
NETYS Conference, Agadir, Morocco, May 2015

Scalloc:  
From Relaxed Concurrent Data
Structures to the Fastest Multicore-
Scalable Memory Allocator

Christoph Kirsch
University of Salzburg

Joint work with M. Aigner, M.
Dodds, A. Haas, T.A. Henzinger, M.
Lippautz, H. Payer, A. Szegin, and
A. Sokolova.

Infrastructural Software

❖ We are interested in designing
and implementing concurrent
data structures that are fast and
scale on multicore hardware.

❖ We then apply the best designs
in other infrastructural
software such as a memory
allocator.

4 Processors w/ 10 Cores each w/ 2 Hyperthreads each

128 GB Memory

L3: Cache 24 MB

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

HT HT

HT HT HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

CPU Socket 0

L3: Cache 24 MB

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

HT HT

HT HT HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

CPU Socket 1

L3: Cache 24 MB

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

HT HT

HT HT HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

CPU Socket 2

L3: Cache 24 MB

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

L2: 256 KB data

L1: 32 KB instr
 16 KB data

HT HT

HT HT HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

HT HT

CPU Socket 3

Multicore Scalability
linear scalability

positive scalability
high performance

negative scalability

positive scalability
low performance

th
ro

ug
hp

ut

number of cores

Example
 0

 2000

 4000

 6000

 8000

 10000

 12000

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(a) Very high contention (c = 1000, i = 0)

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(b) High contention (c = 4000, i = 0)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(c) Medium contention (c = 7000, i = 0)

 0

 500

 1000

 1500

 2000

 2500

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(d) Low contention (c = 10000, i = 0)

Fig. 2. Performance and scalablity of producer/consumer microbenchmarks with an increasing
number of threads

Similarly, the results with our high contention scenario, depicted in Figure 2(b),
show that the scalability turnaround is at 30 threads and that both k-FIFO versions
outperform and outscale all other algorithms. As the contention gets less in Figures 2(c)
and 2(d), the turnaround gets shifted to a larger number of threads. The difference in
performance and scalability of all algorithms is less significant with more computational
load. Note that SQ returns up to 2000 times falsely null due to the non-linearizable
emptiness check.

Mandelbrot. We computed and rendered two images of the Mandelbrot set [12] using
producer and consumer threads and a shared data structure to distribute the computation
across multiple cores. The producer threads divide the image into smaller blocks (4x4
pixels in our experiments), write block coordinates in descriptor blocks, and enqueue
the descriptor blocks in the shared data structure. The consumer threads dequeue the
descriptor blocks from the shared data structure, perform the Mandelbrot calculation
on the blocks, and store the results in the corresponding blocks of the final Mandel-
brot image. Hence, the workload between the consumer threads is balanced. We use a
producer-consumer ratio of 1 : 4 in our experiments, i.e. for each producer thread we
add four consumer threads.

The Mandelbrot macrobenchmark results are presented in Figure 3. Each run was
repeated 10 times. We present the average execution time of the 10 runs as our metric
of performance, less execution time is better. Figure 3(a) shows the performance of the
low computational load Mandelbrot benchmark. Low computational load means that

Multicore Scalability
is a

Concurrent Semantics and
Memory Layout & Search Problem

scal.cs.uni-salzburg.at
❖ Scal is a collection of concurrent data structures designed by us (underlined)

and others, plus a benchmarking framework:

❖ Treiber Stack [IBM86]

❖ Timestamped Stack [POPL15], k-Stack (relaxed) [POPL13]

❖ Michael-Scott Queue [PODC96]

❖ LCRQ [PPoPP13], Segment Queue (relaxed) [OPODIS10]

❖ Timestamped Queue [POPL15], Distributed Queue (relaxed) [CF13], k-FIFO
Queue (relaxed) [PaCT13]

❖ Timestamped Deque [POPL15]

❖ …

http://scal.cs.uni-salzburg.at

Treiber Stack [IBM86]

•lock-free with atomic compare and swap

•failing threads retry, possibly indefinitely
8

top pointer is global variable (single point of contention)

blue pointers are all stored in thread-local variables

Michael-Scott Queue [PODC96]

Segmentation

k-FIFO Queue [PaCT13]
 0

 2000

 4000

 6000

 8000

 10000

 12000

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(a) Very high contention (c = 1000, i = 0)

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(b) High contention (c = 4000, i = 0)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(c) Medium contention (c = 7000, i = 0)

