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Concurrent Data Structures: scal.cs.uni-salzburg.at 
[POPL13, CF13, POPL15, NETYS15]

✤ Scal is an open-source benchmarking framework that 
provides

1. software infrastructure for executing concurrent data 
structure algorithms,

2. workloads for benchmarking their performance and 
scalability, and

3. implementations of a large set of concurrent data 
structures.

http://scal.cs.uni-salzburg.at


Scal

Name Semantics Year Ref
Lock-based Singly-linked 
List Queue

strict queue 1968 [1]

Michael Scott (MS) Queue strict queue 1996 [2]

Flat Combining Queue strict queue 2010 [3]

Wait-free Queue strict queue 2012 [4]

Linked Cyclic Ring Queue 
(LCRQ)

strict queue 2013 [5]

Timestamped (TS) Queue strict queue 2015 [6]

Cooperative TS Queue strict queue 2015 [7]

Segment Queue k-relaxed queue 2010 [8]

Random Dequeue (RD) 
Queue

k-relaxed queue 2010 [8]

Bounded Size k-FIFO 
Queue

k-relaxed queue, pool 2013 [9]

Unbounded Size k-FIFO 
Queue

k-relaxed queue, pool 2013 [9]

b-RR Distributed Queue 
(DQ)

k-relaxed queue, pool 2013 [10]

Least-Recently-Used (LRU) 
DQ

k-relaxed queue, pool 2013 [10]

Locally Linearizable DQ 

(static, dynamic)

locally linearizable 
queue, pool

2015 [11]

Locally Linearizable k-FIFO 
Queue

locally linearizable 
queue 


2015 [11]

Relaxed TS Queue quiescently consistent 

queue (conjectured)

2015 [7]

Lock-based Singly-linked 
List Stack

strict stack 1968 [1]

Treiber Stack strict stack 1986 [12]

Elimination-backoff Stack strict stack 2004 [13]

Timestamped (TS) Stack strict stack 2015 [6]

k-Stack k-relaxed stack 2013 [14]

b-RR Distributed Stack (DS) k-relaxed stack, pool 2013 [10]

Least-Recently-Used (LRU) 
DS

k-relaxed stack, pool 2013 [10]

Locally Linearizable DS 

(static, dynamic)

locally linearizable 
stack, pool

2015 [11]

Locally Linearizable k-Stack locally linearizable 
stack 


2015 [11]

Timestamped (TS) Deque strict deque 
(conjectured)

2015 [7]

d-RA DQ and DS strict pool 2013 [10]

Scal: A Benchmarking Suite for Concurrent Data Structures [NETYS15]

https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lockbased_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/flatcombining_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/wf_queue_ppopp12.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lcrq.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/cts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/segment_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/random_dequeue_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/boundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/unboundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_partrr.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lru_distributed_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_local_linearizability.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/dyn_distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/unboundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/rts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/scal/src/datastructures/lockbased_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/elimination_backoff_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/kstack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_partrr.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lru_distributed_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_local_linearizability.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/dyn_distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/kstack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_deque.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_1random.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h


k-FIFO Queues [PaCT13]
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(a) Very high contention (c = 1000, i = 0)
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(b) High contention (c = 4000, i = 0)
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(c) Medium contention (c = 7000, i = 0)
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(d) Low contention (c = 10000, i = 0)

Fig. 2. Performance and scalablity of producer/consumer microbenchmarks with an increasing
number of threads

Similarly, the results with our high contention scenario, depicted in Figure 2(b),
show that the scalability turnaround is at 30 threads and that both k-FIFO versions
outperform and outscale all other algorithms. As the contention gets less in Figures 2(c)
and 2(d), the turnaround gets shifted to a larger number of threads. The difference in
performance and scalability of all algorithms is less significant with more computational
load. Note that SQ returns up to 2000 times falsely null due to the non-linearizable
emptiness check.

Mandelbrot. We computed and rendered two images of the Mandelbrot set [12] using
producer and consumer threads and a shared data structure to distribute the computation
across multiple cores. The producer threads divide the image into smaller blocks (4x4
pixels in our experiments), write block coordinates in descriptor blocks, and enqueue
the descriptor blocks in the shared data structure. The consumer threads dequeue the
descriptor blocks from the shared data structure, perform the Mandelbrot calculation
on the blocks, and store the results in the corresponding blocks of the final Mandel-
brot image. Hence, the workload between the consumer threads is balanced. We use a
producer-consumer ratio of 1 : 4 in our experiments, i.e. for each producer thread we
add four consumer threads.

