
Stanford, December 2012

Distributed Queues:
Faster Pools and Better Queues

Christoph Kirsch
Universität Salzburg

Joint work w/ A. Haas,
M. Lippautz, H. Payer,
A. Sokolova and our

collaborators at IST Austria
T. Henzinger, A. Sezgin

����*%�0HPRU\

/���&DFKH����0%

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

+7 +7

+7 +7 +7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

&38�6RFNHW��

/���&DFKH����0%

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

+7 +7

+7 +7 +7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

&38�6RFNHW��

/���&DFKH����0%

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

+7 +7

+7 +7 +7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

&38�6RFNHW��

/���&DFKH����0%

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

/�������.%�GDWD

/������.%�LQVWU
���������.%�GDWD

+7 +7

+7 +7 +7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

+7 +7

&38�6RFNHW��

4 processors x 10 cores x
2 hardware threads =
80 hardware threads

Performance & Scalability



















 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(a) High contention producer-consumer microbenchmark (c “ 250)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(b) Low contention producer-consumer microbenchmark (c “ 2000)

Figure 3. Performance and scalability of producer-consumer microbenchmarks with an increasing number of threads on a 40-core (2 hyper-
threads per core) server machine

processed all neighbors it dequeues another vertex. The algorithms
terminate when the shared queue or pool is empty.

Figures 4(a) and 4(b) show performance in terms of total execu-
tion time in milliseconds and scalability with an increasing number
of threads. In both benchmarks, the DQ implementations perform
and scale best. While most implementations are on par with DQ up
to ten threads, only the BS and US k-FIFO queue implementations
scale as much as DQ. Despite its thread-local storage BAG scales
negatively because the connectivity of the graph makes it likely to
hit already processed nodes and thus requires work-stealing. Note
that RP is not shown because RP, due to its synchronous behavior,
cannot handle a workload where producers are also consumers.

Mandelbrot Benchmark

The Mandelbrot benchmark renders an image by dividing it into
blocks of 4x4 pixels that are distributed by producer threads
through a shared queue or pool to consumer threads for parallel
processing. For each producer there are four consumers. We distin-
guish low and high computational load scenarios by using images
whose blocks are mostly rendered either relatively fast or relatively
slow, respectively.

Figures 4(c) and 4(d) show performance in terms of total execu-
tion time in milliseconds and scalability with an increasing number
of threads. Best performance and scalability is achieved by TL-RR
and 1-RA followed by the remaining DQ and the BS and US k-
FIFO implementations. In the high computational load scenario all
DQ implementations show identical performance and scalability.
The BS and US k-FIFO implementations also perform and scale
competitively.

5.3 Relating Performance and Non-Determinism

We study the microbenchmark introduced in Section 5.1 in terms
of the performance index, actual-time distance, zero-time distance,
and linearization difference metrics introduced in Section 2. For
this purpose we instrumented all implementations such that the in-
vocations, responses, and linearization points of all queue and pool
operations are time-stamped using the globally synchronized TSC
register of x86 processors which may be read with low overhead.
Note that time-stamping linearization points may only be approxi-
mative but still close enough for our purposes. Since the computa-
tional complexity of determining actual- and zero-time distances is

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 10 20 30 40 50 60 70 80

a
ve

ra
g
e
 p

e
rf

o
rm

a
n
ce

 in
d
e
x

(l
e
ss

 is
 b

e
tt
e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 5. Average performance index of the low contention
producer-consumer microbenchmark (c “ 2000)

proportional to the length of histories we nevertheless had to mod-
ify the microbenchmark by limiting each thread to perform only ten
thousand rather than ten million queue or pool operations. We only
present the results of the high contention microbenchmark since
they are similar to the results of the low contention microbench-
mark except for the performance index where we show the results
of the low contention microbenchmark because they are more dis-
tinguished. Again, the presented data is averaged over five runs.

Figure 5 shows the average performance index for the low
contention microbenchmark. The data correlates with the actual
performance shown in Figure 3. For example, TL-RR and 1-RA,
which scale best, have the lowest performance index, and LB and
WF, which are the slowest, have the highest performance index.

Figure 6 shows the actual-time distance for the high contention
microbenchmark. The strict FIFO queue implementations show
low non-zero values since time-stamping linearization points is
only approximative. The ED and BAG pools show the highest
actual-time distance, followed by TL-RR and 1-RA. All other
queue implementations show an actual-time distance of less than
fifty.

