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Traditional
Memory Model

® Allocated memory objects are guaranteed to
exist until deallocation

® Explicit deallocation is not safe (dangling
pomters) and can be space-unbounded
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Short-term Memory

® Memory objects are only guaranteed to
exist for a finite amount of time

® Memory objects are allocated with a given
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With short-term memory
programmers specify which
memory objects are still needed
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Full Compile-Time
Knowledge

allocation(3) |ifetime

allocation(7) 'fetime

Figure 1. Allocation with known expiration date.
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Maximal Memory
Consumption

lifetime

tick
/
AN a time

allocation(1) unused

Figure 2. All objects are allocated for one time unit.
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Trading-off Compile-
Time, Runtime, Memory

lifetime

allocation(2) refresh(3) refresh(2)

Figure 3. Allocation with estimated expiration date. If the
object 1s needed longer, it 1s refreshed.
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Our Conjecture:

It is easier to say
which objects are still needed




Benchmark

 benchmark [LoC[# ick[# refreshlfotal # of now LoC

— MomeCao 150 1 | 3 [ 6
TLayer MP3 converter/8247 1 | 6| 9

Table 2. Lines of code of the benchmarks, number of tick-calls, number of
refresh-calls, and total number of lines of code which had to be added to use
short-term memory.
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~ Self-collecting Mutators
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Goals

® Competitive performance to GC systems

- ® Constant-time operations
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SCM

® Self-collecting mutators (SCM) is an explicit
memory management system:
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Memory Reuse

® When an object expires, its memory may be
reused but only by an object allocated at the
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Allocation

|. Select an expired object, if there are any, and
delete it from the buffer, or else, if there are
none, allocate memory from free memory
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Refresh

|. Delete object from its buffer
2. Assign new expiration date

3. Insert object back into the buffer
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Single-threaded
Time Advance

® The current logical system time is
implemented by a global counter

® Time advance: increment the counter by
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Complexity Trade-off

T insen [ delete [ select expired
Singly linked list | O(1)
Doubly linked list | O(1) | O(1)

Sorted doubly- O(m) O(1) O(1)
linked list

ooz )
Segregated buffer O(logn)

Table 2. Comparison of buffer implementations. The num-
ber of objects 1n a buffer i1s m, the maximal expiration ex-
tension 1s n.
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Insert-pointer buffer

(with bounded expiration extension n=3
at time 5)

beginning of buffer end of buffer

beginning of
live buffer

Figure 6. Insert-pointer buffer implementation.
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Segregated buffer

(with bounded expiration extension n=3
at time 5)

select-expired array insert-pointer array

Figure 7. Segregated buffer implementation.
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[Linux 2 6 24-16

Jikes RVM 3.1.0
SOMB

Table 3. System configuration.
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Runtime Performance
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~GEN
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MC leaky MC fixed 4xMC MP3 +
fixed MC

Fig. 8. Total runtime of the benchmarks in percent of the runtime of the bench-
mark using self-collecting mutators. The production configuration of Jikes is
used.
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Latency & Memory

GEN free memory ——+—
MS free memory
SCM free memory ---
GEN loop execution time
MS loop execution time
SCM loop execution time
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Figure 9. Free memory and loop execution time of the fixed
Monte Carlo benchmark.
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Latency with Refreshing

1 tick/1 iteration ——+—

1 tick/50 iterations
1 tick/200 iterations ---*---
no refreshand - i

1 tick/1 iteration
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Figure 11. Loop execution time of the Monte Carlo bench-
mark with different tick frequencies.
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Memory with Refreshing

%

free memory in MB

1 tick/1 iteration —+—

1 tick/50 iterations
1 tick/200 iterations ---*---
no refresh and e

1 tick/1 iteration
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Figure 12. Free memory of the Monte Carlo benchmark
with different tick frequencies.
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