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Real-Time Programming
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RT Programming Tradition
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Logical Execution Time (LET)
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Programming as if there is enough CPU time

Compiler checks if there is enough CPU timeIf not, program is not time-safe:
compiler error or runtime exception



© C. Kirsch 2005

LET Programming
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Single CPU, EDF Scheduler
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Two CPUs, TDMA Network
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“Time-Safety Checking for
 Embedded Programs”

“A Giotto-Based Helicopter
Control System”

Tool Chain
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Giotto

Simulin$

Runtime Syste"

[IEEE CSM, 2003]“From Control Models
to Real-Time Code”

[Proc. IEEE, 2003]
[EMSOFT, 2001]

[EMSOFT, 2002]

“Giotto: A Time-
Triggered Language 

for Embedded 
Programming”

[EMSOFT, 2002]
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Runtime System
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Embedded Machin%
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Linux

POSIX Threads

[PLDI, 2002]
“The Embedded Machine:

Predictable, Portable
Real-Time Code”

Giotto
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E Code
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A1:output(T1)
   output(T2)
   input(T1)
   input(T2)
   release(T1)
   release(T2)
   future(5,A2)

A2:output(T2)
   input(T2)
   release(T2)
   future(5,A1)

A1:output(T1)
   output(T2)
   input(T1)
   input(T2)
   release(T1)
   release(T2)
   future(5,A2)

T1

T2 T2
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Schedule-Carrying Code
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Schedule-Carrying
Cod%

E+S Machin%

Linux

POSIX Threads

[EMSOFT, 2003]

Schedule-Carrying
Cod%

E+S Machin%

StrongARM

Microkernel

[VEE, 2005]

E+S Machin%

RT Linux

RT Etherne!

Schedule-Carrying
Cod%

[LCTES, 2005]
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Current Projects
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LET

Next-
Generatio& 

Giotto 
Projec!

LET and 
Java

JAviator 
Projec!

AirJava 
Projec!

[w/ EPF Lausanne
& UC Berkeley]

[w/ IBM T.J. Watson]

[w/ UC Berkeley]

TAP 
Projec!
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The JAviator Project
javiator.cs.uni-salzburg.at

• Goal:

➡ enable high-performance real-time code, 
e.g., flight control software, to be written 
entirely in Java

• Challenge:

➡ enable submi'isecond, predictable real-time 
behavior while maintaining as much original 
Java semantics as possible

14
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The JAviator Platform

• the JAviator is a quadrotor UAV

• we are currently building our 
own prototype w/ 500g payload

• single XScale 400MHz CPU w/ 
Bluetooth onboard running RT 
Linux and IBM’s J9 JVM

• 3 gyros, 1 3D compass, 5 
ultrasonic sensors, 4 brushless 
motors, 1 LiPoly battery toy example

15
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Collaboration
see also [EMSOFT 2005]

• IBM (3 staff researchers lead by D.F. Bacon):

➡ design and implementation of high-
performance real-time garbage collection 
(Metronome)

• Our team (2 PhD students):

➡ design and implementation of a LET-based 
concurrency model that extends Java’s 
notion of “write-once-run-anywhere” to the 
temporal domain

16



© C. Kirsch 2005

Exotasks and Pods
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• exotasks are individually garbage-collected 
software tasks that communicate by message 
passing through so-called pods

• exotasks may allocate memory and mutate 
their pointer structures

• exotasks may neither observe global mutable 
state nor their mutable state may be observed

• pods connect exotasks and “send-data-by-
garbage-collection”
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Implementation
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• each exotask has its own private heap and fully 
preemptable garbage collector

• exotasks will be compiled into E code (the 
timing part) and dynamically scheduled and 
garbage collected (the functional part)

• exotasks with LETs may also be compiled into 
G code (schedule-carrying code extended by 
garbage-collecting instructions [M. Harringer, 
MSc Thesis, University of Salzburg, 2005])
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The TAP Project
tap.cs.uni-salzburg.at

• Goal:

➡ enable efficient, predictable, and compositional 
concurrent programming of high-performance 
servers such as file and web servers

• Approach: “Threading by Appointment”

➡ separate I/O behavior from CPU scheduling, 
and control I/O behavior explicitly

19
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Threading by Appointment
[Monterey Workshop, 2004]

20

• TAP threads must have appointments to 
“communicate”, e.g., to invoke system calls

• Appointments determine the order and time 
instant when to “communicate”, e.g., to execute 
system calls

• Appointments are made by the TAP runtime 
system transparently under a POSIX-compliant 
API according to a given TAP policy
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Example: Locking
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attempts
to lock R

thread
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Example: TAP Locking
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unlocks Rbegins locks R
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blocks blocks

Appointment
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Reactor vs. Scheduler
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Environment (I/O Devices, Shared Memory)
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Traffic Shaping...

• ...controls volume, throughput, and latency of 
network traffic, using:

• queueing disciplines such as:

• the leaky-bucket algorithm (creates fixed 
transmission rate on varying flows)

• the token bucket algorithm (allows bursts 
while limiting average transmission rates)

• classification schemes: interactive vs. bulk traffic
24
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Traffic Shaping System Calls

• system call = network packet

• appointment policy = queueing discipline

• thread behavior = classification scheme

• e.g., “short-running” threads may have higher 
“appointment priority” than “long-running” 
threads

➡ improves latency of interactive threads

25
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Latency
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Throughput
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Throughput: NPTL

28

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  500  1000  1500  2000  2500  3000

NPTL 100 threads

"req_rate_NPTL"
"con_rate_NPTL"

"min_rep_rate_NPTL"
"avg_rep_rate_NPTL"
"max_rep_rate_NPTL"

"stddev_rep_rate_NPTL"
"resp_time_NPTL"

"net_io_NPTL"
"errors_NPTL"



Thank you


