
INESC-ID 2018 Lisbon, Portugal, October 2018

On the Self in Selfie
Christoph M. Kirsch

selfie.cs.uni-salzburg.at

http://selfie.cs.uni-salzburg.at

What is the meaning
of this sentence?

Selfie as in
self-referentiality

Teaching the Construction of
Semantics of Formalisms

Compilation

Interpretation

Virtualization

Verification

Joint Work

✤ Alireza Abyaneh

✤ Martin Aigner

✤ Sebastian Arming

✤ Christian Barthel

✤ Simon Bauer

✤ Thomas Hütter

✤ Alexander Kollert

✤ Michael Lippautz

✤ Cornelia Mayer

✤ Philipp Mayer

✤ Christian Moesl

✤ Simone Oblasser

✤ Clement Poncelet

✤ Sara Seidl

✤ Ana Sokolova

✤ Manuel Widmoser

Inspiration

✤ Armin Biere: SAT/SMT Solvers

✤ Donald Knuth: Art

✤ Jochen Liedtke: Microkernels

✤ Hennessy/Patterson: RISC

✤ Niklaus Wirth: Compilers

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]
✤ Selfie is a self-referential 10k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset of C called C Star
(C*) to a tiny subset of RISC-V called RISC-U,

2. a self-executing emulator called mipster that executes RISC-U code including itself
when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster and can host all of
selfie including itself,

4. a self-executing symbolic execution engine called monster that executes RISC-U code
symbolically when compiled with starc which includes all of selfie,

5. a tiny C* library called libcstar utilized by all of selfie, and

6. a tiny, experimental SAT solver called babysat.

http://selfie.cs.uni-salzburg.at

Selfie supports the official 64-bit RISC-V toolchain
and runs on the spike emulator and the pk kernel

Also, there is a…

✤ linker (in-memory only)

✤ disassembler (w/ source code line numbers)

✤ debugger (tracks full machine state w/ rollback)

✤ profiler (#proc-calls, #loop-iterations, #loads, #stores)

✤ ELF boot loader (same code for mipster/hypster)

Code as Prose

Discussion of Selfie reached  
3rd place on Hacker News

news.ycombinator.com

http://news.ycombinator.com

Code

Book (draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

Slides (250 done, ~200 todo)
selfie.cs.uni-salzburg.at/slides

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie
http://selfie.cs.uni-salzburg.at/slides

uint64_t atoi(uint64_t *s) {
 uint64_t i;
 uint64_t n;
 uint64_t c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data types other
than uint64_t and
uint64_t* and

dereferencing:
the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write

Minimally complex,
maximally self-
contained system
Programming languages
vs systems engineering?

> make
cc -w -m64 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie.c into x86 selfie executable  
using standard C compiler

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments

./selfie: with 97779(55.55%) characters in 28914 actual symbols

./selfie: 261 global variables, 289 procedures, 450 string literals

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return

./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a RISC-U executable  
and  

then running that RISC-U executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie.c into a RISC-U executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another RISC-U executable selfie2.m  

(takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)

Now That’s a Selfie!

selfie emulator (x86) spike emulator (x86) + pk kernel (RISC-V)

selfie emulator (RISC-V)

selfie hypervisor (RISC-V)

selfie hypervisor (RISC-V)

selfie compiler (RISC-V)

Self-Execution: works out of the box!

synergy with compiler
in the same file

is still surprisingly
cool!

RISC-U Machine State

32x 64-bit
CPU registers

+
1x 64-bit

program counter

4GB of
byte-addressed

64-bit-word-aligned
main

memory

context

Virtual Memory in Selfie

4GB of
byte-addressed

64-bit-word-aligned
virtual

memory

MBs of
byte-addressed

64-bit-word-aligned
physical
memory

4KB-paged

on demand

Code Execution and Exceptions

emulator context
execute

exception

selfie emulator spike emulator + pk kernel

lui addi
add sub mul
divu remu
ld sd

sltu beq
jal jalr

ecall

exit
open
read
write
brk

13+1 instructions:

1. division-by-0
2. page fault
3. timer interrupt
4. system call

Self-Execution

emulator0 context0

context1

execute

emulator1

user code

execute

exception

exception

Self-Compilation

scanner
parser

code generator

library code
generated code

selfie
compiler

ELF 64-bit
RISC-V binary

read

write

open

open

malloc

exit

selfie source codeC* program

exit
open
read
write
malloc

system call
wrappers

selfie emulator spike emulator + pk kernel

Library Code: open wrapper

0xA8(~1): 0x00013603: ld $a2,0($sp)
0xAC(~1): 0x00810113: addi $sp,$sp,8
0xB0(~1): 0x00013583: ld $a1,0($sp)
0xB4(~1): 0x00810113: addi $sp,$sp,8
0xB8(~1): 0x00013503: ld $a0,0($sp)
0xBC(~1): 0x00810113: addi $sp,$sp,8
0xC0(~1): 0x40000893: addi $a7,$zero,1024
0xC4(~1): 0x00000073: ecall
0xC8(~1): 0x00008067: jalr $zero,0($ra)

selfie emulator spike emulator + pk kernel

parameters

syscall ID

C library call

open implementation in selfie emulator

selfie compiler gcc/clang

malloc is different!

malloc invokes
the brk system call

both manage pure
address spaces

actual memory
storage is done

in the paging system

Generated Code: add and +

64-bit RISC-V add instruction

C code for unsigned 64-bit integer addition

selfie compiler gcc/clang

Self-Execution Revisited

emulator0 context0

context1

execute

emulator1

user code

execute

exception

exception

Self-Execution: Concurrency

emulator0 context0

context1 context2

user2

execute

emulator1

user1

execute

exception

exception

exception

Hosting: Concurrency

emulator context0

context1 context2

user2

execute

user1

hypervisor
switch

context1 context2
exception

exception

Emulation versus Virtualization

Self-Hosting: Hierarchy

emulator context1 context2context0

hypervisor context1

hypervisor context2

user

switch

switch

execute

exception

exceptions

exception

?

Homework Ideas

✤ Implement bitwise shifting (<<, >> as well as SLL, SRL)

✤ Multi-dimensional arrays and recursive structs

✤ Lazy evaluation of Boolean operators

✤ Conservative garbage collection

✤ Processes and threads, multicore support

✤ Locking and scheduling

✤ Atomic instructions and lock-free data structures

Minimal
Symbolic
Execution?
What exactly is needed to execute
systems code like selfie’s symbolically?

Replay vs. Symbolic Execution

✤ Selfie supports replay of RISC-U execution upon detecting
runtime errors such as division by zero

✤ Selfie first rolls back n instructions (undo (!) semantics,
system calls?) and then re-executes them but this time
printed on the console

✤ We use a cyclic buffer for replaying n instructions

✤ That buffer is also used in symbolic execution but then for
recording symbolic execution of up to n instructions

Symbolic Execution: Status

✤ We fuzz input read from files

✤ Symbolic execution proceeds by computing integer
interval constraints, only recording memory stores

✤ Sound but only complete for a subset of all programs

✤ Selfie compiler falls into that subset, so far…

✤ We detect division by zero, (some) unsafe memory access

Symbolic Execution: Future

✤ Witness generation and on-the-fly validation

✤ Loop termination through manually crafted invariants

✤ Parallelization on our 64-core machine

✤ And support for utilizing 0.5TB of physical memory

Got Research Ideas?

✤ Selfie is a simple but still realistic sandbox

✤ You control everything!

✤ Want to play with an idea that requires compiler/
operating systems/architecture support?

✤ We are glad to help you get started!

Thank you!