 0

 500

 1000

 1500

 2000

 2500

2 10 20 30 40 50 60 70 80 90 100

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB
BS
MS
FC

RD (r=64)
SQ (s=64)

BAG
ED

RP
BS k-FIFO (k=64)
US k-FIFO (k=64)

(d) Low contention (c = 10000, i = 0)

Fig. 2. Performance and scalablity of producer/consumer microbenchmarks with an increasing
number of threads

Similarly, the results with our high contention scenario, depicted in Figure 2(b),
show that the scalability turnaround is at 30 threads and that both k-FIFO versions
outperform and outscale all other algorithms. As the contention gets less in Figures 2(c)
and 2(d), the turnaround gets shifted to a larger number of threads. The difference in
performance and scalability of all algorithms is less significant with more computational
load. Note that SQ returns up to 2000 times falsely null due to the non-linearizable
emptiness check.

Mandelbrot. We computed and rendered two images of the Mandelbrot set [12] using
producer and consumer threads and a shared data structure to distribute the computation
across multiple cores. The producer threads divide the image into smaller blocks (4x4
pixels in our experiments), write block coordinates in descriptor blocks, and enqueue
the descriptor blocks in the shared data structure. The consumer threads dequeue the
descriptor blocks from the shared data structure, perform the Mandelbrot calculation
on the blocks, and store the results in the corresponding blocks of the final Mandel-
brot image. Hence, the workload between the consumer threads is balanced. We use a
producer-consumer ratio of 1 : 4 in our experiments, i.e. for each producer thread we
add four consumer threads.

The Mandelbrot macrobenchmark results are presented in Figure 3. Each run was
repeated 10 times. We present the average execution time of the 10 runs as our metric
of performance, less execution time is better. Figure 3(a) shows the performance of the
low computational load Mandelbrot benchmark. Low computational load means that

Distribution

Load Balancers
❖ 1-RR: one round-robin counter

❖ 2-RR: two round-robin counters (enqueue, dequeue)

❖ TL-RR: thread-local round-robin counters

❖ LRU: least-recently-used queue

❖ 1-RA: random queue

❖ 2-RA: shorter of two random queues for enqueue,
longer of two random queues for dequeue

13

Distributed Queues [CF13]

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(a) High contention producer-consumer microbenchmark (c = 250)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(b) Low contention producer-consumer microbenchmark (c = 2000)
Figure 1: Performance and scalability of producer-consumer microbenchmarks with an increasing number of threads on a 40-core (2 hyper-
threads per core) server machine

caching artifacts into the data that are unrelated to the benchmarked
implementations.

The algorithms are configured as follows. With d-RA we only
evaluated d = 1 and d = 2 since in our benchmarks any value
greater than two results in worse performance. With b-RR we eval-
uated b = 1 and b = 2 as well as the fully thread-local configuration
TL-RR where b is set to the number of benchmarking threads. In
our benchmarks 1-RR and TL-RR result in worst and best perfor-
mance, respectively. Values for b greater than one and smaller than
the number of benchmarking threads result in performance in be-
tween. We included 2-RR to demonstrate that but omitted other
values not to overload the figures. The RD, SQ, k-FIFO, and DQ
implementations are configured to r = s = k = p = 80 (see Sec-
tions 3 and 4), enabling up to 80 parallel enqueues and 80 paral-
lel dequeues. We determined experimentally that 80 is the lowest
value that results in overall best performance and scalability of the
involved implementations in all our benchmarks.

5.1 Microbenchmarking Performance and
Scalability

For measuring and comparing performance and scalability we
designed a microbenchmark that emulates a multi-threaded producer-
consumer workload where half of the threads are producers and
the other half are consumers. Each thread performs one million
queue or pool operations. We evaluate high and low contention
scenarios by having each thread compute p iteratively between any
two consecutive operations in c = 250 iterations (high contention)
and c = 2000 iterations (low contention), respectively. As refer-
ence, c = 1000 iterations take on average 2.3 microseconds on the
server machine. Higher contention with computational load down
to c = 0 exposes machine-related artifacts resulting in meaningless
data. The presented data is averaged over five runs. Note that we
use this microbenchmark again in Section 5.3 to study the out-of-
order behavior of all considered queue and pool algorithms.

