i e o Lot e

Design versus Performance:

From Giotto via the Embedded Machine to Seltie
Christoph Kirsch, University of Salzburg, Austria

LCTES 2017, Barcelona, Spain

Joimt Work

Giotto/E-Machine:
Arkadeb Ghosal, Thomas Henzinger, Ben Horowitz,
Daniel Iercan, Rupak Majumdar, Marco Sanvido

Selfie:

Alireza Abyaneh, Martin Aigner, Sebastian Arming,
Christian Barthel, Michael Lippautz, Cornelia Mayer,
Simone Oblasser

Insprration

+ Armin Biere: SAT Solvers

+ Donald Knuth: Art

+ Jochen Liedtke: Microkernels
+ David Patterson: RISC

+ Niklaus Wirth: Compilers

| am always interested in the slowest design

gy-consuming

And maybe even the most memory- and ener

I call this the

logical baseline

It helps to understand the problem

How many lines of code do you need
to implement a SAT solver?

3 T 'N ”J

.,m
3 .'Jiﬂ

'”

&‘(rl ’

| am also interested in the fastest, “optimal™ baseline

Logical baselines are real
and may not be that easy to find

Optimal baselines are often hypothetical
and may not be that easy to find as well

(less 1s better)

total memory access time in seconds

ek
N\

ek
=

o0

~

Scalloc @ OOPSLA 2015

-
~ - o
- -

- -

-
= s =

20

percentage of object accesses 1n allocation order

40

60

30

100

We engineer between
logical and optimal baselines
but often forget what’s good enough

Complexity may be unavoidable
but usually there is a lot of choice
where to put it

T'hree Examples

= Giotto @ EMSOFT 2001 (Proc. of the IEEE 2003)
+ Real-Time Scheduling
+ Synchronous Reactive Languages

+ The Embedded Machine @ PLDI 2002 (TOPLAS 2007)
+ Interpreters, Emulators, Virtual Machines

+ Selfie @ Onward! 2017 (conditionally accepted)

Giotto: The Problem i Early 2000

determinism

predictability

Programming real-time control software on
distributed systems of embedded computers

etficiency

portability maintainability

Real-Time Task Model

SENSOrs

input

input

input

input

lilssitz

: task > output
10Hz

: task 2 >‘ output
100Hz

- task 3 > output
42Hz

: task 4 > output

actuators

Real-Time Scheduling

input : task > output
latency il
| 2
>
release run preempt complete deadline

Bounded Execution Time (BET) Model w/ R. Sengupta, 2007

Things need to be done before the deadline

Synchronous Reactive Programming

— N
) K _>|
SENSOrs il > actuators
S
—> >
. slack
e
>
run complete next run

Zero Execution Time (ZET) Model w/ R. Sengupta, 2007

Things need to be done before the next event

communication delays

failures

Distributed Embedded Computers

heterogeneous 10-100s

multicore

L.ogical Execution Time (LET) w/ T.A.
Henzinger, B. Horowitz @ EMSOKFT 2001

input

> task

> output

cf. Physical Execution Time (PET) Model w/ R. Sengupta, 2007

Program as if there is enough (CPU) time,
just like if there is enough memory

Grotto @ EMSOFET 2001

input task > output
¢/ latency slack
y X
input run preempt complete output

The compiler and runtime system check
if there is enough time

We call that checking time safety

incremental compilation

separate compilation

Time-safe Giotto programs are
time-deterministic

|[EMSOEFT 2001, Proc. of the IEEE 2003]

compositional scheduling

distributed scheduling

Rather than being as fast as possible
we try to be as predictable as possible
and use (CPU) time to do other things

How do we compile
a domain-specific language like Giotto?

Let’s take a detour via PLDI and TOPLAS
and work on a target machine first

The Embedded Machine w/ 'T.A.
Henzinger @ PLD1 2002/TOPLAS 2007

input : task > output

>
input output

: write output
read input
release task

jump to A@1O0ms

A: write output
read input
release task

jump to AQ@1Oms

dynamic linking

dynamic loading

Time-safe E code is
time-deterministic

|PLDI 2002, TOPLAS 2007

exception handling

schedule-carrying code

Rather than being as fast as possible
we try to be as portable as possible and
again use (CPU) time to do other things

Design versus Performance?

E Machine Selfie
@ @
PLDI Onward?
Giotto
@
EMSOFT

2001 2002 2017

The JAviator @ AIAA GNC 2008

javiator.cs.uni-salzburg.at

w/ R. Trummer et al. @ U. Salzburg and D.F. Bacon et al. @ IBM Hawthorne

http://javiator.cs.uni-salzburg.at

Memory Management!

E Machine Short-term Memory Selfie
@ @ @
RIED] ISMM Onward?
Giotto Compact-fit || | ACDC| | Scalloc
@ @ @ @
EMSOFT USENIX ATC|| | ISMM [JOOPSLA
2001 2002 2006=F 201182013 2015 2017

Concurrent Data Structures @ POPL

W hat else can we slow down?

Teaching Computer Science
from First Principles!

What 1s the

meaning of this
sentence?

