
Shaping Process Semantics ?

[Extended Abstract]

Christoph M. Kirsch Harald Röck

Department of Computer Sciences
University of Salzburg, Austria

{ck,hroeck}@cs.uni-salzburg.at

Analysis. Composition of virtually all concurrent, distributed, real-time, or embedded
software running on an operating system is based on some notion of software pro-
cesses. Operating systems including many real-time operating systems provide widely
used abstractions of which software processes are probably still the most successful. A
(software) process is typically a sequential or multi-threaded program with an isolated
virtual address space and an execution context, which contains state information such
as the processor registers and scheduling status as well as timing and I/O descriptors.
Interprocess communication (IPC) provides disciplined and well-understood means to
overcome process isolation, in many cases, even across machines. In general, processes
compute in isolation and invoke system calls to control timing, perform I/O and IPC,
and request memory, as indicated by Figure 1. A modern operating system kernel usu-
ally handles such calls with dedicated subsystems for interrupt handling, I/O schedul-
ing, IPC handling, and memory management. The systems community has devoted a
lot of attention to their semantics and performance with an arguable preference for
performance. However, the behavioral requirements of many software applications on
timing, I/O, IPC, and memory are often inadequately addressed by the common focus
on highest throughput and lowest latency. Since the observable behavior of processes is
effectively determined by the invoked system calls, serving processes as fast as possi-
ble, e.g., by executing system calls using the fastest I/O schedulers available, may only
provide an incomplete solution.

For example, delivering a web page in 100ms rather than 10ms does not make much
of a difference to a web surfer. However, if it takes 10s just because someone else is cur-
rently downloading a large file from the same sever, expectations are clearly not met.
A more-dimensional space of permissible behaviors rather than just maximum speed
may therefore characterize the situation more appropriately while the range of what
is permissible typically decreases with the requirements. As opposed to a web server,
a streaming server usually requires access guarantees to a rather confined frequency
band on the network. Similar to decreasing web surfing latency, increasing streaming
throughput beyond that band has obviously little benefit. The range of permissible be-
haviors is even smaller for real-time and embedded applications such as digital con-
trollers where the emphasis is typically on predictable, low latency rather than aver-
age, high throughput. Interestingly, the networking community has already addressed
such behavioral requirements quite effectively using a variety of queueing techniques

? Supported by Austrian Science Fund grant P18913-N15

Virtual Memory

I/O Scheduling IPC Handling Management
MemoryInterrupt

Handling

K
er

ne
l

Process Shaping

Hardware

I/O Calls IPC Calls

Application Processes

Se
m

an
tic

s
Pe

rf
or

m
an

ce

Timing Calls

Fig. 1. A process-shaping operating system kernel

and traffic shaping. The idea is to force, i.e., shape traffic into a desired form before
handling it. It turns out that such shaped traffic often not only matches application re-
quirements better but can also be handled more efficiently. For example, the success
of VoIP applications on nondeterministic but fast networks such as Gigabit Ethernet,
which made deterministic networks such as ATM become unexpectedly obsolete, is
rooted in the combination of unprecedented transmission speed and adequate priori-
tization. Higher speed means shorter packet transmission times making prioritization,
i.e., traffic shaping, increasingly effective. The result is an inexpensive approximation of
quality of service by probabilistic arguments rather than by deterministic but expensive
guarantees.

Proposal. We propose the notion of process shaping to complement, not replace, the
notion of serving processes as fast as possible, in analogy to traffic shaping in networks.
Process shaping changes the order, times, and possibly the way in which potentially
all side effects of processes, e.g., invoked system calls but also memory page faults,
are handled before given to any performance-oriented kernel subsystems such as I/O
schedulers and memory management, as indicated in Figure 1. Process shaping pro-
motes more disciplined system composition by providing stronger behavioral process
semantics than existing operating systems. Process shaping identifies an unrecognized
trade off between serving and shaping, and may even result in improved system-wide
performance. As a prototype system, we have designed and implemented a user-space
threading library called the TAP library [4, 3], which shapes processes by queueing
timing-, network-, and disk-related system calls according to a variety of policies. Some
experimental results are discussed below.

With process shaping, we advocate a shift in research attention from performance-
to semantics-oriented handling of software processes. Interesting new questions be-
yond, e.g., traditional scheduling arise such as how to identify dynamically at runtime
bandwidth limits and shaping policies for optimal system-wide utilization. Queueing
networks [2] may be used in modeling the dynamically changing data flow in operat-

ing systems, e.g., from disk to network devices caused by a streaming server. Queueing
theory and its real-time extensions [5] may already provide analytical frameworks, in
particular, for systems with strict behavioral requirements such as many real-time and
embedded systems.