Figures 1a and 1b show performance in operations per millisec-
ond and scalability with an increasing number of threads for the
high and low contention scenarios, respectively. The key observa-
tion when comparing high and low contention is that all implemen-
tations perform and scale better under low contention but still per-
form and scale similarly in relative terms in both scenarios. Overall
1-RA performs and scales best, followed by the other DQ imple-

mentations, which all outperform and outscale the other implemen-
tations including the pool implementations. Under high contention
all implementations except TL-RR, 1-RA, and 2-RA scale nega-
tively beyond 20 threads. The performance of 2-RR is in between
the performance of 1-RR and TL-RR.

5.2 Macrobenchmarking Performance and
Scalability

We evaluate performance and scalability with three macrobench-
marks based on spanning tree and transitive closure graph algo-
rithms [5], and a Mandelbrot algorithm [17]. All presented data is
averaged over ten runs.

Spanning Tree and Transitive Closure Benchmarks
We ran the spanning tree and transitive closure graph algorithms on
graphs consisting of a hundred thousand vertices and ten million
randomly generated unique edges. Both algorithms use a shared
queue or pool of vertices to distribute work among multiple threads.
Initially, the shared queue or pool is prefilled with 160 randomly
determined vertices. Each thread dequeues a vertex and then iter-
ates over its immediate neighbors to process them (transitive clo-
sure or spanning tree operation). If a neighboring vertex already
got processed by a different thread then the vertex is ignored. Oth-
erwise, the vertex is processed and then enqueued. When a thread
processed all neighbors it dequeues another vertex. The algorithms
terminate when the shared queue or pool is empty.

Figures 2a and 2b show performance in terms of total execution
time in milliseconds and scalability with an increasing number of
threads. In both benchmarks, the DQ implementations perform and
scale best. While most implementations are on par with DQ up to
ten threads, only the BS and US k-FIFO queue implementations
scale as much as DQ. Despite its thread-local storage BAG scales
negatively because the connectivity of the graph makes it likely to
hit already processed nodes and thus requires work-stealing. Note
that RP is not shown because RP, due to its synchronous behavior,
cannot handle a workload where producers are also consumers.

Mandelbrot Benchmark
The Mandelbrot benchmark renders an image by dividing it into
blocks of 4x4 pixels that are distributed by producer threads through
a shared queue or pool to consumer threads for parallel process-

Timestamping

Time Sources

❖ TS-atomic: fetch and increment counter

❖ TS- stutter: stuttering counter (Lamport clock)

❖ TS-hardware: hardware clock

❖ TS-interval: interval hardware clock

❖ TS-CAS: compare-and-swap interval counter

16

Timestamped (TS) Stack [POPL15]

Treiber Stack
EB Stack

TS-atomic Stack
TS-CAS Stack

TS-hardware Stack
TS-interval Stack

TS-stutter Stack

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(a) Producer-consumer benchmark, 40-core machine.

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 8 16 24 32 40 48 56 64

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(b) Producer-consumer benchmark, 64-core machine.

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(c) Producer-only benchmark, 40-core machine.

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 8 16 24 32 40 48 56 64

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(d) Producer-only benchmark, 64-core machine.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(e) Consumer-only benchmark, 40-core machine.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 8 16 24 32 40 48 56 64

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(f) Consumer-only benchmark, 64-core machine.

Figure 5: TS stack performance in the high-contention scenario on 40-core machine (left) and 64-core machine (right).

push operations of the TS-atomic stack and the TS-stutter
stack, which means that the delay in the TS-interval time-
stamping is actually shorter than the execution time of the
TS-atomic timestamping and the TS-stutter timestamping.
Perhaps surprisingly, TS-stutter, which does not require
strong synchronisation, is slower than TS-atomic, which is
based on an atomic fetch-and-increment instruction.

Pop performance. We measure the performance of pop
operations of all data-structures in a consumer-only bench-
mark where each thread pops 1,000,000 from a pre-filled
stack. Note that no elimination is possible in this bench-
mark. The stack is pre-filled concurrently, which means in
case of the TS-interval stack and TS-stutter stack that some
elements may have unordered timestamps. Again the TS-
interval stack uses the same delay as in the high-contention
producer-consumer benchmark.

