
LCTES 2017, Barcelona, Spain

Design versus Performance: 
From Giotto via the Embedded Machine to Selfie
Christoph Kirsch, University of Salzburg, Austria



Joint Work

✤ Giotto/E-Machine:  
Arkadeb Ghosal, Thomas Henzinger, Ben Horowitz, 
Daniel Iercan, Rupak Majumdar, Marco Sanvido

✤ Selfie:  
Alireza Abyaneh, Martin Aigner, Sebastian Arming, 
Christian Barthel, Michael Lippautz, Cornelia Mayer, 
Simone Oblasser



Inspiration

✤ Armin Biere: SAT Solvers

✤ Donald Knuth: Art

✤ Jochen Liedtke: Microkernels

✤ David Patterson: RISC

✤ Niklaus Wirth: Compilers



I am always interested in the slowest design



And maybe even the most memory- and energy-consuming



I call this the 
logical baseline
It helps to understand the problem



How many lines of code do you need
to implement a SAT solver?



I am also interested in the fastest, “optimal” baseline



Logical baselines are real
and may not be that easy to find

Optimal baselines are often hypothetical
and may not be that easy to find as well



deallocated by a thread are immediately usable for allocation
by this thread again.

We have conducted the false sharing avoidance evaluation
benchmark from Berger et. al. [3] (including active-false and
passive-false benchmarks) to validate scalloc’s design. The
results we have obtained suggest that most allocators avoid
active and passive false sharing. However, SuperMalloc and
TCMalloc suffer from both active and passive false sharing,
whereas Hoard is prone to passive false sharing only. We
omit the graphs because they only show binary results (either
false sharing occurs or not). Scalloc’s design ensures that
in the cases covered by the active-false and passive-false
benchmarks no false sharing appears, as spans need to be
freed to be reused by other threads for allocation. Only in
case of thread termination (not covered by the active-false
and passive-false benchmarks) threads may adopt spans in
which other threads still have blocks, potentially causing false
sharing. We have not encountered false sharing with scalloc
in any of our experiments.

7.5 Robustness for Varying Object Sizes
We configure the ACDC allocator benchmark [2] to allocate,
access, and deallocate increasingly larger thread-local objects
in 40 threads (number of native cores) to study the scalability
of virtual spans and the span pool.

Figure 10a shows the total time spent in the allocator,
i.e., the time spent in malloc and free. The x-axis refers to
intervals [2x,2x+2) of object sizes in bytes with 4 ≤ x ≤ 20
at increments of two. For each object size interval ACDC
allocates 2xKB of new objects, accesses the objects, and
then deallocates previously allocated objects. This cycle is
repeated 30 times. For object sizes smaller than 1MB scalloc
outperforms all other allocators because virtual spans enable
scalloc to rely on efficient size-class allocation. The only
possible bottleneck in this case is accessing the span-pool.
However, even in the presence of 40 threads we do not
observe contention on the span-pool. For objects larger than
1MB scalloc relies on mmap which adds system call latency
to allocation and deallocation operations and is also known
to be a scalability bottleneck [6].

The average memory consumption (illustrated in Fig-
ure 10b) of scalloc allocating small objects is higher (yet still
competitive) because the real-spans for size-classes smaller
than 32KB have the same size and madvise is not enabled
for them. For larger object sizes scalloc causes the smallest
memory overhead comparable to jemalloc and ptmalloc2.

This experiment demonstrates the advantages of trading
virtual address space fragmentation for high throughput and
low physical memory fragmentation.

7.6 Spatial Locality
In order to expose differences in spatial locality, we configure
ACDC to access allocated objects (between 16 and 32 bytes)
increasingly in allocation order (rather than out-of-allocation
order). For this purpose, ACDC organizes allocated objects

0

2

4

6

8

10

12

0 20 40 60 80 100

to
ta

lm
em

or
y

ac
ce

ss
tim

e
in

se
co

nd
s

(le
ss

is
be

tte
r)

percentage of object accesses in allocation order

Figure 11: Memory access time for the locality experiment

either in trees (in depth-first, left-to-right order, representing
out-of-allocation order) or in lists (representing allocation
order). ACDC then accesses the objects from the tree in
depth-first, right-to-left order and from the list in FIFO order.
We measure the total memory access time for an increasing
ratio of lists, starting at 0% (only trees), going up to 100%
(only lists), as an indicator of spatial locality. ACDC provides
a simple mutator-aware allocator called compact to serve as
optimal (yet without further knowledge of mutator behavior
unreachable) baseline. Compact stores the lists and trees
of allocated objects without space overhead in contiguous
memory for optimal locality.