The Mandelbrot macrobenchmark results are presented in Figure 3. Each run was
repeated 10 times. We present the average execution time of the 10 runs as our metric
of performance, less execution time is better. Figure 3(a) shows the performance of the
low computational load Mandelbrot benchmark. Low computational load means that



Distributed Queues [CF13]
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(a) High contention producer-consumer microbenchmark (c = 250)
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(b) Low contention producer-consumer microbenchmark (c = 2000)
Figure 1: Performance and scalability of producer-consumer microbenchmarks with an increasing number of threads on a 40-core (2 hyper-
threads per core) server machine

caching artifacts into the data that are unrelated to the benchmarked
implementations.

The algorithms are configured as follows. With d-RA we only
evaluated d = 1 and d = 2 since in our benchmarks any value
greater than two results in worse performance. With b-RR we eval-
uated b = 1 and b = 2 as well as the fully thread-local configuration
TL-RR where b is set to the number of benchmarking threads. In
our benchmarks 1-RR and TL-RR result in worst and best perfor-
mance, respectively. Values for b greater than one and smaller than
the number of benchmarking threads result in performance in be-
tween. We included 2-RR to demonstrate that but omitted other
values not to overload the figures. The RD, SQ, k-FIFO, and DQ
implementations are configured to r = s = k = p = 80 (see Sec-
tions 3 and 4), enabling up to 80 parallel enqueues and 80 paral-
lel dequeues. We determined experimentally that 80 is the lowest
value that results in overall best performance and scalability of the
involved implementations in all our benchmarks.

5.1 Microbenchmarking Performance and
Scalability

For measuring and comparing performance and scalability we
designed a microbenchmark that emulates a multi-threaded producer-
consumer workload where half of the threads are producers and
the other half are consumers. Each thread performs one million
queue or pool operations. We evaluate high and low contention
scenarios by having each thread compute p iteratively between any
two consecutive operations in c = 250 iterations (high contention)
and c = 2000 iterations (low contention), respectively. As refer-
ence, c = 1000 iterations take on average 2.3 microseconds on the
server machine. Higher contention with computational load down
to c = 0 exposes machine-related artifacts resulting in meaningless
data. The presented data is averaged over five runs. Note that we
use this microbenchmark again in Section 5.3 to study the out-of-
order behavior of all considered queue and pool algorithms.

Figures 1a and 1b show performance in operations per millisec-
ond and scalability with an increasing number of threads for the
high and low contention scenarios, respectively. The key observa-
tion when comparing high and low contention is that all implemen-
tations perform and scale better under low contention but still per-
form and scale similarly in relative terms in both scenarios. Overall
1-RA performs and scales best, followed by the other DQ imple-

mentations, which all outperform and outscale the other implemen-
tations including the pool implementations. Under high contention
all implementations except TL-RR, 1-RA, and 2-RA scale nega-
tively beyond 20 threads. The performance of 2-RR is in between
the performance of 1-RR and TL-RR.

5.2 Macrobenchmarking Performance and
Scalability

We evaluate performance and scalability with three macrobench-
marks based on spanning tree and transitive closure graph algo-
rithms [5], and a Mandelbrot algorithm [17]. All presented data is
averaged over ten runs.

Spanning Tree and Transitive Closure Benchmarks
We ran the spanning tree and transitive closure graph algorithms on
graphs consisting of a hundred thousand vertices and ten million
randomly generated unique edges. Both algorithms use a shared
queue or pool of vertices to distribute work among multiple threads.
Initially, the shared queue or pool is prefilled with 160 randomly
determined vertices. Each thread dequeues a vertex and then iter-
ates over its immediate neighbors to process them (transitive clo-
sure or spanning tree operation). If a neighboring vertex already
got processed by a different thread then the vertex is ignored. Oth-
erwise, the vertex is processed and then enqueued. When a thread
processed all neighbors it dequeues another vertex. The algorithms
terminate when the shared queue or pool is empty.

Figures 2a and 2b show performance in terms of total execution
time in milliseconds and scalability with an increasing number of
threads. In both benchmarks, the DQ implementations perform and
scale best. While most implementations are on par with DQ up to
ten threads, only the BS and US k-FIFO queue implementations
scale as much as DQ. Despite its thread-local storage BAG scales
negatively because the connectivity of the graph makes it likely to
hit already processed nodes and thus requires work-stealing. Note
that RP is not shown because RP, due to its synchronous behavior,
cannot handle a workload where producers are also consumers.