Figure 5e and Figure 5f show the performance and
scalability of the data-structures in the high-contention
consumer-only benchmark. The performance of the TS-
interval stack is significantly higher than the performance of
the other stack implementations, except for low numbers of
threads. The performance of TS-CAS is close to the perfor-
mance of TS-interval. The TS-stutter stack is faster than the
TS-atomic and TS-hardware stack due to the fact that some
elements share timestamps and therefore can be removed in
parallel. The TS-atomic stack and TS-hardware stack show
the same performance because all elements have unique
timestamps and therefore have to be removed sequentially.
Also in the Treiber stack and the EB stack elements have to
be removed sequentially. Depending on the machine, remov-
ing elements sequentially from a single list (Treiber stack)
is sometimes less and sometimes as expensive as removing
elements sequentially from multiple lists (TS stack).

Timestamping

❖ TS stack: fastest concurrent stack

❖ TS queue: slower than LCRQ but faster than MS

❖ TS deque: fastest deque but correctness proof missing

❖ …

18

scalloc.cs.uni-salzburg.at

❖ Scalloc is a fast, multi-threaded, multicore-scalable
memory allocator with low memory consumption based
on three new ideas (and many known ones):

1. Virtual spans (on demand paging)

2. Span-pool backend (lock-free distributed stack)

3. Constant-time frontend (locked doubly-linked list)

http://scalloc.cs.uni-salzburg.at

Challenges
❖ Allocation performance

❖ Deallocation performance

❖ Access performance

❖ Fragmentation

❖ Performance robustness

❖ Temporal and spatial scalability

Faster than others
while

using less memory

acdc.cs.uni-salzburg.at
❖ ACDC: configurable multi-threaded benchmark for

memory management

❖ Simulates periodic allocation behavior (AC) and
permanent memory (DC) based on models of real
applications

❖ Simulates memory access

❖ Fully scalable on multicore hardware

❖ Available for C, C++, Java, JavaScript

http://acdc.cs.uni-salzburg.at

Mutator

Allocator

Operating System

malloc free

mmap munmap

frontend

backend

Old Idea:
Thread-local Allocation Buffers

TLABs: Good and Bad

❖ Fast allocation path

❖ Fast local deallocation path

❖ But potentially slow remote deallocation path

❖ And potentially high fragmentation

Old Idea: Size Classes
Size Class: 1-8 Bytes Size Class: 9-16 Bytes Size Class: 17-32 Bytes

spans
• all of the same size
• no external fragmentation
• 1 local free list per span
• 1 remote free list per span

Size Classes: Good and Bad

❖ No external fragmentation

❖ High locality

❖ But internal fragmentation

❖ Upper bound on object size

❖ Traditionally solved by using a different allocator for
big objects

New Idea: Virtual Spans

Scalloc: From Scalable Concurrent Data Structures
to a Fast, Scalable, Low-Memory-Overhead Allocator

Abstract
1. Introduction
2. Related Work
[Michael: To discuss: Get rid of related work right away or

have it after the detailed description?]

3. The Allocator in Detail
Like other allocators (e.g. [17] and [14]), scalloc can be
divided into two main parts:

(1) a mutator-facing frontend that manages memory in so-
called spans, and

(2) a backend for managing the spans (ideally returning them
to the operating system when empty).

Scalloc maintains scalability with respect to performance
and memory consumption by:

• introducing virtual spans that enable unified treatment of
variable-size objects;

• providing a scalable backend for managing spans;
• providing a frontend with constant time malloc and free

calls that only consider live heap (no garbage collection
cycles).

The following subsections describe these crucial concepts of
scalloc.

3.1 Real Spans and Size Classes
A (real) span is a contiguous portion of memory partitioned
into blocks of the same size. The size of blocks in a span
determines which size class the span belongs to. All spans in
a given size class have the same number of blocks. Hence,
the size of a span is fully determined by its size class: it

[Copyright notice will appear here once ’preprint’ option is removed.]

res
erv

ed

ad
dre

sse
s

virtual span

un
map

pe
d

mem
ory

real span

header

block

payload

arena virtual span real span

Figure 1: Structure of arena, virtual spans, and real spans

is the product of the block size and the number of blocks,
plus a span header containing administrative information. In
scalloc, there are 29 size classes but only 9 distinct real-span
sizes which are all multiples of 4KB (the size of a system
page).

The first 16 size classes, with block sizes ranging from
16 bytes to 256 bytes in increments of 16 bytes, are taken
from TCMalloc [6]. This design of small size-classes limits
block internal fragmentation. All these 16 size classes have
the same real-span size. Size classes with larger blocks range
from 512 bytes to 1MB, in increments that are powers of
two. These size classes may have different real-span size,
explaining the difference between 29 size classes and 9 dis-
tinct real-span sizes.

