Short-term Memory for
Self-collecting Mutators

Martin Aigner, Andreas Haas, Christoph Kirsch,
Hannes Payer, Andreas Schoenegger, Ana Sokolova
Universitat Salzburg

" T =g « Moo L".\ A e b :.‘ L Lo S A T ¢ aharted £loe o 8% r_ oA it ol B Ad
= e . 0 H =

. g
| Lk Pt AT niepe, 2p i E :

s A .

e Uit M SD R e 1 S wnt Spoei Bl

The JAviator

javiator.cs.uni-salzburg.at

Quad-Rotor Helicopter

B JAviatoiaD L0 % EijAviatoi3D

Indoor Flight

STRMAC Controller

L 81 X

Outdoor Flight

Salzburg Controller

|

- =

e

-
a‘ -
" -)‘9‘0\\

N

h

M

* ;ot‘ ,E'E' - ‘ - . .‘-l.'
g i h s e N s e
- # ¥ « w

s A N l-\: I ‘I_~ ‘ A
- .. S R~ P

Traditional
Memory Model

® Allocated memory objects are guaranteed to
exist until deallocation

® Explicit deallocation is not safe (dangling
pomters) and can be space-unbounded

£ - £
‘ 4 = .-\" 4 it o o ’ - .
b ¥ 1\) sk. - L= ; 8% - a ia) sl =
ol e] " oS e [t 25 e) vl "
R ¥ — - £ o= N i = - .
O ..- ™ . A Al AN . . '~"~-Q_‘ : - ol S | ’ - . Y

Short-term Memory

® Memory objects are only guaranteed to
exist for a finite amount of time

® Memory objects are allocated with a given

! TSNS - ey

[
25 > \‘b;__,-

T R ™ Patad tete 4 -
L i i ity @4 e AR S gt P P 3 g
e L= ' | . . J J . L . S 4 N p o (] ..
Y 2 :’ bt rk 3 f D “ '- ,. .. * !-, :“ k ‘,.‘ Y & g -l'"': . " '._; .::. -‘-1- Ly b :I ‘.‘ -,., : .l- ’ ,'.‘ Ay ""‘ .;:‘4 > '-tv e

© C.Kirsch 2010

With short-term memory
programmers specify which
memory objects are still needed

:) Ve b
2 R S S N e, RNV
A -
. aget =013 _.

N | i 5 ' et
L, o S .."‘ .'-, s
> N . -

Full Compile-Time
Knowledge

allocation(3) |ifetime

allocation(7) 'fetime

Figure 1. Allocation with known expiration date.

© C.Kirsch 2010

Maximal Memory
Consumption

lifetime

tick
/
AN a time

allocation(1) unused

Figure 2. All objects are allocated for one time unit.

© C.Kirsch 2010

Trading-off Compile-
Time, Runtime, Memory

lifetime

allocation(2) refresh(3) refresh(2)

Figure 3. Allocation with estimated expiration date. If the
object 1s needed longer, it 1s refreshed.

© C.Kirsch 2010

Our Conjecture:

It is easier to say
which objects are still needed

Benchmark

 benchmark [LoC[# ick[# refreshlfotal # of now LoC

— MomeCao 150 1 | 3 [6
TLayer MP3 converter/8247 1 | 6| 9

Table 2. Lines of code of the benchmarks, number of tick-calls, number of
refresh-calls, and total number of lines of code which had to be added to use
short-term memory.

© C.Kirsch 2010

~ Self-collecting Mutators

."l L ~“' “a ",v‘ ‘ o :.\
AN ALY -] I ; & B M : p L) .l

Goals

® Competitive performance to GC systems

- ® Constant-time operations

-5 . Pl e A A T ¥ 1 -
A At R e WA B] "
A LY, ATV R P P Aol o

B

SCM

® Self-collecting mutators (SCM) is an explicit
memory management system:

- 3
Y O) y 'V i §

»
¥

Memory Reuse

® When an object expires, its memory may be
reused but only by an object allocated at the