Claims. Our proposal rests on semantics- and performance-related claims that need to
be verified. With process shaping, the behavioral semantics of processes may have to be
expressed in terms of yet to be developed languages that translate into a process-shaping
infrastructure. We claim that typical networking terminology such as bandwidth, flow,
burst, collision, and so on, in addition to already universal terminology such as fre-
quency and latency, may also be used to describe many process-based application re-
quirements, in particular, in real-time and embedded systems.

Process shaping is meant to complement, not replace, operating system facilities
that operate under the regime of serving processes as fast as possible. We claim that
the trends to higher processor speed, also in embedded systems, and to more efficient
scheduling facilities and lower kernel latency in operating systems, in analogy to shorter
packet transmission times, will make process shaping increasingly effective. The result
will be stronger guarantees on process behavior and higher system-wide performance
especially in overload scenarios. Note that real-time patches providing lower kernel
latency, which used to be rather exotic, unsupported code, increasingly make their way
into general-purpose operating systems such as Linux, even with industry support.

Experiments. We discuss two experiments to substantiate our proposal and claims.
Both experiments have been conducted using our latest prototype implementation of
the previously mentioned TAP library on an unmodified Linux 2.6.15 kernel. Multi-
threaded applications such as many web and streaming servers can usually be linked
against the POSIX-compliant TAP library without modifications. The applications’ I/O
calls, e.g., network and disk reads and writes, are then routed through the library and
shaped according to a given bandwidth limit and queueing policy such as the well-
known leaky- and token-bucket policies. Here, we have used a token-bucket policy for
network and disk calls. A token-bucket policy shapes traffic into a steady stream below
a given threshold but also allows infrequent bursts above the threshold. With this policy,
traffic can only proceed if there are tokens available in a virtual bucket. Since the bucket
is filled with tokens at a given rate but has a finite capacity, traffic can flow freely until
the bucket is empty but then flows at a speed proportional to the token rate.

In the first experiment, we ran two multi-threaded web servers on a single machine
accepting and serving incoming connections on a gigabit network. Two client machines
repeatedly connect to the web servers and request the same and thus cached 380KB file.
Figure 2 depicts the net throughput measured at the clients with shaping disabled, and
when each web server is shaped to use at most 50% of the available network bandwidth.
Note that each web server runs on its own instance of the TAP library, i.e., there is no
explicit coordination between the two web servers. The combined throughput of the
web servers without shaping shows a distinct peak of 110MB/s at 1300 connections per
second, and decreases for higher connection rates to less than 90MB/s. The web servers
with shaping do not achieve the same peak throughput but continue to stay at the same

40

50

60

70

80

90

100

110

120

 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

M
B

 p
er

 S
ec

on
d

Connections per Second

"net_io_shaping_30k" "net_io_no_shaping"

Fig. 2. The combined throughput of two web servers running concurrently on a single machine is
more deterministic and scales to higher connection rates with process shaping than without it.

high rate of 105MB/s, and even achieve a higher throughput than without shaping for
connection rates higher than 1500 connections per second.

In the second experiment, we ran a streaming server in addition to multiple web
servers on the same machine as above. The streaming server reads video and audio
data at around 700KB/s to 1MB/s from disk and then streams it over the network to a
laptop, which is used as client. The video and audio quality on the client decreases if
the server cannot read data from disk on time, e.g., since the disk is accessed by too
many other processes, or if data packets cannot be transmitted, e.g., since the network
is overloaded by other background traffic. To generate background traffic on the net-
work, we use a web server, which gets hit with a high number of requests for a cached
380KB file. Additionally, to generate load on the disk, we run several other web servers,
which process single requests for a 1GB file that is not cached. The optimization prob-
lem that arises here is to guarantee the streaming server sufficient access to disk and
network while maximizing total disk and network throughput, and have net through-
put approach raw throughput on the network as closely as possible. Net throughput
refers to network traffic successfully received and processed by remote clients. Fig-
ure 3 shows total disk and network throughput (raw and net) for different process shap-
ing configurations, and the estimated disk and network I/O threshold of 19MB/s and
100MB/s, respectively, at which the streaming server can still function properly. With-
out any shaping, raw network throughput is close to the devices capacity of 120MB/s
but net throughput drops below 90MB/s because of thrashing, which also explains the
relatively low disk throughput. By turning on network shaping alone, network through-
put can be pushed below the 100MB/s network I/O threshold resulting in increased disk
throughput, which, however, settles above the 19MB/s disk I/O threshold because of
decreased thrashing. Thus the optimum can only be reached when shaping network and
disk traffic simultaneously, in our case, using 19k network and 14.4 disk token rates (at
the 15.6k disk token rate, video and audio quality begin degrading).

 0

 20

 40

 60

 80

 100

 120

19k
15.6k

19k
14.4k

18k
14.4k

18k
15.6k

16k
off

18k
off

20k
off

28k
off

off
off

net
disk

M
B

 p
er

 S
ec

on
d

Tokens per Second

Threshold
Network I/O

Threshold
Disk I/O

Net. I/O raw Net. I/O succ. Disk I/O

Fig. 3. A streaming server and multiple web servers running on a single machine. The optimal
system “shape” with best net throughput and streaming performance as well as maximum non-
thrashing disk and network utilization (19MB/s disk and 100MB/s network) is reached when
processes are shaped by 14.4k disk tokens per second and 19k network tokens per second using
a token-bucket policy.