Objects of size larger than any size class are not managed
by spans, but rather allocated directly from the operating
system using mmap.

3.2 Virtual Spans
A virtual span is a span allocated in a very large portion
of virtual memory (32TB) which we call arena. All virtual
spans have the same fixed size of 2MB and are 2MB-aligned
in the arena. Each virtual span contains a real span, of one of
the available size classes. By the size class of the virtual span
we mean the size class of the contained real span. Typically,
the real span is (much) smaller than the virtual span that
contains it. The maximal real-span size is limited by the size
of the virtual span. This is why virtual spans are suitable
for big objects as well as for small ones. The structure of the

1 2015/3/18

Virtual Spans: Good and Bad
❖ No external fragmentation

❖ High locality

❖ But internal fragmentation yet most only virtual

❖ Upper bound on object size larger than with real spans

❖ No hybrid allocator necessary, huge objects (>1MB) are
mmapped

❖ But virtual memory (32TB) limits allocatable memory

New Idea: Global Span Pool
arena, virtual spans, and real spans is shown in Figure 3. The
advantages of using virtual spans are:

1. Virtual memory outside of real spans does not cause
fragmentation of physical memory, as it is not used and
therefore not mapped (on-demand paging of the OS);

2. Uniform treatment of small and big objects;

3. No repeated system calls upon every span allocation
since the arena is mmapped only once.

Note that since virtual spans are of the same size and
aligned in virtual memory, getting a new virtual span from
the arena is simply incrementing a bump pointer. When
a virtual span gets empty, it is inserted into the free-list
of virtual spans, i.e., the span-pool discussed in the next
section. The disadvantages of using virtual spans are:

1. Current kernels and hardware only provide a 48-bit, in-
stead of a 64-bit, address space. As a result, not all of
virtual memory can be utilized (see below);

2. Returning a virtual span to the span-pool may be costly
in one scenario: a virtual span with a real span of a
given size greater than a given threshold becomes empty
and is inserted into the span pool. Then, in order to
limit physical-memory fragmentation, we use madvise1

to inform the kernel that the remaining virtual (and thus
mapped physical) memory is no longer needed.

It is important to note that the design of the span-pool
minimizes the chances that a virtual span changes its real
span size.

To our knowledge, mmapping virtual memory in a sin-
gle call at this order of magnitude (32TB) is a new idea for
memory allocation. Upon initialization, scalloc mmaps 245

virtual memory addresses, the upper limit for a single mmap
call on Linux. This call does not introduce any significant
overhead as the memory is not mapped by the operating sys-
tem. It is still possible to allocate additional virtual memory
using mmap, e.g. for other memory allocation or memory-
mapped I/O. The virtual address space still left is 248 � 245

bytes, i.e., 224TB.
In the worst case of the current configuration with 2MB

virtual spans, if real spans are the smallest possible (16KB),
the physical memory addressable with scalloc is (245/221) ·
214 bytes = 237 bytes = 256GB.

We have also experimented with configurations of up to
128MB for virtual spans resulting in unchanged temporal
and spatial performance for the benchmarks that were not
running out of arena space. Enhancing the Linux kernel to
support larger arenas is future work. On current hardware,
with up to 48 bits for virtual addresses, this would enable
up to 256TB arena space and 2TB addressable physical

1 The system call madvise informs the kernel about the use of virtual
addresses. By madvise we always mean madvise with MADV DONTNEED
informing the kernel that a range of virtual memory addresses is not needed
and the corresponding page frames can be unmapped.

size class 1 size class 2 size class n

stack 1 stack 2 stack p

free span

free span

free span
?

pr
e

al
lo

ca
te

d
dy

na
m

ic

Figure 2: Span pool layout

memory (in the worst case, with 2MB virtual spans and
16KB real spans).

Note that with scalloc segmentation faults are unaffected
as we use mprotect() to protect virtual address space that
is not used.

3.3 Backend: Span-Pool
[Michael: TODO: size class to real span bin in figure

span pool layout] The span-pool is a global concurrent
data structure that logically corresponds to a real-span-size
segregated “stack-like” pools. The span-pool implements
put and get methods; no values are lost nor invented from
thin air; it neither provides a linearizable emptiness check,
nor any specific order guarantees. However, each pool within
the span-pool is a locally linearizable [?] “stack-like” pool.
It is “stack-like” since in a single-threaded scenario it is
actually a stack.