8

DQ

Distributed Queues
[PODC BA 2011, ICA3PP 2012, Submitted 2013]

MS FIFO Queue 1

enqueueMS FIFO Queue 2

MS FIFO Queue 3

MS FIFO Queue p

Load
Balancer

dequeue

Up to p Parallel Enqueues
and p Parallel Dequeues

MS FIFO Queue 1 Operation 1

MS FIFO Queue 2

MS FIFO Queue 3

MS FIFO Queue p

Load
Balancer

Operation 2

Operation 3

Operation p

dequeueenqueue

Parallel Access

3 5

4 6

head

head

tail

tail

Load
Balancer

7

8

1

2

Emptiness Check?
->

Not Relaxed!

DQ[p]: array of MS queues

In the early 1950’s M.G.Krein characterised those entire functions which are
an entry of some Nevanlinna matrix (in his paper called “special matrices”),
and those pairs of entire functions which are a row of some such matrix. In
connection with Pontryagin space versions of Krein’s theory of entire operators
and de Branges’ theory of Hilbert spaces of entire functions, an indefinite ana-
logue of Nevanlinna matrices occurs. In this paper we extend the mentioned
characterisations to the indefinite situation.

k

0
n

�

�

�

| | |
1 2 3

1

2

3 •�

•

•�

•�

In the early 1950’s M.G.Krein characterised those entire functions which are
an entry of some Nevanlinna matrix (in his paper called “special matrices”),
and those pairs of entire functions which are a row of some such matrix. In
connection with Pontryagin space versions of Krein’s theory of entire operators
and de Branges’ theory of Hilbert spaces of entire functions, an indefinite ana-
logue of Nevanlinna matrices occurs. In this paper we extend the mentioned
characterisations to the indefinite situation.

k

0
n

�

| | |
1 2 3

1 •� � �

•�

In the early 1950’s M.G.Krein characterised those entire functions which are
an entry of some Nevanlinna matrix (in his paper called “special matrices”),
and those pairs of entire functions which are a row of some such matrix. In
connection with Pontryagin space versions of Krein’s theory of entire operators
and de Branges’ theory of Hilbert spaces of entire functions, an indefinite ana-
logue of Nevanlinna matrices occurs. In this paper we extend the mentioned
characterisations to the indefinite situation.

k

0
n

R(0)

R(0)/2 |w|�2

In the early 1950’s M.G.Krein characterised those entire functions which are
an entry of some Nevanlinna matrix (in his paper called “special matrices”),
and those pairs of entire functions which are a row of some such matrix. In
connection with Pontryagin space versions of Krein’s theory of entire operators
and de Branges’ theory of Hilbert spaces of entire functions, an indefinite ana-
logue of Nevanlinna matrices occurs. In this paper we extend the mentioned
characterisations to the indefinite situation.

1

Figure 2: Bounds for the performance vs. relaxation graph

for its environment. Linearization points exist for all methods of
linearizable histories [11].

Definition 2.6. Let c be a concurrent history. The actual-time
linearization of c denoted by wa is the linearization ordered by
linearization points. We refer to davg(wa) as actual-time distance.

Note that the actual-time distance measures reorderings due to
relaxation, hence it is zero in strict implementations. Moreover,
note that it is not always possible to exactly determine the actual-
time linearization; in the measurements we use a good approxima-
tion which in many cases is indeed the actual-time linearization.

The second linearization of interest is the observed sequence.

Definition 2.7. Let c be a concurrent history. The zero-time lin-
earization of c denoted by w0 is the linearization ordered by invo-
cation points. We refer to davg(w0) as zero-time distance.

The zero-time distance measures reordering allowed by relax-
ation and reordering allowed by linearizability. Finally, the differ-
ence of these two distances is also of interest, as a measure of re-
ordering allowed by linearizability only.

Definition 2.8. The linearization difference is the difference be-
tween the zero-time distance and the actual-time distance,

davg(w0)�davg(wa).