Future. We feel that our experiments show the potential of process shaping. Our next,
short-term steps are to design and implement a kernel-level version of our prototype
implementation, and to study ways to identify dynamically at runtime bandwidth limits
and shaping policies for optimal system-wide utilization. Our long-term goals are to
support even hard real-time applications such as the flight control system of our un-
manned quadrotor helicopter called the JAviator [1].

References

1. J. Auerbach, D.F. Bacon, D. Iercan, C.M. Kirsch, H. Röck, and R. Trummer. The JAviator
Project. http://javiator.cs.uni-salzburg.at/.

2. R.O. Baldwin, N.J. Davis, S.F. Midkiff, and J.E. Kobza. Queueing network analysis: concepts,
terminology, and methods. Systems and Software, 66(2):99–117, 2003.

3. C.M. Kirsch and H. Röck. The TAP Project. http://tap.cs.uni-salzburg.at/.
4. C.M. Kirsch and H. Röck. Traffic shaping system calls using threading by appointment.

Technical Report T009, Department of Computer Sciences, University of Salzburg, August
2005.

5. J.P. Lehoczky. Real-time queueing theory. In Proc. IEEE Real-Time Systems Symposium
(RTSS), 1996.

Shaping Process
Semantics

Christoph Kirsch
Universität Salzburg

Joint work with Harald Röck
Monterey Workshop, Paris, October 2006

© C. Kirsch 2006

The Idea

• we apply traffic shaping technology known
in the networking community to software
processes

• software processes invoke system calls to
access resources, perform I/O, etc.

• we see system calls as network packets

2

© C. Kirsch 2006

Process Shaping

• process shaping changes the order and times
in which system calls (and potentially other
side effects of processes) are handled before
given to any performance-oriented kernel
subsystems

• process shaping promotes more disciplined
system composition

3

© C. Kirsch 2006

Application Processes

Hardware

K
er

ne
l Se

m
an

tic
s

Pe
rf

or
m

an
ce

Process Shaping

Interrupt
Handling

I/O
Scheduling

IPC
Handling

Memory
Management

Timing
Calls

I/O Calls IPC Calls Virtual
Memory

4

© C. Kirsch 2006 5

Proposal

• we propose the notion of process shaping to
complement, not replace, the notion of
serving processes as fast as possible

• we advocate a shift in research attention
from performance- to semantics-oriented
handling of software processes

© C. Kirsch 2006 6

Claim

• we claim that faster processors, more
efficient scheduling, and lower kernel
latency, in analogy to shorter packet
transmission times, will make process
shaping increasingly effective

‣ see ATM versus Gigabit Ethernet

• note that used-to-be-exotic real-time
patches increasingly make their way into
general-purpose operating systems

© C. Kirsch 2006

Experiment I

• we run two separate web server processes
on an unmodified Linux 2.6 server machine
with Gigabit Ethernet

• two client machines generate workload by
requesting the same and thus cached 380KB
file

7

© C. Kirsch 2006

Experiment II

• we run two separate web server processes
on a process-shaping Linux 2.6 server
machine with Gigabit Ethernet

• two client machines generate workload by
requesting the same and thus cached 380KB
file

9

© C. Kirsch 2006

Experiment I+II

• higher total peak performance without
process shaping

• but total peak performance more robust
with process shaping

11

© C. Kirsch 2006

Experiment III

• we run a video-streaming server on a process-
shaping Linux 2.6 server machine with
Gigabit Ethernet

• to generate background network traffic, we
also run one of the web servers of
experiment II on the same machine

• to generate background disk traffic, we also
run several web servers processing requests
for a non-cached 1GB file

13

No Shaping

Just Network Shaping

Best “Shape”

© C. Kirsch 2006

Future

15

• Multimedia (Soft Real Time): Can kernel-
level process shaping automatically find the
best “shape”?

• Control (Hard Real Time): Can kernel-level
process shaping provide sufficient real-time
guarantees?

© C. Kirsch 2006

Experiment IV

• we run helicopter flight control software
written in Java on IBM’s commercial J9 JVM
with the real-time garbage collector
Metronome on top of a Linux 2.6 machine
with real-time patches applied to the kernel

• joint work with J. Auerbach, D. Bacon, H.
Röck, and R. Trummer

16

The JAviator Project
javiator.cs.uni-salzburg.at

© C. Kirsch 2006 19

First All Java Flight

Thank you

	MontereyWorkshop06-ProcessShaping-Abstract.pdf
	MontereyWorkshop06-ProcessShaping-Talk.pdf