Mandelbrot Benchmark
The Mandelbrot benchmark renders an image by dividing it into
blocks of 4x4 pixels that are distributed by producer threads through
a shared queue or pool to consumer threads for parallel process-



Timestamped (TS) Stack [POPL15]

Treiber Stack
EB Stack

TS-atomic Stack
TS-CAS Stack

TS-hardware Stack
TS-interval Stack

TS-stutter Stack
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(a) Producer-consumer benchmark, 40-core machine.
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(b) Producer-consumer benchmark, 64-core machine.

     0

 10000

 20000

 30000

 40000

 50000

 60000

1 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s 
p

e
r 

m
s 

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(c) Producer-only benchmark, 40-core machine.
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(d) Producer-only benchmark, 64-core machine.
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(e) Consumer-only benchmark, 40-core machine.
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(f) Consumer-only benchmark, 64-core machine.

Figure 5: TS stack performance in the high-contention scenario on 40-core machine (left) and 64-core machine (right).

push operations of the TS-atomic stack and the TS-stutter
stack, which means that the delay in the TS-interval time-
stamping is actually shorter than the execution time of the
TS-atomic timestamping and the TS-stutter timestamping.
Perhaps surprisingly, TS-stutter, which does not require
strong synchronisation, is slower than TS-atomic, which is
based on an atomic fetch-and-increment instruction.

Pop performance. We measure the performance of pop
operations of all data-structures in a consumer-only bench-
mark where each thread pops 1,000,000 from a pre-filled
stack. Note that no elimination is possible in this bench-
mark. The stack is pre-filled concurrently, which means in
case of the TS-interval stack and TS-stutter stack that some
elements may have unordered timestamps. Again the TS-
interval stack uses the same delay as in the high-contention
producer-consumer benchmark.

Figure 5e and Figure 5f show the performance and
scalability of the data-structures in the high-contention
consumer-only benchmark. The performance of the TS-
interval stack is significantly higher than the performance of
the other stack implementations, except for low numbers of
threads. The performance of TS-CAS is close to the perfor-
mance of TS-interval. The TS-stutter stack is faster than the
TS-atomic and TS-hardware stack due to the fact that some
elements share timestamps and therefore can be removed in
parallel. The TS-atomic stack and TS-hardware stack show
the same performance because all elements have unique
timestamps and therefore have to be removed sequentially.
Also in the Treiber stack and the EB stack elements have to
be removed sequentially. Depending on the machine, remov-
ing elements sequentially from a single list (Treiber stack)
is sometimes less and sometimes as expensive as removing
elements sequentially from multiple lists (TS stack).



Local Linearizability [CONCUR16]
A. Haas et al. XX:11
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Figure 5 Performance and scalability of producer-consumer microbenchmarks with an increasing
number of threads on a 40-core (2 hyperthreads per core) machine

Scal benchmarking framework [11, 12]. Scal uses preallocated memory (without freeing it)
to avoid memory management artifacts. For all measurements we report the arithmetic mean
and the 95% confidence interval (sample size=10, corrected sample standard deviation).

In our experiments, we consider the linearizable queues Michael-Scott queue (MS) [32]
and LCRQ [34] (improved version [35]), the linearizable stacks Treiber stack (Treiber) [40]
and TS stack [14], the k-out-of-order relaxed k-FIFO queue [26] and k-Stack [21] and linear-
izable well-performing pools based on distributed queues using random balancing [17] (1-RA
DQ for queue, and 1-RA DS for stack). For each of these implementations (but the pools)
we provide LLD variants (LLD LCRQ, LLD TS stack, LLD k-FIFO, and LLD k-Stack) and,
when possible, LL+D variants (LL+D MS queue and LL+D Treiber stack). Making the
pools locally linearizable is not promising as they are already distributed. Whenever LL+D
is achievable for a data structure implementation � we present only results for LL+D � as,
in our workloads, LLD � and LL+D � implementations perform with no visible di�erence.

We evaluate the data structures on a Scal producer-consumer benchmark where each
producer and consumer is configured to execute 106 operations. To control contention,
we add a busy wait of 5µs between operations. The number of threads is configured to
range between 2 and 80 (number of hardware threads) half of which are producers and half
consumers. To relate performance and scalability we report the number of data structure
operations per second. Data structures that require parameters to be set are configured
to allow maximum parallelism for the producer-consumer workload with 80 threads. This
results in k = 80 for all k-FIFO and k-Stack variants (40 producers and 40 consumers
in parallel on a single segment), p = 80 for 1-RA-DQ and 1-RA-DS (40 producers and
40 consumers in parallel on di�erent backends). The TS Stack algorithm also needs to be
configured with a delay parameter. We use optimal delay (7µs) for the TS Stack and zero
delay for the LLD TS Stack, as delays degrade the performance of the LLD implementation.