The segregation by real-span size is implemented as pre-
allocated array where each index in the array refers to a given
real-span size. Consequently, all size classes that have the
same real-span size refer to the same index. Each array entry
then holds another pre-allocated array, the pool array, this
time of lock-free Treiber stacks [18]. The pool array has size
equal to the number of cores (determined at runtime during
the initialization phase of the allocator). As a result a stack
in any of the pools of the span-pool is identified by a real-
span index and a core index. Figure 4 illustrates the layout
of arrays and stacks.

The design is inspired by distributed queues [7]. We use
stacks rather than queues for the following reasons: spatial
locality, especially on thread-local workloads; lower latency
of push and pop compared to enqueue and dequeue; and
stacks can be implemented without sentinel nodes, i.e., no
additional memory is needed for the data structure. Thereby,
we utilize the memory of the elements inserted into the pool
to construct the stacks, avoiding any dynamic allocation of
administrative data structures. Distributed stacks are, to our
knowledge, among the fastest scalable pools. To make the
occurrence of the ABA problem [9] unlikely we use 16-
bit ABA counters that are embedded into link pointers 2.

2 Currently a 64-bit address space is limited to 48 bits of address, enabling
the other 16 bits to be used as ABA counter.

2 2015/3/18

New Idea: Constant-Time Frontend

Listing 1: Span-Pool pseudo code
1 Int num_cores (); // Returns the number of cores.
2 Int thread_id (); // Returns this thread ’s id
3 // (0-based).
4

5 // Provides the real span size segregation.
6 Int real_span_idx(Span span);
7 Int real_span_idx(Int real_span_Size);
8

9 // Returns the real span size for a given span.
10 Int real_span_size(Span span);
11

12 // Madvise all but a spans first page with
13 // MADV_DONTNEED.
14 void madvise_span(Span span);
15

16 SpanPool {
17 Stack spans_[MAX_REAL_SPAN_IDX]][num_cores];
18

19 void put(Span span):
20 rs_idx = real_span_slot(size_class);
21 core_idx = thread_id () % num_cores ();
22 i f real_span_size(span) >= madvise_threshold:
23 madvise_span(span);
24 spans_[rs_idx][core_idx].put(span);
25

26 Span get(Int size_class):
27 rs_idx = real_span_slot(size_class);
28 core_idx = thread_id () % num_cores ();
29 // Fast path.
30 spans_[rs_idx][core_idx].Get();
31 i f span == NULL:
32 // Try to reuse some other span.
33 f o r rs_idx in range(0, MAX_REAL_SPAN_SLOTS):
34 f o r core_idx in range(0, num_cores ()):
35 spans_[rs_idx][core_idx].Get();
36 i f span != NULL:
37 re turn span;
38 // If everything fails , just return a span from
39 // the arena.
40 re turn arena.AllocateVirtualSpan ();
41 }

Completely avoiding the ABA problem is a non-trivial task,
which can be solved using e.g. hazard pointers [?].

Listing ?? shows the pseudo code of the span-pool. Upon
returning a span to the span-pool, a thread performing a
put call first determines the real-span index for a given
span (line ??) and the core index as thread identifier mod-
ulo the number of cores (line ??). Before actually insert-
ing (line ??) the given span into the corresponding stack the
thread may return the spans underlying memory to the op-
erating system using the madvise system call with advice
MADV DONTNEED (line ??), effectively freeing the affected
memory. This is the expensive case, only performed on spans
with large real-span size determined by a threshold, as un-
used spans with large physically mapped real-spans result in
noticeable physical fragmentation and the madvise system
call may [Michael: TODO: clarify may] anyway be neces-
sary upon later reuse. The madvise threshold (line ??) is
set to 32KB, which is the boundary between real-span sizes
of size classes that are incremented by 16 bytes and those
that are incremented in powers of two. Note that lowering
the threshold does not substantially improve the observed
memory consumption in our experiments while it noticeably
decreases performance. Furthermore, for scenarios where

free

hot

floating

reusable

expected
Arena (RSS = 0)

Backend (RSS compacted)

Frontend (RSS = real span size)

malloc()
free()

Figure 3: Life cycle of a span

physical fragmentation is an issue, one can add a compaction
call that traverses and madvises particular spans.

