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Concurrent Data Structures

❖ We are interested in designing and implementing 
concurrent data structures that are fast and scale on 
multicore hardware.

❖ A concurrent data structure is typically shared by a 
dynamic number of threads that operate on the data 
structure concurrently and even in parallel in shared 
memory.
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Properties
❖ Semantics:

❖ Sequential specification (queues, stacks, pools, …)

❖ Consistency condition (linearizability, quiescent consistency, …)

❖ Progress:

❖ Deadlock (locks)

❖ Liveness (lock freedom, wait freedom)

❖ Performance:

❖ Throughput (data structure operations per second)

❖ Scalability (throughput in the number of threads, cores, processors)
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Shared Memory

❖ Address space versus memory content

❖ Memory access latency: uniform and non-uniform

❖ Temporal locality: cache size

❖ Spatial locality: line size

❖ False sharing: line size
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Multicore Scalability
linear scalability

positive scalability
high performance

negative scalability

positive scalability
low performance
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(a) Very high contention (c = 1000, i = 0)
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(b) High contention (c = 4000, i = 0)
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(c) Medium contention (c = 7000, i = 0)
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(d) Low contention (c = 10000, i = 0)

Fig. 2. Performance and scalablity of producer/consumer microbenchmarks with an increasing
number of threads

Similarly, the results with our high contention scenario, depicted in Figure 2(b),
show that the scalability turnaround is at 30 threads and that both k-FIFO versions
outperform and outscale all other algorithms. As the contention gets less in Figures 2(c)
and 2(d), the turnaround gets shifted to a larger number of threads. The difference in
performance and scalability of all algorithms is less significant with more computational
load. Note that SQ returns up to 2000 times falsely null due to the non-linearizable
emptiness check.

Mandelbrot. We computed and rendered two images of the Mandelbrot set [12] using
producer and consumer threads and a shared data structure to distribute the computation
across multiple cores. The producer threads divide the image into smaller blocks (4x4
pixels in our experiments), write block coordinates in descriptor blocks, and enqueue
the descriptor blocks in the shared data structure. The consumer threads dequeue the
descriptor blocks from the shared data structure, perform the Mandelbrot calculation
on the blocks, and store the results in the corresponding blocks of the final Mandel-
brot image. Hence, the workload between the consumer threads is balanced. We use a
producer-consumer ratio of 1 : 4 in our experiments, i.e. for each producer thread we
add four consumer threads.

The Mandelbrot macrobenchmark results are presented in Figure 3. Each run was
repeated 10 times. We present the average execution time of the 10 runs as our metric
of performance, less execution time is better. Figure 3(a) shows the performance of the
low computational load Mandelbrot benchmark. Low computational load means that
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False Sharing
int x;

int y;

x = 0;

y = 0;

if (fork() != 0)

  while (x < 1000000) x = x + 1; // parent

else

  while (y < 1000000) y = y + 1; // child
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A Concurrent Variable
int x;

x = 14;

fork();

x = x + 14;

x?

ADDI R1,R0,14

STW R1,R28,-4

BSR 0,0,fork:

LDW R1,R28,-4

ADDI R1,R1,14

STW R1,R28,-4

LDW R1,R28,-4

ADDI R1,R1,14

STW R1,R28,-4

How about atomic fetch and add?
How about a lock?
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A Concurrent Stack: Push

How about atomic compare and swap?
How about a lock?
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 global variable (possibly contended)

local
variable
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A Concurrent Stack: Pop

What about memory reuse?
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ABA Problem
❖ stack: top -> A -> B -> C

❖ thread 1: attempts to pop A but is suspended before 
setting top to B yet remembering B (and A) anyway

❖ thread 2: pops A, pops B, pushes A again

❖ stack: top -> A -> C

❖ thread 1: resumes and pops A but sets top to B

❖ stack: top -> B (-> C)
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ABA Solutions

❖ Principled problem: finitely many names (memory 
addresses) for describing infinite state space

❖ Pointer tagging: efficient but makes ABA only unlikely

❖ Garbage collection: can be used to solve ABA but 
requires attention

❖ Hazard pointers: solve ABA but takes time and space
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Strict vs. Relaxed Semantics
❖ Strict semantics:

❖ Locks versus no locks

❖ Lock-freedom versus wait-freedom

❖ Time versus atomicity

❖ Time versus space

❖ Relaxed semantics:

❖ sequential specification

❖ consistency condition
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Multicore Scalability 
is a 

Concurrent Semantics and 
Memory Layout & Search Problem
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scal.cs.uni-salzburg.at
❖ Scal is a collection of concurrent data structures designed by us (underlined) 

and others, plus a benchmarking framework:

❖ Treiber Stack [IBM86]

❖ Timestamped Stack [POPL15], k-Stack (relaxed) [POPL13]

❖ Michael-Scott Queue [PODC96]