18 Lhe

>

L, g
v § -

Allocation

|. Select an expired object, if there are any, and
delete it from the buffer, or else, if there are
none, allocate memory from free memory

w?) T y e > & [) - o 9 — y o ey 1 . HEY Aage i .
i _ - . - L | o L o= y . » r ¢ > M 3 2 -y -, J: o X ’ .
. Tl /PR 4) N 7 \ R af 4 A | T C) B | -‘.? |) A Y v z - ™ (T v & X APV . 3
Soehl o e TN BT I e B B e T WS e P LI IC Al SY. Il I R U Rl L S g SR 1 U

C _,1{ Pl A

Refresh

|. Delete object from its buffer
2. Assign new expiration date

3. Insert object back into the buffer

X , ool oy ’) N
SR s i) s e
(Ll S O e S ag

L

4 i
s ‘AJ)[:
¥ N | N

i
. - I g - - [

Z* N 0= W, - .‘ b)J' Y 'I~| ’
V a - | — A ¥ -

Single-threaded
Time Advance

® The current logical system time is
implemented by a global counter

® Time advance: increment the counter by

EJ
i v Dt ol 2t B e S
r |'A . b4 Iy e S ™ " 5 h ,"..‘ ~..,‘ "l' p— L ¢ - . ™ ' . Wi
A Aot L e TR L N\ aVWal '5 f ‘.': 2 Vall oy _'_, - \NAZ'A He ¥ ol aY B MM £ - Ny . Ty _?_' -:“"_-_ o e o T L i

Complexity Trade-off

T insen [delete [select expired
Singly linked list | O(1)
Doubly linked list | O(1) | O(1)

Sorted doubly- O(m) O(1) O(1)
linked list

ooz)
Segregated buffer O(logn)

Table 2. Comparison of buffer implementations. The num-
ber of objects 1n a buffer i1s m, the maximal expiration ex-
tension 1s n.

© C.Kirsch 2010

Insert-pointer buffer

(with bounded expiration extension n=3
at time 5)

beginning of buffer end of buffer

beginning of
live buffer

Figure 6. Insert-pointer buffer implementation.

© C.Kirsch 2010

Segregated buffer

(with bounded expiration extension n=3
at time 5)

select-expired array insert-pointer array

Figure 7. Segregated buffer implementation.

© C.Kirsch 2010

[Linux 2 6 24-16

Jikes RVM 3.1.0
SOMB

Table 3. System configuration.

© C.Kirsch 2010

Runtime Performance

120.00%
115.00%

110.00%
105.00% B SCM
~GEN
100.009
00.00% B VS
95.00%
90.00%

MC leaky MC fixed 4xMC MP3 +
fixed MC

Fig. 8. Total runtime of the benchmarks in percent of the runtime of the bench-
mark using self-collecting mutators. The production configuration of Jikes is
used.

© C.Kirsch 2010

Latency & Memory

GEN free memory ——+—
MS free memory
SCM free memory ---
GEN loop execution time
MS loop execution time
SCM loop execution time

m
=
=
o
o
S
)
S
®
o

loop execution time in ms (logarithmic)

4 1
0O 100 200 300 400 500 600 700 800 900 1000

loop index

Figure 9. Free memory and loop execution time of the fixed
Monte Carlo benchmark.

© C.Kirsch 2010

Latency with Refreshing

1 tick/1 iteration ——+—

1 tick/50 iterations
1 tick/200 iterations ---*---
no refreshand - i

1 tick/1 iteration

R =- P~ -% S . ERES -ﬁ ERE -%- ER -%— = -ﬁ- B . RS % EEES -ﬁ .o :ﬁ.‘. . r%’. . 'ﬁ o ﬁ T 'ﬁ T rﬁ.‘. . 'ﬁ' -

)
€
e
:
S
©
o
9o
9]
S
k=
o)
E
-
C
9O
-
>
)
@
X
)
Q
o
s

1
O 1000 2000 3000 4000 5000 6000 7000 8000 9000

loop index

Figure 11. Loop execution time of the Monte Carlo bench-
mark with different tick frequencies.

© C.Kirsch 2010

Memory with Refreshing

%

free memory in MB

1 tick/1 iteration —+—

1 tick/50 iterations
1 tick/200 iterations ---*---
no refresh and e

1 tick/1 iteration

*
X
X
*
X
X
*

X

X
X

loop index (logarithmic)

Figure 12. Free memory of the Monte Carlo benchmark
with different tick frequencies.

© C.Kirsch 2010

-