Upon retrieving a span from the span pool, for given size
class, a thread performing a get call first determines the real-
span index of the size class (line ??) and the core index as
thread identifier modulo the number of cores (line ??). In the
fast path for span retrieval the thread then tries to retrieve a
span from this identified stack (line ??). Note that this fast
path implements the match to the put call, effectively maxi-
mizing locality for consecutively inserted (put) and retrieved
(get) spans of equal real-span sizes. If no span is found in the
fast path, the thread searches all real-span size indexes and
core indexes for a span to use (lines ??–??). Note that this
motivates the design of the real-span sizes: For reuse, a span
of a large real-span size has anyway been madvised whereas
all other spans have the same real-span size; Reusing a span
in the same real-span size (even if the size class changes)
amounts only to changing the header. Only when the search
for an empty virtual span fails, the thread gets a new virtual
span from the arena (as for initial allocation; line ??). Note
that the search through the span-pool may fail even if there
are spans in it due to the global use of the arrays (and the
nonlinearizable emptiness check).

3.4 Frontend: Allocation and Deallocation
We now explain the mutator-facing frontend of scalloc, i.e.,
the part of the allocator that handles allocation and deal-
location requests from the mutator. Recall the a span-pool
serves as backend for retrieving and returning empty spans,
i.e., spans that have no allocated blocks.

We distinguish several states in which a span can be, il-
lustrated in Figure ??. A span can be in several states: ex-
pected, free, hot, floating, or reusable. A span is expected if
it is still in the arena, i.e., it is completely unused. Note that
in this state its memory footprint is 0 bytes. Spans contained
in the span-pool are free. A span can be in some of the other
states only when it is in the frontend, i.e., it is assigned a spe-
cific size class. Spans that are hot are used for allocating new
blocks. For spans that are not hot we distinguish between
floating and reusable based on a threshold of the number of
free blocks. Spans with less than or equal free blocks than
the specified threshold are floating, spans with more free
blocks than specified by the threshold are reusable. We re-

3 2015/3/18

Local Allocation & Deallocation
jemalloc

llalloc
ptmalloc2

TBB
tcmalloc

Streamflow
Hoard

Amino CBB
scalloc

0

5

10

15

20

25

30

35

40

45

50

1 2 4 6 8 10 20 30 40

sp
ee

up
w

rt.
pt

m
al

lo
c2

(m
or

e
is

be
tte

r)

number of threads

(a) Speedup

0

2

4

6

8

10

12

14

16

1 2 4 6 8 10 20 30 40

m
em

or
y

co
ns

um
pt

io
n

in
M

B
(le

ss
is

be
tte

r)

number of threads

(b) Memory consumption

Figure 4: Threadtest benchmark

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 10 20 30 40

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

(a) Throughput

0

1

2

3

4

5

6

7

8

1 2 4 8 10 20 30 40

m
em

or
y

co
ns

um
pt

io
n

in
M

B
(le

ss
is

be
tte

r)

number of threads

(b) Memory consumption

Figure 5: Larson benchmark

0

20

40

60

80

100

120

140

1 2 4 8 10 20 30 40

sp
ee

up
w

rt.
pt

m
al

lo
c2

(m
or

e
is

be
tte

r)

number of threads

(a) Speedup

0

0.5

1

1.5

2

2.5

3

1 2 4 8 10 20 30 40

m
em

or
y

co
ns

um
pt

io
n

in
G

B
(le

ss
is

be
tte

r)

number of threads

(b) Memory consumption

Figure 6: Shbench benchmark

11 2015/3/18

Remote Deallocation

0.01

0.1

1

10

100

1000

16
-64

B

64
-25

6B

25
6-1

KB
1-4

KB

4-1
6K

B

16
-64

KB

64
-25

6K
B

25
6K

B-1M
B

1-4
MB

to
ta

la
llo

ca
to

rt
im

e
in

se
co

nd
s

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

object size range in bytes (logscale)

(a) Total allocator time

1

10

100

1000

10000

100000

16
-64

B

64
-25

6B

25
6-1

KB
1-4

KB

4-1
6K

B

16
-64

KB

64
-25

6K
B

25
6K

B-1M
B

1-4
MB

av
er

ag
e

m
em

or
y

co
ns

um
pt

io
n

in
M

B
(lo

gs
ca

le
,l

es
s

is
be

tte
r)

object size range in bytes (logscale)

(b) Average memory consumption

Figure 7: Temporal and spatial performance for the object-size robustness experiment