Figure 11 shows the total memory access time for an
increasing ratio of object accesses in allocation order. Only
jemalloc and llalloc provide a memory layout that can be
accessed slightly faster than the memory layout provided by
scalloc. Note that scalloc does not require object headers
and reinitializes span free-lists upon retrieval from the span-
pool. For a larger ratio of object accesses in allocation
order, the other allocators improve as well but not as much
as llalloc, scalloc, Streamflow, and TBB which approach
the memory access performance of the compact baseline
allocator. Note also that we can improve memory access time
with scalloc even more by setting its reusability threshold
to 100%. In this case spans are only reused once they get
completely empty and reinitialized through the span-pool at
the expense of higher memory consumption. We omit this
data for consistency reasons.

To explain the differences in memory access time we pick
the data points for ptmalloc2 and scalloc at x=60% where
the difference in memory access time is most significant and
compare the number of all hardware events obtainable using
perf7. While most numbers are similar we identify two events
where the numbers differ significantly. First, the L1 cache
miss rate with ptmalloc2 is 20.8% while scalloc causes a

7 See https://perf.wiki.kernel.org

465

Scalloc @ OOPSLA 2015



We engineer between
logical and optimal baselines

but often forget what’s good enough



Complexity may be unavoidable
but usually there is a lot of choice

where to put it



Three Examples

✤ Giotto @ EMSOFT 2001 (Proc. of the IEEE 2003)

✤ Real-Time Scheduling

✤ Synchronous Reactive Languages

✤ The Embedded Machine @ PLDI 2002 (TOPLAS 2007)

✤ Interpreters, Emulators, Virtual Machines

✤ Selfie @ Onward! 2017 (conditionally accepted)



Giotto: The Problem in Early 2000

Programming real-time control software on 
distributed systems of embedded computers

predictability

determinism

efficiency
portability maintainability



Real-Time Task Model

taskinput output

task 2input output

task 3input output

task 4input output

sensors actuators

1Hz

10Hz

100Hz

42Hz



Real-Time Scheduling

release deadline

taskinput output

preemptrun

latency

complete

slack

Bounded Execution Time (BET) Model w/ R. Sengupta, 2007



Things need to be done before the deadline



Synchronous Reactive Programming

run next run

sensors actuators

complete

slack

Zero Execution Time (ZET) Model w/ R. Sengupta, 2007

taski o
task i o
task i o
task i o

1
1
1
4



Things need to be done before the next event



Distributed Embedded Computers

10-100sheterogeneous

communication delays

failures

multicore



Logical Execution Time (LET) w/ T.A. 
Henzinger, B. Horowitz @ EMSOFT 2001

input output

taskinput output

Logical Execution Time

cf. Physical Execution Time (PET) Model w/ R. Sengupta, 2007



Program as if there is enough (CPU) time,
just like if there is enough memory



Giotto @ EMSOFT 2001

input output

taskinput output

run

latency

completepreempt

slack



The compiler and runtime system check  
if there is enough time

We call that checking time safety



Time-safe Giotto programs are
time-deterministic

[EMSOFT 2001, Proc. of the IEEE 2003]

separate compilation

incremental compilation

compositional scheduling

distributed scheduling



Rather than being as fast as possible
we try to be as predictable as possible
and use (CPU) time to do other things



How do we compile
a domain-specific language like Giotto?



Let’s take a detour via PLDI and TOPLAS
and work on a target machine first



The Embedded Machine w/ T.A. 
Henzinger @ PLDI 2002/TOPLAS 2007

input output

taskinput output

read input
release task
jump to A@10ms

A: write output
   read input
   release task
   jump to A@10ms

A: write output

10ms



Time-safe E code is
time-deterministic

[PLDI 2002, TOPLAS 2007]

dynamic loading

dynamic linking

exception handling

schedule-carrying code 



Rather than being as fast as possible
we try to be as portable as possible and
again use (CPU) time to do other things



Design versus Performance?

2001 2002 2017

Giotto
@

EMSOFT

E Machine
@

PLDI

Selfie
@

Onward?

…



The JAviator @ AIAA GNC 2008

javiator.cs.uni-salzburg.at

w/ R. Trummer et al. @ U. Salzburg and D.F. Bacon et al. @ IBM Hawthorne

http://javiator.cs.uni-salzburg.at


Memory Management!

2001 2002 2017

Giotto
@

EMSOFT

E Machine
@

PLDI

Selfie
@

Onward?

2013 2015

ACDC
@

ISMM

2011

Short-term Memory
@

ISMM

Scalloc
@

OOPSLA

2008

Compact-fit
@

USENIX ATC
…

Concurrent Data Structures @ POPL



What else can we slow down?



Teaching Computer Science
from First Principles!



