
High-Level Programming of
Real-Time and Concurrent

Software Systems
Christoph Kirsch

Universität Salzburg

Purdue University, December 2005

© C. Kirsch 2005

Real-Time Programming

0 1 2 3 4 5 6 7 8 9 10

Environmen!

Syste"

OutputInput

2

OutputInput

© C. Kirsch 2005

RT Programming Tradition

0 1 2 3 4 5 6 7 8 9 10

Environmen!

Syste"

Deadline

Input

4

Output

Release

© C. Kirsch 2005

Logical Execution Time (LET)

0 1 2 3 4 5 6 7 8 9 10

Environmen!

Syste"

OutputInput

5

Programming as if there is enough CPU time

Compiler checks if there is enough CPU timeIf not, program is not time-safe:
compiler error or runtime exception

© C. Kirsch 2005

LET Programming

0 1 2 3 4 5 6 7 8 9 10

Environmen!

Syste"
6

Input

Input
Output

Output
Input

Output

© C. Kirsch 2005

Single CPU, EDF Scheduler

0 1 2 3 4 5 6 7 8 9 10

Environmen!

Syste"
7

Input

Input
Output

Output
Input

Output

© C. Kirsch 2005

Two CPUs, TDMA Network

0 1 2 3 4 5 6 7 8 9 10

Environmen!

Syste"
8

Input

Input
Output

Output
Input

Output

© C. Kirsch 2005

“Time-Safety Checking for
 Embedded Programs”

“A Giotto-Based Helicopter
Control System”

Tool Chain

9

Giotto

Simulin$

Runtime Syste"

[IEEE CSM, 2003]“From Control Models
to Real-Time Code”

[Proc. IEEE, 2003]
[EMSOFT, 2001]

[EMSOFT, 2002]

“Giotto: A Time-
Triggered Language

for Embedded
Programming”

[EMSOFT, 2002]

© C. Kirsch 2005

Runtime System

10

Embedded Machin%

E Cod%

Linux

POSIX Threads

[PLDI, 2002]
“The Embedded Machine:

Predictable, Portable
Real-Time Code”

Giotto

© C. Kirsch 2005

E Code

0 1 2 3 4 5 6 7 8 9 10

Environmen!

Syste"
11

Input
Output

Output
Input

OutputInput

A1:output(T1)
 output(T2)
 input(T1)
 input(T2)
 release(T1)
 release(T2)
 future(5,A2)

A2:output(T2)
 input(T2)
 release(T2)
 future(5,A1)

A1:output(T1)
 output(T2)
 input(T1)
 input(T2)
 release(T1)
 release(T2)
 future(5,A2)

T1

T2 T2

© C. Kirsch 2005

Schedule-Carrying Code

12

Schedule-Carrying
Cod%

E+S Machin%

Linux

POSIX Threads

[EMSOFT, 2003]

Schedule-Carrying
Cod%

E+S Machin%

StrongARM

Microkernel

[VEE, 2005]

E+S Machin%

RT Linux

RT Etherne!

Schedule-Carrying
Cod%

[LCTES, 2005]

© C. Kirsch 2005

Current Projects

13

LET

Next-
Generatio&

Giotto
Projec!

LET and
Java

JAviator
Projec!

AirJava
Projec!

[w/ EPF Lausanne
& UC Berkeley]

[w/ IBM T.J. Watson]

[w/ UC Berkeley]

TAP
Projec!

© C. Kirsch 2005

The JAviator Project
javiator.cs.uni-salzburg.at

• Goal:

➡ enable high-performance real-time code,
e.g., flight control software, to be written
entirely in Java

• Challenge:

➡ enable submi'isecond, predictable real-time
behavior while maintaining as much original
Java semantics as possible

14

© C. Kirsch 2005

The JAviator Platform

• the JAviator is a quadrotor UAV

• we are currently building our
own prototype w/ 500g payload

• single XScale 400MHz CPU w/
Bluetooth onboard running RT
Linux and IBM’s J9 JVM

• 3 gyros, 1 3D compass, 5
ultrasonic sensors, 4 brushless
motors, 1 LiPoly battery toy example