Selfie as in self-referentiality

Interpretation

Translation

Teaching the Construction of
Semantics of Formalisms

Virtualization

Verification

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

iis

a self-compiling compiler called starc that compiles a tiny subset of C
called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

a_self-executing emulator called mipster that executes MIPSter code
including itself when compiled with starc,

a self-hosting hypervisor called hypster that virtualizes mipster and
can host all of selfie including itself,

a tiny C* library called libcstar utilized by all of selfie, and

a tiny, experimental SAT solver called babysat.

http://selfie.cs.uni-salzburg.at

Website

selfie.cs.uni-salzburg.at

Book (Draft)

leanpub.com /selfie

Code

github.com / cksystemsteaching / selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie

Discussion of Selfie recently reached 3rd place on Hacker News

news.ycombinator.com

http://news.ycombinator.com

nsf.gov/ csforall

code.org
computingatschool.org.uk

programbydesign.org

bootstrapworld.org

k12cs.org

csfieldguide.org.nz

http://nsf.gov/csforall
http://computingatschool.org.uk
http://k12cs.org
http://bootstrapworld.org
http://code.org
http://programbydesign.org
http://csfieldguide.org.nz

] 1 1 *
5 statements: LR ?tct)l ,(lnt Sl no data structures,
ol Sl . . .
1 *
assignment iy just int and 1r.1t
while et and dereferencing:
if the * operator
return k=0 e
n = O ' .
fRatis SRHED C o= *(9+1i); Charact literals
string literals
while (c != 0) { =
e Ly U il e
s sl iale <eus C1F)
QSN B Aak
integer arithmetics jmmmrmmee b Sl B Sl no bitwise operators
pointer arithmetics {==~=—-gp C = * (5+1); no Boolean operators

G EHE1ENRE] RE S

library: exit, malloc, open, read, write

Scarcity versus
Abundance

If you want structs implement them!

Selfie and the Basices

Library

Compiler

Emulator

Hypervisor
SAT Solver

selfie.cC

Building Selfie

Encoding C* Literals
Program /Machine State
C*/Command Line Scanners
C* Parser and Procedures
Symbol Table and the Heap
MIPSter Code Generator
Memory Management

. Composite Data Types

1 O MIPSter Boot Loader

11. MIPSter Emulator
12.MIPSter Hypervisor

© 0N DO W N e

© 0N DO W N

Semantics
Encoding
State
Regularity
Stack
Name
Time
Memory

. lype

1 O Bootstrapping
11. Interpretation
12. Virtualization

Rather than being as fast as possible
we try to be as simple as possible and
hopefully find new synergies

> make

cc -w -m32 -D'main(a,b)=main(a, charx*argv)"'

bootstrapping selfie.c into x86 selfie executable
using standard C compiler

(now also available for RISC-V machines)

> ./selfie

sselfie: usage: selfie {[~c { source 7] |[Co binary] | [Cs assembly
e e e ey

selfie usage

- /settie [settie]

./selfie:

./selfie:
./selfie:
./selfie:
./selfie:
/selfie:

b

ytes of

this is selfie's starc compiling selfie.c

176408 characters read 1n 7083 lines and 969 comments
with 97779(55.55%) characters in 28914 actual symbols

261 global variables, 289 procedures, 450 string literals
1958 calls, 723 assignments, 57 while, 572 if, 243 return
121660 bytes generated with 28779 instructions and 6544
data

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie —c

./selfie: this is selfie's starc compiling selfie.c

compiling selfie.c with x86 selfie executable into a MIPSter executable
and
then running that MIPSter executable to compile selfie.c again
(takes ~6 minutes)

> ./selfie —c selfie.c|-o0 selfiel.m|-m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c
oytes wit 3/79 1nstructions anc

ritten into selfiel.m

./selfie: this is selfie's mipster executing selfiel.m with 2MB of
physical memory

selfiel.m: this is selfie's starc compiling selfie.c

elfiel.m: 121660 bytes with 28779 1instructions and 6544 bytes of data
ritten into selfie2.m

selfiel.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfiel.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie.c into a MIPSter executable selfiel.m
and
then running selfiel.mto compile selfie.c
into another MIPSter executable selfie2 .m
(takes ~6 minutes)

./selfie —c selfie.c

compiling selfie.c with x86 selfie executable
and
then running that executable to compile selfie.c again
and

then running that executable to compile selfie.c again
(takes ~24 hours)

“The OS is an interpreter until people wanted speed.”

> ,/selfie —-c selfie.c —-m 2 -c selfie.c @—c selfie.c

compiling selfie.c with x86 selfie executable
and
then running that executable to compile selfie.c again
and
then hosting that executable in a virtual machine to compile selfie.c again
(takes ~12 minutes)

“How do we introduce self-model-checking and
maybe even self-verification into Selfie?”

hitps://github.com/cksystemsteaching/selfie/tree/vipster

https://github.com/cksystemsteaching/selfie/tree/vipster

SMT Solver

SAT Solver

What is the absolute simplest way of
proving non-trivial properties of
Selfie using Selfie?

Bounded Model Checker

Inductive Theorem Prover

Semantics and Performance

Pormalism

Formalism

< Comvpiler

Compiler

|

Formalism

Compiler

|

Emulator

Hypervisor

Emulator

< Emulator

Machine

Machine

Emulator

Machine

Emulation

Machine Context

|

Emulator

|

Unshared Program Context

Virtuahzation

Machine Context

|

Hypervisor

|

Shared Machine Context

Prool Obhgation

Machine Context . Machine Context

Emulator Hypervisor

Hybrid of Emulator & Hypervisor

Machine Context

i

|
Emulation Virtualization

N

Hybrid

Machine Context

Validation of

Functional Equivalence?

Machine Context

i

Emulation

4
AND

Virtualization

Al

Hybrid

Machine Context

Verification of

Functional Equivalence?

Machine Context

Faees

Emulation

Virtualization

X

Hybrid

Machine Context

(Questions

+ What are the benefits of the hybrid design in Selfie?

+ Will these benefits change the design of real kernels, that is, is the hybrid
design realistic?

+ Can we develop C” into a useful specification language, cf. ACL2?

+ Can we prove interesting properties with a, say, ~10k-line system?

+ Will this help teaching rigorous systems and software engineering at
bachelor level?

+ Will this help identifying basic principles that can be taught to everyone?

Thank youl