Figure 5 shows the results of the producer-consumer benchmarks. Similar to experi-
ments performed elsewhere [14, 21, 26, 34] the well-known algorithms MS and Treiber do
not scale for 10 or more threads. The state-of-the-art linearizable queue and stack algorithms
LCRQ and TS-interval Stack either perform competitively with their k-out-of-order relaxed
counter parts k-FIFO and k-Stack or even outperform and outscale them. For any imple-
mentation �, LLD � and LL+D � (when available) perform and scale significantly better
than � does, even slightly better than the state-of-the-art pool that we compare to. The best
improvement show LLD variants of MS queue and Treiber stack. The speedup of the locally
linearizable implementation to the fastest linearizable queue (LCRQ) and stack (TS Stack)





Scalloc: Concurrent Memory Allocator 
scalloc.cs.uni-salzburg.at [OOPSLA15]

✤ fast, multicore-scalable, low-memory-overhead allocator

✤ three key ideas:

1. backend: single global concurrent data structure for 
reclaiming memory effectively and efficiently

2. virtual spans: single algorithm for small and big objects

3. frontend: constant-time (modulo synchronization) 
allocation and eager deallocation

http://scalloc.cs.uni-salzburg.at
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Figure 6: Thread-local workload: Threadtest benchmark
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Figure 7: Thread-local workload: Shbench benchmark
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Figure 8: Thread-local workload (including thread termination): Larson benchmark
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Remote Deallocation
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Figure 10: Temporal and spatial performance for the object-size robustness experiment at 40 threads

two threads causes on average 50% remote frees and running
40 threads causes on average 97.5% remote frees.

Figure 9a presents the total time each thread spends in the
allocator for an increasing number of producers/consumers.
Up to 30 threads scalloc and Streamflow provide the best
temporal performance and for more than 30 threads scalloc
outperforms all other allocators.

The average per-thread memory consumption illustrated
in Figure 9b suggests that all allocators deal with blowup
fragmentation, i.e., we do not observe unbounded growth
in memory consumption. However, the absolute differences
among different allocators are significant. Scalloc provides
competitive spatial performance where only jemalloc and
ptmalloc2 require less memory at the expense of higher total
per-thread allocator time.

This experiment demonstrates that the approach of scalloc
to distributing contention across spans with one remote free
list per span works well in a producer-consumer workload
and that using a lock-based implementation for reusing spans
is not a performance bottleneck.

7.4 Robustness against False Sharing
False sharing occurs when objects that are allocated in the
same cache line are read from and written to by different
threads. In cache coherent systems this scenario can lead
to performance degradation as all caches need to be kept
consistent. An allocator is prone to active false sharing [3]
if objects that are allocated by different threads (without
communication) end up in the same cache line. It is prone
to passive false sharing [3] if objects that are remotely
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two threads causes on average 50% remote frees and running
40 threads causes on average 97.5% remote frees.

Figure 9a presents the total time each thread spends in the
allocator for an increasing number of producers/consumers.
Up to 30 threads scalloc and Streamflow provide the best
temporal performance and for more than 30 threads scalloc
outperforms all other allocators.

The average per-thread memory consumption illustrated
in Figure 9b suggests that all allocators deal with blowup
fragmentation, i.e., we do not observe unbounded growth
in memory consumption. However, the absolute differences
among different allocators are significant. Scalloc provides
competitive spatial performance where only jemalloc and
ptmalloc2 require less memory at the expense of higher total
per-thread allocator time.

This experiment demonstrates that the approach of scalloc
to distributing contention across spans with one remote free
list per span works well in a producer-consumer workload
and that using a lock-based implementation for reusing spans
is not a performance bottleneck.

7.4 Robustness against False Sharing
False sharing occurs when objects that are allocated in the
same cache line are read from and written to by different
threads. In cache coherent systems this scenario can lead
to performance degradation as all caches need to be kept
consistent. An allocator is prone to active false sharing [3]
if objects that are allocated by different threads (without
communication) end up in the same cache line. It is prone
to passive false sharing [3] if objects that are remotely
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Memory Access
deallocated by a thread are immediately usable for allocation
by this thread again.