15

© C. Kirsch 2005

Collaboration
see also [EMSOFT 2005]

• IBM (3 staff researchers lead by D.F. Bacon):

➡ design and implementation of high-
performance real-time garbage collection
(Metronome)

• Our team (2 PhD students):

➡ design and implementation of a LET-based
concurrency model that extends Java’s
notion of “write-once-run-anywhere” to the
temporal domain

16

© C. Kirsch 2005

Exotasks and Pods

17

• exotasks are individually garbage-collected
software tasks that communicate by message
passing through so-called pods

• exotasks may allocate memory and mutate
their pointer structures

• exotasks may neither observe global mutable
state nor their mutable state may be observed

• pods connect exotasks and “send-data-by-
garbage-collection”

© C. Kirsch 2005

Implementation

18

• each exotask has its own private heap and fully
preemptable garbage collector

• exotasks will be compiled into E code (the
timing part) and dynamically scheduled and
garbage collected (the functional part)

• exotasks with LETs may also be compiled into
G code (schedule-carrying code extended by
garbage-collecting instructions [M. Harringer,
MSc Thesis, University of Salzburg, 2005])

© C. Kirsch 2005

The TAP Project
tap.cs.uni-salzburg.at

• Goal:

➡ enable efficient, predictable, and compositional
concurrent programming of high-performance
servers such as file and web servers

• Approach: “Threading by Appointment”

➡ separate I/O behavior from CPU scheduling,
and control I/O behavior explicitly

19

© C. Kirsch 2005

Threading by Appointment
[Monterey Workshop, 2004]

20

• TAP threads must have appointments to
“communicate”, e.g., to invoke system calls

• Appointments determine the order and time
instant when to “communicate”, e.g., to execute
system calls

• Appointments are made by the TAP runtime
system transparently under a POSIX-compliant
API according to a given TAP policy

© C. Kirsch 2005

Example: Locking

0 1 2 3 4 5 6 7 8 9 10

Environment (I/O Devices, Shared Memory)

CPU

unlocks R

begins locks R

21

attempts
to lock R

thread

© C. Kirsch 2005

Example: TAP Locking

0 1 2 3 4 5 6 7 8 9 10

Environment (I/O Devices, Shared Memory)

CPU

unlocks Rbegins locks R

22

blocks blocks

Appointment
thread

© C. Kirsch 2005

Reactor vs. Scheduler

23

CPU

Environment (I/O Devices, Shared Memory)

Reactor

TAP Thread

Scheduler

releases

dispatches

handles

utilizes

preempts

preempts

© C. Kirsch 2005

Traffic Shaping...

• ...controls volume, throughput, and latency of
network traffic, using:

• queueing disciplines such as:

• the leaky-bucket algorithm (creates fixed
transmission rate on varying flows)

• the token bucket algorithm (allows bursts
while limiting average transmission rates)

• classification schemes: interactive vs. bulk traffic
24

© C. Kirsch 2005

Traffic Shaping System Calls

• system call = network packet

• appointment policy = queueing discipline

• thread behavior = classification scheme

• e.g., “short-running” threads may have higher
“appointment priority” than “long-running”
threads

➡ improves latency of interactive threads

25

© C. Kirsch 2005

Latency

26

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

’table_inc.txt’
’table_dec.txt’

’table_const.txt’

© C. Kirsch 2005

Throughput

27

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000

TAP 100 threads

"req_rate_TAP"
"con_rate_TAP"

"min_rep_rate_TAP"
"avg_rep_rate_TAP"
"max_rep_rate_TAP"

"stddev_rep_rate_TAP"
"resp_time_TAP"

"net_io_TAP"
"errors_TAP"

© C. Kirsch 2005

Throughput: NPTL

28

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000

NPTL 100 threads

"req_rate_NPTL"
"con_rate_NPTL"

"min_rep_rate_NPTL"
"avg_rep_rate_NPTL"
"max_rep_rate_NPTL"

"stddev_rep_rate_NPTL"
"resp_time_NPTL"

"net_io_NPTL"
"errors_NPTL"

Thank you