0

2

4

6

8

10

12

0 20 40 60 80 100

to
ta

lm
em

or
y

ac
ce

ss
tim

e
in

se
co

nd
s

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

percentage of object accesses in allocation order

Figure 8: Memory access time for the locality experiment

0.01

0.1

1

10

1 2 4 6 8 10 20 30 40

pe
r-

th
re

ad
al

lo
ca

to
rt

im
e

in
se

co
nd

s
(lo

gs
ca

le
,l

es
s

is
be

tte
r)

number of threads

(a) Per-thread allocator time

0

1

2

3

4

5

6

7

8

9

10

1 2 4 6 8 10 20 30 40

pe
r-

th
re

ad
av

er
ag

e
m

em
or

y
co

ns
um

pt
io

n
in

M
B

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

number of threads

(b) Per-thread average memory consumption

Figure 9: Temporal and spatial performance for the remote-free/blowup robustness experiment

12 2015/3/18

Object Size

0.01

0.1

1

10

100

1000

16
-64

B

64
-25

6B

25
6-1

KB
1-4

KB

4-1
6K

B

16
-64

KB

64
-25

6K
B

25
6K

B-1M
B

1-4
MB

to
ta

la
llo

ca
to

rt
im

e
in

se
co

nd
s

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

object size range in bytes (logscale)

(a) Total allocator time

1

10

100

1000

10000

100000

16
-64

B

64
-25

6B

25
6-1

KB
1-4

KB

4-1
6K

B

16
-64

KB

64
-25

6K
B

25
6K

B-1M
B

1-4
MB

av
er

ag
e

m
em

or
y

co
ns

um
pt

io
n

in
M

B
(lo

gs
ca

le
,l

es
s

is
be

tte
r)

object size range in bytes (logscale)

(b) Average memory consumption

Figure 7: Temporal and spatial performance for the object-size robustness experiment

0

2

4

6

8

10

12

0 20 40 60 80 100

to
ta

lm
em

or
y

ac
ce

ss
tim

e
in

se
co

nd
s

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

percentage of object accesses in allocation order

Figure 8: Memory access time for the locality experiment

0.01

0.1

1

10

1 2 4 6 8 10 20 30 40

pe
r-

th
re

ad
al

lo
ca

to
rt

im
e

in
se

co
nd

s
(lo

gs
ca

le
,l

es
s

is
be

tte
r)

number of threads

(a) Per-thread allocator time

0

1

2

3

4

5

6

7

8

9

10

1 2 4 6 8 10 20 30 40

pe
r-

th
re

ad
av

er
ag

e
m

em
or

y
co

ns
um

pt
io

n
in

M
B

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

number of threads

(b) Per-thread average memory consumption

Figure 9: Temporal and spatial performance for the remote-free/blowup robustness experiment

12 2015/3/18

Memory Access

0.01

0.1

1

10

100

1000

16
-64

B

64
-25

6B

25
6-1

KB
1-4

KB

4-1
6K

B

16
-64

KB

64
-25

6K
B

25
6K

B-1M
B

1-4
MB

to
ta

la
llo

ca
to

rt
im

e
in

se
co

nd
s

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

object size range in bytes (logscale)

(a) Total allocator time

1

10

100

1000

10000

100000

16
-64

B

64
-25

6B

25
6-1

KB
1-4

KB

4-1
6K

B

16
-64

KB

64
-25

6K
B

25
6K

B-1M
B

1-4
MB

av
er

ag
e

m
em

or
y

co
ns

um
pt

io
n

in
M

B
(lo

gs
ca

le
,l

es
s

is
be

tte
r)

object size range in bytes (logscale)

(b) Average memory consumption

Figure 7: Temporal and spatial performance for the object-size robustness experiment

0

2

4

6

8

10

12

0 20 40 60 80 100

to
ta

lm
em

or
y

ac
ce

ss
tim

e
in

se
co

nd
s

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

percentage of object accesses in allocation order

Figure 8: Memory access time for the locality experiment

0.01

0.1

1

10

1 2 4 6 8 10 20 30 40

pe
r-

th
re

ad
al

lo
ca

to
rt

im
e

in
se

co
nd

s
(lo

gs
ca

le
,l

es
s

is
be

tte
r)

number of threads

(a) Per-thread allocator time

0

1

2

3

4

5

6

7

8

9

10

1 2 4 6 8 10 20 30 40

pe
r-

th
re

ad
av

er
ag

e
m

em
or

y
co

ns
um

pt
io

n
in

M
B

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

number of threads

(b) Per-thread average memory consumption

Figure 9: Temporal and spatial performance for the remote-free/blowup robustness experiment

12 2015/3/18

Thank you