We have conducted the false sharing avoidance evaluation
benchmark from Berger et. al. [3] (including active-false and
passive-false benchmarks) to validate scalloc’s design. The
results we have obtained suggest that most allocators avoid
active and passive false sharing. However, SuperMalloc and
TCMalloc suffer from both active and passive false sharing,
whereas Hoard is prone to passive false sharing only. We
omit the graphs because they only show binary results (either
false sharing occurs or not). Scalloc’s design ensures that
in the cases covered by the active-false and passive-false
benchmarks no false sharing appears, as spans need to be
freed to be reused by other threads for allocation. Only in
case of thread termination (not covered by the active-false
and passive-false benchmarks) threads may adopt spans in
which other threads still have blocks, potentially causing false
sharing. We have not encountered false sharing with scalloc
in any of our experiments.

7.5 Robustness for Varying Object Sizes
We configure the ACDC allocator benchmark [2] to allocate,
access, and deallocate increasingly larger thread-local objects
in 40 threads (number of native cores) to study the scalability
of virtual spans and the span pool.

Figure 10a shows the total time spent in the allocator,
i.e., the time spent in malloc and free. The x-axis refers to
intervals [2x,2x+2) of object sizes in bytes with 4 ≤ x ≤ 20
at increments of two. For each object size interval ACDC
allocates 2xKB of new objects, accesses the objects, and
then deallocates previously allocated objects. This cycle is
repeated 30 times. For object sizes smaller than 1MB scalloc
outperforms all other allocators because virtual spans enable
scalloc to rely on efficient size-class allocation. The only
possible bottleneck in this case is accessing the span-pool.
However, even in the presence of 40 threads we do not
observe contention on the span-pool. For objects larger than
1MB scalloc relies on mmap which adds system call latency
to allocation and deallocation operations and is also known
to be a scalability bottleneck [6].

The average memory consumption (illustrated in Fig-
ure 10b) of scalloc allocating small objects is higher (yet still
competitive) because the real-spans for size-classes smaller
than 32KB have the same size and madvise is not enabled
for them. For larger object sizes scalloc causes the smallest
memory overhead comparable to jemalloc and ptmalloc2.

This experiment demonstrates the advantages of trading
virtual address space fragmentation for high throughput and
low physical memory fragmentation.

7.6 Spatial Locality
In order to expose differences in spatial locality, we configure
ACDC to access allocated objects (between 16 and 32 bytes)
increasingly in allocation order (rather than out-of-allocation
order). For this purpose, ACDC organizes allocated objects
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Figure 11: Memory access time for the locality experiment

either in trees (in depth-first, left-to-right order, representing
out-of-allocation order) or in lists (representing allocation
order). ACDC then accesses the objects from the tree in
depth-first, right-to-left order and from the list in FIFO order.
We measure the total memory access time for an increasing
ratio of lists, starting at 0% (only trees), going up to 100%
(only lists), as an indicator of spatial locality. ACDC provides
a simple mutator-aware allocator called compact to serve as
optimal (yet without further knowledge of mutator behavior
unreachable) baseline. Compact stores the lists and trees
of allocated objects without space overhead in contiguous
memory for optimal locality.

Figure 11 shows the total memory access time for an
increasing ratio of object accesses in allocation order. Only
jemalloc and llalloc provide a memory layout that can be
accessed slightly faster than the memory layout provided by
scalloc. Note that scalloc does not require object headers
and reinitializes span free-lists upon retrieval from the span-
pool. For a larger ratio of object accesses in allocation
order, the other allocators improve as well but not as much
as llalloc, scalloc, Streamflow, and TBB which approach
the memory access performance of the compact baseline
allocator. Note also that we can improve memory access time
with scalloc even more by setting its reusability threshold
to 100%. In this case spans are only reused once they get
completely empty and reinitialized through the span-pool at
the expense of higher memory consumption. We omit this
data for consistency reasons.

To explain the differences in memory access time we pick
the data points for ptmalloc2 and scalloc at x=60% where
the difference in memory access time is most significant and
compare the number of all hardware events obtainable using
perf7. While most numbers are similar we identify two events
where the numbers differ significantly. First, the L1 cache
miss rate with ptmalloc2 is 20.8% while scalloc causes a

7 See https://perf.wiki.kernel.org
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Virtual Spans: 64-bit Address Space

Scalloc: From Scalable Concurrent Data Structures
to a Fast, Scalable, Low-Memory-Overhead Allocator

Abstract
1. Introduction
2. Related Work
[Michael: To discuss: Get rid of related work right away or

have it after the detailed description?]