What is the 
meaning of this 
sentence?
Selfie as in self-referentiality



Teaching the Construction of
Semantics of Formalisms

Translation

Interpretation

Virtualization

Verification



Selfie: Teaching Computer Science 
[selfie.cs.uni-salzburg.at]
✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset of C 
called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter code 
including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster and 
can host all of selfie including itself,

4. a tiny C* library called libcstar utilized by all of selfie, and

5. a tiny, experimental SAT solver called babysat.

http://selfie.cs.uni-salzburg.at


Code

Book (Draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie


Discussion of Selfie recently reached 3rd place on Hacker News

news.ycombinator.com

http://news.ycombinator.com


nsf.gov/csforall

computingatschool.org.uk

k12cs.org
bootstrapworld.org

code.org

programbydesign.org

csfieldguide.org.nz

http://nsf.gov/csforall
http://computingatschool.org.uk
http://k12cs.org
http://bootstrapworld.org
http://code.org
http://programbydesign.org
http://csfieldguide.org.nz


int atoi(int *s) { 
    int i; 
    int n; 
    int c; 

    i = 0; 
    n = 0; 
    c = *(s+i); 

    while (c != 0) { 
        n = n * 10 + c - '0'; 
        if (n < 0) 
            return -1; 

        i = i + 1; 
        c = *(s+i); 
    } 

    return n; 
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int* 
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write



Scarcity versus 
Abundance
If you want structs implement them!



Selfie and the Basics

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Memory Management
9. Composite Data Types
10.MIPSter Boot Loader
11.MIPSter Emulator
12.MIPSter Hypervisor

Library

Compiler

Emulator
Hypervisor
SAT Solver

selfie.c



Rather than being as fast as possible
we try to be as simple as possible and

hopefully find new synergies



> make 
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie.c into x86 selfie executable  
using standard C compiler

(now also available for RISC-V machines)



> ./selfie 
./selfie: usage: selfie { -c { source } | -o binary | -s assembly 
| -l binary } [ ( -m | -d | -y | -min | -mob ) size ... ]

selfie usage



> ./selfie -c selfie.c 

./selfie: this is selfie's starc compiling selfie.c 

./selfie: 176408 characters read in 7083 lines and 969 comments 

./selfie: with 97779(55.55%) characters in 28914 actual symbols 

./selfie: 261 global variables, 289 procedures, 450 string literals 

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return 

./selfie: 121660 bytes generated with 28779 instructions and 6544 
bytes of data

compiling selfie.c with x86 selfie executable

(takes seconds)



> ./selfie -c selfie.c -m 2 -c selfie.c 

./selfie: this is selfie's starc compiling selfie.c 

./selfie: this is selfie's mipster executing selfie.c with 2MB of 
physical memory 

selfie.c: this is selfie's starc compiling selfie.c 

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory 

./selfie: this is selfie's mipster terminating selfie.c with exit code 
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a MIPSter executable  
and  

then running that MIPSter executable to compile selfie.c again  
(takes ~6 minutes)



> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m 

./selfie: this is selfie's starc compiling selfie.c 

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data 
written into selfie1.m 

./selfie: this is selfie's mipster executing selfie1.m with 2MB of 
physical memory 

selfie1.m: this is selfie's starc compiling selfie.c 
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data 
written into selfie2.m 

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory 

./selfie: this is selfie's mipster terminating selfie1.m with exit 
code 0 and 1.16MB of mapped memory

compiling selfie.c into a MIPSter executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another MIPSter executable selfie2.m  

(takes ~6 minutes)



> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)



“The OS is an interpreter until people wanted speed.” 

–ck



> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)



“How do we introduce self-model-checking and  
maybe even self-verification into Selfie?” 

https://github.com/cksystemsteaching/selfie/tree/vipster

https://github.com/cksystemsteaching/selfie/tree/vipster


What is the absolute simplest way of
proving non-trivial properties of

Selfie using Selfie?

SAT Solver

SMT Solver

Bounded Model Checker

Inductive Theorem Prover



Semantics and Performance

Compiler

Emulator

Formalism

Machine

Compiler

Emulator

Formalism

Machine

Emulator

Compiler

Emulator

Formalism

Machine

Hypervisor



Emulation

Machine Context

Unshared Program Context

Emulator



Virtualization

Shared Machine Context

Machine Context

Hypervisor



Proof Obligation

Emulator Hypervisor

Machine Context Machine Context
=
?



Hybrid of Emulator & Hypervisor

Emulation Virtualization

Machine Context

Machine Context

Hybrid

!
OR



Validation of 
Functional Equivalence?

Emulation Virtualization

Machine Context

Machine Context

Hybrid

?
AND



Verification of 
Functional Equivalence?

Emulation Virtualization

Machine Context

Machine Context

Hybrid

?
=



Questions

✤ What are the benefits of the hybrid design in Selfie?

✤ Will these benefits change the design of real kernels, that is, is the hybrid 
design realistic?

✤ Can we develop C* into a useful specification language, cf. ACL2?

✤ Can we prove interesting properties with a, say, ~10k-line system?

✤ Will this help teaching rigorous systems and software engineering at 
bachelor level?

✤ Will this help identifying basic principles that can be taught to everyone?



Thank you!