❖ LCRQ [PPoPP13], Segment Queue (relaxed) [OPODIS10]

❖ Timestamped Queue [POPL15], Distributed Queue (relaxed) [CF13], k-FIFO 
Queue (relaxed) [PaCT13]

❖ Timestamped Deque [POPL15]

❖ …

http://scal.cs.uni-salzburg.at


Treiber Stack [IBM86]
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Michael-Scott Queue [PODC96]
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Segmentation
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k-FIFO Queue [PaCT13]
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(a) Very high contention (c = 1000, i = 0)
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(b) High contention (c = 4000, i = 0)
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(c) Medium contention (c = 7000, i = 0)
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(d) Low contention (c = 10000, i = 0)

Fig. 2. Performance and scalablity of producer/consumer microbenchmarks with an increasing
number of threads

Similarly, the results with our high contention scenario, depicted in Figure 2(b),
show that the scalability turnaround is at 30 threads and that both k-FIFO versions
outperform and outscale all other algorithms. As the contention gets less in Figures 2(c)
and 2(d), the turnaround gets shifted to a larger number of threads. The difference in
performance and scalability of all algorithms is less significant with more computational
load. Note that SQ returns up to 2000 times falsely null due to the non-linearizable
emptiness check.

Mandelbrot. We computed and rendered two images of the Mandelbrot set [12] using
producer and consumer threads and a shared data structure to distribute the computation
across multiple cores. The producer threads divide the image into smaller blocks (4x4
pixels in our experiments), write block coordinates in descriptor blocks, and enqueue
the descriptor blocks in the shared data structure. The consumer threads dequeue the
descriptor blocks from the shared data structure, perform the Mandelbrot calculation
on the blocks, and store the results in the corresponding blocks of the final Mandel-
brot image. Hence, the workload between the consumer threads is balanced. We use a
producer-consumer ratio of 1 : 4 in our experiments, i.e. for each producer thread we
add four consumer threads.

The Mandelbrot macrobenchmark results are presented in Figure 3. Each run was
repeated 10 times. We present the average execution time of the 10 runs as our metric
of performance, less execution time is better. Figure 3(a) shows the performance of the
low computational load Mandelbrot benchmark. Low computational load means that
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Distribution
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Load Balancers
❖ 1-RR: one round-robin counter

❖ 2-RR: two round-robin counters (enqueue, dequeue)

❖ TL-RR: thread-local round-robin counters

❖ LRU: least-recently-used queue

❖ 1-RA: random queue

❖ 2-RA: shorter of two random queues for enqueue, 
longer of two random queues for dequeue
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Distributed Queues [CF13]
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(b) Low contention producer-consumer microbenchmark (c = 2000)
Figure 1: Performance and scalability of producer-consumer microbenchmarks with an increasing number of threads on a 40-core (2 hyper-
threads per core) server machine

caching artifacts into the data that are unrelated to the benchmarked
implementations.

The algorithms are configured as follows. With d-RA we only
evaluated d = 1 and d = 2 since in our benchmarks any value
greater than two results in worse performance. With b-RR we eval-
uated b = 1 and b = 2 as well as the fully thread-local configuration
TL-RR where b is set to the number of benchmarking threads. In
our benchmarks 1-RR and TL-RR result in worst and best perfor-
mance, respectively. Values for b greater than one and smaller than
the number of benchmarking threads result in performance in be-
tween. We included 2-RR to demonstrate that but omitted other
values not to overload the figures. The RD, SQ, k-FIFO, and DQ
implementations are configured to r = s = k = p = 80 (see Sec-
tions 3 and 4), enabling up to 80 parallel enqueues and 80 paral-
lel dequeues. We determined experimentally that 80 is the lowest
value that results in overall best performance and scalability of the
involved implementations in all our benchmarks.

5.1 Microbenchmarking Performance and
Scalability

For measuring and comparing performance and scalability we
designed a microbenchmark that emulates a multi-threaded producer-
consumer workload where half of the threads are producers and
the other half are consumers. Each thread performs one million
queue or pool operations. We evaluate high and low contention
scenarios by having each thread compute p iteratively between any
two consecutive operations in c = 250 iterations (high contention)
and c = 2000 iterations (low contention), respectively. As refer-
ence, c = 1000 iterations take on average 2.3 microseconds on the
server machine. Higher contention with computational load down
to c = 0 exposes machine-related artifacts resulting in meaningless
data. The presented data is averaged over five runs. Note that we
use this microbenchmark again in Section 5.3 to study the out-of-
order behavior of all considered queue and pool algorithms.