3. The Allocator in Detail
Like other allocators (e.g. [17] and [14]), scalloc can be
divided into two main parts:

(1) a mutator-facing frontend that manages memory in so-
called spans, and

(2) a backend for managing the spans (ideally returning them
to the operating system when empty).

Scalloc maintains scalability with respect to performance
and memory consumption by:

• introducing virtual spans that enable unified treatment of
variable-size objects;

• providing a scalable backend for managing spans;
• providing a frontend with constant time malloc and free

calls that only consider live heap (no garbage collection
cycles).

The following subsections describe these crucial concepts of
scalloc.

3.1 Real Spans and Size Classes
A (real) span is a contiguous portion of memory partitioned
into blocks of the same size. The size of blocks in a span
determines which size class the span belongs to. All spans in
a given size class have the same number of blocks. Hence,
the size of a span is fully determined by its size class: it

[Copyright notice will appear here once ’preprint’ option is removed.]
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Figure 1: Structure of arena, virtual spans, and real spans

is the product of the block size and the number of blocks,
plus a span header containing administrative information. In
scalloc, there are 29 size classes but only 9 distinct real-span
sizes which are all multiples of 4KB (the size of a system
page).

The first 16 size classes, with block sizes ranging from
16 bytes to 256 bytes in increments of 16 bytes, are taken
from TCMalloc [6]. This design of small size-classes limits
block internal fragmentation. All these 16 size classes have
the same real-span size. Size classes with larger blocks range
from 512 bytes to 1MB, in increments that are powers of
two. These size classes may have different real-span size,
explaining the difference between 29 size classes and 9 dis-
tinct real-span sizes.

Objects of size larger than any size class are not managed
by spans, but rather allocated directly from the operating
system using mmap.

3.2 Virtual Spans
A virtual span is a span allocated in a very large portion
of virtual memory (32TB) which we call arena. All virtual
spans have the same fixed size of 2MB and are 2MB-aligned
in the arena. Each virtual span contains a real span, of one of
the available size classes. By the size class of the virtual span
we mean the size class of the contained real span. Typically,
the real span is (much) smaller than the virtual span that
contains it. The maximal real-span size is limited by the size
of the virtual span. This is why virtual spans are suitable
for big objects as well as for small ones. The structure of the
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Backend: Double Segregation

arena, virtual spans, and real spans is shown in Figure 3. The
advantages of using virtual spans are:

1. Virtual memory outside of real spans does not cause
fragmentation of physical memory, as it is not used and
therefore not mapped (on-demand paging of the OS);

2. Uniform treatment of small and big objects;

3. No repeated system calls upon every span allocation
since the arena is mmapped only once.

Note that since virtual spans are of the same size and
aligned in virtual memory, getting a new virtual span from
the arena is simply incrementing a bump pointer. When
a virtual span gets empty, it is inserted into the free-list
of virtual spans, i.e., the span-pool discussed in the next
section. The disadvantages of using virtual spans are:

1. Current kernels and hardware only provide a 48-bit, in-
stead of a 64-bit, address space. As a result, not all of
virtual memory can be utilized (see below);

2. Returning a virtual span to the span-pool may be costly
in one scenario: a virtual span with a real span of a
given size greater than a given threshold becomes empty
and is inserted into the span pool. Then, in order to
limit physical-memory fragmentation, we use madvise1

to inform the kernel that the remaining virtual (and thus
mapped physical) memory is no longer needed.

It is important to note that the design of the span-pool
minimizes the chances that a virtual span changes its real
span size.

To our knowledge, mmapping virtual memory in a sin-
gle call at this order of magnitude (32TB) is a new idea for
memory allocation. Upon initialization, scalloc mmaps 245

virtual memory addresses, the upper limit for a single mmap
call on Linux. This call does not introduce any significant
overhead as the memory is not mapped by the operating sys-
tem. It is still possible to allocate additional virtual memory
using mmap, e.g. for other memory allocation or memory-
mapped I/O. The virtual address space still left is 248 � 245

bytes, i.e., 224TB.
In the worst case of the current configuration with 2MB

virtual spans, if real spans are the smallest possible (16KB),
the physical memory addressable with scalloc is (245/221) ·
214 bytes = 237 bytes = 256GB.

We have also experimented with configurations of up to
128MB for virtual spans resulting in unchanged temporal
and spatial performance for the benchmarks that were not
running out of arena space. Enhancing the Linux kernel to
support larger arenas is future work. On current hardware,
with up to 48 bits for virtual addresses, this would enable
up to 256TB arena space and 2TB addressable physical

1 The system call madvise informs the kernel about the use of virtual
addresses. By madvise we always mean madvise with MADV DONTNEED
informing the kernel that a range of virtual memory addresses is not needed
and the corresponding page frames can be unmapped.
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Figure 2: Span pool layout

memory (in the worst case, with 2MB virtual spans and
16KB real spans).

