spike emulator + pk kernel

sserie b

Self-Execution

user code

llllllllllllll

execute .‘." .,
emulator]] = =" 5 Contextl]
" W

IIIIIIIII
““““““
“

execute e *,
emulatorfl- "= .. ContextO o
_/ "“apgguunnn®’

exception

Self-Compilation

*
€ program selﬁe source Code

open | read

: scanner
selfie
; T parser melleoc
compiler
code generator
c ol
open |write
ELF 64-bit library code
RISC-V binary generated code

system call
wrappers

ex1lt
open
read
wrilte
nallod

spike emulator + pk kernel

Library Code: open wrapper

LB E (~ 1) Ux@ 00l 360 3 ¢
U2 @ (~1) U008 101 15
OBl (~1) Dx000L 358 3 :
HcBd (~ L) : 00061011 3
B (2 1) 2 Uoc0] 3503 ¢
(esBEC (~1) : OxOQD81011 5
OG- 1) Uzed U000 5
Ooed (~ 1) Ux000000 T S
Uxi s 1) 0x0000806

selfie emulator

parameters

syscall ID

spike emulator + pk kernel

open implementation in selfie emulator

void implemenint64_t context) {

uinte4_t vfilename;
uint64_t flags;
uint64_t mode;

uinte4_t fd;

if (disassemble) {
print((uint64_tx) "(open): ");
print_register_hexadecimal(REG_AQ);
print((uint64_tx) ",");
print_register_hexadecimal(REG_A1l);
print((uint64_tx) ",");
print_register_octal(REG_A2);
print((uint64_tx) " |- ");
print_register_value(REG_AQ);

¥
vfilename = *(get_regs(context)
flags = x(get_regs(context)
mode = x(get_regs(context)
if (down_load_stripngfgetf pt(context), vTilename, filename_buffer)) {
fd = sign_exten ilename_buffer, flags, mode), SYSCALL_BITWIDTH);

C library call
selfie compiler| # i gcc/clang

void implemeint64_t context) {

uint64_t program_break;

uint64_t previous_program_break;

malloc is different! uint64_t valid:

uint64_t size;

if (disassemble) {

malloc invokes print((uint6d_t+) "(brk): ");
print_register_hexadecimal(REG_AQ) ;

the brk system call }

program_break <(get_regs(context) +(REG_A®);

both manage pure previous_program_break get_program_break(context);
address spaces valid = 0;
if (program_break == previous_program_break)

if (program_break < *(get_regs(context) + REG_SP))
if (program_break % SIZEOFUINT64 0)

actual memory valid = 1;
storage is done if (valid) {
: ! if (disassemble)
in the paging system print((uint64_ts) " [~ —>\n");

if (debug_brk)

printf2((uint64_t*) "%s: setting program break to %p\n"

(Egg;grogram_bEEEEI}ontext, program_break) ;

Generated Code: add and +

64-bit RISC-V add instruction

‘/’
void(do_add()) {
1f EG_ZR)

(registers + rd) (registers rs])<::) (registers + rs2);
pC pC INSTRUCTIONSIZE;

ic_add ic_add 1;

}

C code for unsigned 64-bit integer addition
N w

selfie compiler gcc/clang

Self-Execution Revisited

user code
execute
emilatorlil = > contextl
execute
emulatorQ] — - context(
V_/

exception

Self-Execution: Concurrency

IIIIIIIIIIIIIIIIII
............
 J L 2
* *

* *
0000000
....
..........

exception
execute ““‘-.-IIIII-.."...XXCQ tlon
emulatorO0] — ¢ ‘:‘ 5

_/.

exception

Hosting: Concurrency

! n
sw1tch Lad R "~._ e o .
hyperv1sor s, contextl ie= —e: contexiZ
,'...exceptlo“_“:n........__..--'__‘_: s e
V i

lllllllllllllllllllllllllll
..................
““““

execute

emulator] = - c0ntext0 j i contextl G+ i content’ @

exception, *.., .

...
--“‘/ ol

Emulation versus Virtuahization

while
1f (mix)
from_context = mipster_switch(to_context, TIMESLICE);
else
from_context = hypster_switch(to_context, TIMESLICE);

if (get_pa

to_context = get_parent(from_context);

timeout = TIMEROFF;

} else if (handle_exception(from_context) == EXIT)
return get_exit_code(from_context);

else {

to_context = from_context;

if (mix) {
if (mslice !'= TIMESLICE) {
mix = 0;

timeout = TIMESLICE - mslice;

}
} else if (mslice > 0) {
mix = 1;

timeout = mslice;
}
}

Self-Hosting: Hierarchy

2

! SWitCh ."‘ cannAR RS SR R Y ..“

> |hypervisor]| — i context2 :

o ,,mexceptioil_“:“ ------------- .’
SWitCh ‘¢‘ et ihe SRR N '.‘
hypervisor| — : contextl :
Z . exception . s it .’
o ; %

............
.

exetniion (o ol i s
tinulator]: T 53 contextl :*— 2= copfextl :*——=< coniext’) =

llllllllllllllllll
.........

Homework lIdeas

+ Implement bitwise shifting (<<, >> as well as SLL, SRL)
+ Multi-dimensional arrays and recursive structs

+ Lazy evaluation of Boolean operators

+ Conservative garbage collection

+ Processes and threads, multicore support

+ Locking and scheduling

<+ Atomic instructions and lock-free data structures

m»/& Aﬂﬂ&# ”@ T %

ically?

mal
1C
P

mima

What exactly is needed to execute
systems code like selfie’s symbol

KExecution

M

Replay vs. Symbolic Execution

+ Selfie supports replay of RISC-U execution upon detecting
runtime errors such as division by zero

% Selfie first rolls back n instructions (undo (!) semantics,
system calls?) and then re-executes them but this time
printed on the console

* We use a cyclic buffer for replaying n instructions

+ That buffer is also used in symbolic execution but then for
recording symbolic execution of up to n instructions

Symbolic Execution: Status

+ We ftuzz input read from files

* Symbolic execution proceeds by computing integer
interval constraints, only recording memory stores

* Sound but only complete for a subset of all programs

+ Selfie compiler falls into that subset, so far...

+ We detect division by zero, (some) unsafe memory access

Symbolic Execution: Future

+ Witness generation and on-the-fly validation
+ Loop termination through manually crafted invariants
+ Parallelization on our 64-core machine

+ And support for utilizing 0.5TB of physical memory

Got Research Ideas?

+ Selfie is a simple but still realistic sandbox

+ You control everything!

+ Want to play with an idea that requires compiler/
operating systems/architecture support?

+ We are glad to help you get started!

Thank youl