Figures 1a and 1b show performance in operations per millisec-
ond and scalability with an increasing number of threads for the
high and low contention scenarios, respectively. The key observa-
tion when comparing high and low contention is that all implemen-
tations perform and scale better under low contention but still per-
form and scale similarly in relative terms in both scenarios. Overall
1-RA performs and scales best, followed by the other DQ imple-

mentations, which all outperform and outscale the other implemen-
tations including the pool implementations. Under high contention
all implementations except TL-RR, 1-RA, and 2-RA scale nega-
tively beyond 20 threads. The performance of 2-RR is in between
the performance of 1-RR and TL-RR.

5.2 Macrobenchmarking Performance and
Scalability

We evaluate performance and scalability with three macrobench-
marks based on spanning tree and transitive closure graph algo-
rithms [5], and a Mandelbrot algorithm [17]. All presented data is
averaged over ten runs.

Spanning Tree and Transitive Closure Benchmarks
We ran the spanning tree and transitive closure graph algorithms on
graphs consisting of a hundred thousand vertices and ten million
randomly generated unique edges. Both algorithms use a shared
queue or pool of vertices to distribute work among multiple threads.
Initially, the shared queue or pool is prefilled with 160 randomly
determined vertices. Each thread dequeues a vertex and then iter-
ates over its immediate neighbors to process them (transitive clo-
sure or spanning tree operation). If a neighboring vertex already
got processed by a different thread then the vertex is ignored. Oth-
erwise, the vertex is processed and then enqueued. When a thread
processed all neighbors it dequeues another vertex. The algorithms
terminate when the shared queue or pool is empty.

Figures 2a and 2b show performance in terms of total execution
time in milliseconds and scalability with an increasing number of
threads. In both benchmarks, the DQ implementations perform and
scale best. While most implementations are on par with DQ up to
ten threads, only the BS and US k-FIFO queue implementations
scale as much as DQ. Despite its thread-local storage BAG scales
negatively because the connectivity of the graph makes it likely to
hit already processed nodes and thus requires work-stealing. Note
that RP is not shown because RP, due to its synchronous behavior,
cannot handle a workload where producers are also consumers.

Mandelbrot Benchmark
The Mandelbrot benchmark renders an image by dividing it into
blocks of 4x4 pixels that are distributed by producer threads through
a shared queue or pool to consumer threads for parallel process-
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Timestamping
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Time Sources

❖ TS-atomic: fetch and increment counter

❖ TS- stutter: stuttering counter (Lamport clock)

❖ TS-hardware: hardware clock

❖ TS-interval: interval hardware clock

❖ TS-CAS: compare-and-swap interval counter
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Timestamped (TS) Stack [POPL15]

Treiber Stack
EB Stack

TS-atomic Stack
TS-CAS Stack

TS-hardware Stack
TS-interval Stack

TS-stutter Stack
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(a) Producer-consumer benchmark, 40-core machine.
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(b) Producer-consumer benchmark, 64-core machine.
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(c) Producer-only benchmark, 40-core machine.
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(d) Producer-only benchmark, 64-core machine.
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(e) Consumer-only benchmark, 40-core machine.
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(f) Consumer-only benchmark, 64-core machine.

Figure 5: TS stack performance in the high-contention scenario on 40-core machine (left) and 64-core machine (right).

push operations of the TS-atomic stack and the TS-stutter
stack, which means that the delay in the TS-interval time-
stamping is actually shorter than the execution time of the
TS-atomic timestamping and the TS-stutter timestamping.
Perhaps surprisingly, TS-stutter, which does not require
strong synchronisation, is slower than TS-atomic, which is
based on an atomic fetch-and-increment instruction.

Pop performance. We measure the performance of pop
operations of all data-structures in a consumer-only bench-
mark where each thread pops 1,000,000 from a pre-filled
stack. Note that no elimination is possible in this bench-
mark. The stack is pre-filled concurrently, which means in
case of the TS-interval stack and TS-stutter stack that some
elements may have unordered timestamps. Again the TS-
interval stack uses the same delay as in the high-contention
producer-consumer benchmark.

Figure 5e and Figure 5f show the performance and
scalability of the data-structures in the high-contention
consumer-only benchmark. The performance of the TS-
interval stack is significantly higher than the performance of
the other stack implementations, except for low numbers of
threads. The performance of TS-CAS is close to the perfor-
mance of TS-interval. The TS-stutter stack is faster than the
TS-atomic and TS-hardware stack due to the fact that some
elements share timestamps and therefore can be removed in
parallel. The TS-atomic stack and TS-hardware stack show
the same performance because all elements have unique
timestamps and therefore have to be removed sequentially.
Also in the Treiber stack and the EB stack elements have to
be removed sequentially. Depending on the machine, remov-
ing elements sequentially from a single list (Treiber stack)
is sometimes less and sometimes as expensive as removing
elements sequentially from multiple lists (TS stack).
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Timestamping

❖ TS stack: fastest concurrent stack

❖ TS queue: slower than LCRQ but faster than MS

❖ TS deque: fastest deque but correctness proof missing

❖ …
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Thank you
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