Note that with scalloc segmentation faults are unaffected
as we use mprotect() to protect virtual address space that
is not used.

3.3 Backend: Span-Pool
[Michael: TODO: size class to real span bin in figure

span pool layout] The span-pool is a global concurrent
data structure that logically corresponds to a real-span-size
segregated “stack-like” pools. The span-pool implements
put and get methods; no values are lost nor invented from
thin air; it neither provides a linearizable emptiness check,
nor any specific order guarantees. However, each pool within
the span-pool is a locally linearizable [? ] “stack-like” pool.
It is “stack-like” since in a single-threaded scenario it is
actually a stack.

The segregation by real-span size is implemented as pre-
allocated array where each index in the array refers to a given
real-span size. Consequently, all size classes that have the
same real-span size refer to the same index. Each array entry
then holds another pre-allocated array, the pool array, this
time of lock-free Treiber stacks [18]. The pool array has size
equal to the number of cores (determined at runtime during
the initialization phase of the allocator). As a result a stack
in any of the pools of the span-pool is identified by a real-
span index and a core index. Figure 4 illustrates the layout
of arrays and stacks.

The design is inspired by distributed queues [7]. We use
stacks rather than queues for the following reasons: spatial
locality, especially on thread-local workloads; lower latency
of push and pop compared to enqueue and dequeue; and
stacks can be implemented without sentinel nodes, i.e., no
additional memory is needed for the data structure. Thereby,
we utilize the memory of the elements inserted into the pool
to construct the stacks, avoiding any dynamic allocation of
administrative data structures. Distributed stacks are, to our
knowledge, among the fastest scalable pools. To make the
occurrence of the ABA problem [9] unlikely we use 16-
bit ABA counters that are embedded into link pointers 2.

2 Currently a 64-bit address space is limited to 48 bits of address, enabling
the other 16 bits to be used as ABA counter.
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Frontend: Eager Memory Reuse

Listing 1: Span-Pool pseudo code
1 Int num_cores (); // Returns the number of cores.
2 Int thread_id (); // Returns this thread ’s id
3 // (0-based).
4

5 // Provides the real span size segregation.
6 Int real_span_idx(Span span);
7 Int real_span_idx(Int real_span_Size);
8

9 // Returns the real span size for a given span.
10 Int real_span_size(Span span);
11

12 // Madvise all but a spans first page with
13 // MADV_DONTNEED.
14 void madvise_span(Span span);
15

16 SpanPool {
17 Stack spans_[MAX_REAL_SPAN_IDX ]][ num_cores ];
18

19 void put(Span span):
20 rs_idx = real_span_slot(size_class);
21 core_idx = thread_id () % num_cores ();
22 i f real_span_size(span) >= madvise_threshold:
23 madvise_span(span);
24 spans_[rs_idx ][ core_idx ].put(span);
25

26 Span get(Int size_class):
27 rs_idx = real_span_slot(size_class);
28 core_idx = thread_id () % num_cores ();
29 // Fast path.
30 spans_[rs_idx ][ core_idx ].Get();
31 i f span == NULL:
32 // Try to reuse some other span.
33 f o r rs_idx in range(0, MAX_REAL_SPAN_SLOTS):
34 f o r core_idx in range(0, num_cores ()):
35 spans_[rs_idx ][ core_idx ].Get();
36 i f span != NULL:
37 re turn span;
38 // If everything fails , just return a span from
39 // the arena.
40 re turn arena.AllocateVirtualSpan ();
41 }

Completely avoiding the ABA problem is a non-trivial task,
which can be solved using e.g. hazard pointers [? ].

Listing ?? shows the pseudo code of the span-pool. Upon
returning a span to the span-pool, a thread performing a
put call first determines the real-span index for a given
span (line ??) and the core index as thread identifier mod-
ulo the number of cores (line ??). Before actually insert-
ing (line ??) the given span into the corresponding stack the
thread may return the spans underlying memory to the op-
erating system using the madvise system call with advice
MADV DONTNEED (line ??), effectively freeing the affected
memory. This is the expensive case, only performed on spans
with large real-span size determined by a threshold, as un-
used spans with large physically mapped real-spans result in
noticeable physical fragmentation and the madvise system
call may [Michael: TODO: clarify may] anyway be neces-
sary upon later reuse. The madvise threshold (line ??) is
set to 32KB, which is the boundary between real-span sizes
of size classes that are incremented by 16 bytes and those
that are incremented in powers of two. Note that lowering
the threshold does not substantially improve the observed
memory consumption in our experiments while it noticeably
decreases performance. Furthermore, for scenarios where

free

hot

floating

reusable

expected
Arena (RSS = 0)

Backend (RSS compacted)

Frontend (RSS = real span size)

malloc()
free()

Figure 3: Life cycle of a span

physical fragmentation is an issue, one can add a compaction
call that traverses and madvises particular spans.

Upon retrieving a span from the span pool, for given size
class, a thread performing a get call first determines the real-
span index of the size class (line ??) and the core index as
thread identifier modulo the number of cores (line ??). In the
fast path for span retrieval the thread then tries to retrieve a
span from this identified stack (line ??). Note that this fast
path implements the match to the put call, effectively maxi-
mizing locality for consecutively inserted (put) and retrieved
(get) spans of equal real-span sizes. If no span is found in the
fast path, the thread searches all real-span size indexes and
core indexes for a span to use (lines ??–??). Note that this
motivates the design of the real-span sizes: For reuse, a span
of a large real-span size has anyway been madvised whereas
all other spans have the same real-span size; Reusing a span
in the same real-span size (even if the size class changes)
amounts only to changing the header. Only when the search
for an empty virtual span fails, the thread gets a new virtual
span from the arena (as for initial allocation; line ??). Note
that the search through the span-pool may fail even if there
are spans in it due to the global use of the arrays (and the
nonlinearizable emptiness check).

3.4 Frontend: Allocation and Deallocation
We now explain the mutator-facing frontend of scalloc, i.e.,
the part of the allocator that handles allocation and deal-
location requests from the mutator. Recall the a span-pool
serves as backend for retrieving and returning empty spans,
i.e., spans that have no allocated blocks.

We distinguish several states in which a span can be, il-
lustrated in Figure ??. A span can be in several states: ex-
pected, free, hot, floating, or reusable. A span is expected if
it is still in the arena, i.e., it is completely unused. Note that
in this state its memory footprint is 0 bytes. Spans contained
in the span-pool are free. A span can be in some of the other
states only when it is in the frontend, i.e., it is assigned a spe-
cific size class. Spans that are hot are used for allocating new
blocks. For spans that are not hot we distinguish between
floating and reusable based on a threshold of the number of
free blocks. Spans with less than or equal free blocks than
the specified threshold are floating, spans with more free
blocks than specified by the threshold are reusable. We re-
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Selfie: Teaching Systems Engineering 
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 6k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset 
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter 
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster 
and can host all of selfie including itself, and

4. a tiny C* library called libcstar utilized by starc and mipster.

http://selfie.cs.uni-salzburg.at


int atoi(int *s) { 
    int i; 
    int n; 
    int c; 

    i = 0; 
    n = 0; 
    c = *(s+i); 

    while (c != 0) { 
        n = n * 10 + c - '0'; 
        if (n < 0) 
            return -1; 

        i = i + 1; 
        c = *(s+i); 
    } 

    return n; 
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int* 
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write



MIPSter: 17 out of 43 Instructions

atoi.c: $pc=0x000001CC: lw $t0,-4($fp) 
atoi.c: $pc=0x000001D0: addiu $t1,$zero,1 
atoi.c: $pc=0x000001D4: addu $t0,$t0,$t1 
atoi.c: $pc=0x000001D8: sw $t0,-4($fp) 
atoi.c: $pc=0x000001DC: lw $t0,8($fp) 
atoi.c: $pc=0x000001E0: lw $t1,-4($fp) 
atoi.c: $pc=0x000001E4: addiu $t2,$zero,4 
atoi.c: $pc=0x000001E8: multu $t1,$t2 
atoi.c: $pc=0x000001EC: mflo $t1 
atoi.c: $pc=0x000001F0: nop 
atoi.c: $pc=0x000001F4: nop 
atoi.c: $pc=0x000001F8: addu $t0,$t0,$t1 
atoi.c: $pc=0x000001FC: lw $t0,0($t0) 
atoi.c: $pc=0x00000200: sw $t0,-12($fp)

i = i + 1;

c = *(s + i);



Future Work 
with Selfie et al.
✤ I/O

✤ file systems

✤ memory allocation

✤ garbage collection

✤ concurrency: semantics

✤ parallelism: multicore

✤ volatility: persistent memory



Thank you!