Finally, we mention a practical issue. When enqueue and de-
queue operations get reordered within a concurrent history it can
happen that in the zero-time linearization a dequeue precedes its
matching enqueue. We call such dequeues non-causal. The out-of-
order transition cost of non-causal dequeues is infinite. It is possi-
ble but not elegant to define a distance for non-causal dequeues as
well using the framework of [10]. To keep things simple and read-
able, we keep non-causal dequeues out of the formal definitions.
However, for the actual measurements, we adjust the out-of-order
transition costs for non-causal dequeues as follows. The transition
cost of a non-causal dequeue is first assigned an optimistic guess,
which is simply the number of elements in the queue when the de-
queue happened. This is optimistic because it assumes that the very
next enqueue would be the one matching the non-causal dequeue;
until that enqueue happens all intermediate enqueues thus increase
the cost by 1. We have validated this special handling of non-causal
dequeue operations in experiments which we omit from the paper
due to lack of space.

3. Distributed Queues

We introduce two distributed queue (DQ) algorithms called load-
balanced DQ and least-recently-used (LRU) DQ. Both algorithms
implement a shared array of p � 1 so-called partial queues whose
implementation in turn is based on Michael-Scott (MS) FIFO
queues [19]. Upon an enqueue or dequeue operation one out of
the p partial queues is selected for performing the actual opera-
tion without any further coordination with the other p� 1 partial

Listing 1: Lock-free load-balanced distributed queue algorithm
1 enqueue(element):
2 index = load_balancer();
3 DQ[index].MS_enqueue(element);
4

5 dequeue():
6 start = load_balancer();
7 whi le true:
8 f o r i in 0 to p-1:
9 index = (start + i) % p;

10 element , current_tail = DQ[index].MS_dequeue();
11 i f element != null:
12 re turn element;
13 e l s e :
14 tail_old[index] = current_tail;
15 f o r i in 0 to p-1:
16 i f get_tail(DQ[i]) != tail_old[i]:
17 start = i;
18 break;
19 i f i == p-1:
20 re turn null;

queues. Selection is done either by a load balancer, hence load-
balanced DQ, or by an LRU-style algorithm that uses the ABA
counters in the head and tail pointers of the partial queues (for
dequeue and enqueue, respectively) to identify the less recently
used partial queues. For dequeueing, both algorithms implement
an emptiness check that checks all partial queues up to two times
before returning empty. If all queues are found to be empty during
the first pass the queues are checked again. If no queues are found
that have performed an enqueue operation since the beginning of
the first pass, recognized by the ABA counters in their tail pointers,
the algorithms correctly return empty.

The concept of distributing access to different queues is not new.
Scal Queues [13, 15] already use (special cases of) the load bal-
ancers we discuss here but do not implement an emptiness check,
neither do Multilane Multisets [8]. As a consequence, applications
with termination conditions based on emptiness may be impossible
to implement using Scal Queues or Multilane Multisets.

Similar to other algorithms such as MS, we use a double-word
compare-and-swap (CAS) 1 instruction to change a pointer and its
ABA counter atomically. Whenever we speak of a pointer below we
therefore mean the pointer together with its ABA counter. Note that
using double-word CAS does not limit the generality of DQ since
ABA counters can alternatively be embedded into the pointer itself
(although with less precision). However, embedding ABA counters
requires knowledge of the memory allocation boundaries since the
ABA counter has to reside in a part of the pointer that is not needed
for addressing.

3.1 Load-balanced Distributed Queue Algorithm

Listing 1 shows the pseudo code of the load-balanced distributed
queue algorithm. The enqueue method (line 1) calls the load bal-
ancer using the method load balancer (line 2) which determines
the partial queue at index in the shared DQ array of partial queues
for the actual enqueue operation (line 3).

Similarly, the dequeue method (line 5) also calls the load bal-
ancer using load balancer (line 6) to obtain an initial index
start. The method then searches DQ for a non-empty partial queue
beginning at start and wrapping around at p�1. Using the MS al-
gorithm the MS dequeue method retrieves the oldest element from
the partial queue at index if the queue is not empty (line 10). In

1 compare-and-swap is a CPU instruction that atomically swaps the value
stored in some memory location if that location contains an expected value.
The operation also returns whether it was successful or not.

short description of paper 4 2012/12/3

tail_old[p]: array of MS tails
1.

2.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(a) High contention producer-consumer microbenchmark (c “ 250)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(b) Low contention producer-consumer microbenchmark (c “ 2000)

Figure 3. Performance and scalability of producer-consumer microbenchmarks with an increasing number of threads on a 40-core (2 hyper-
threads per core) server machine

processed all neighbors it dequeues another vertex. The algorithms
terminate when the shared queue or pool is empty.

Figures 4(a) and 4(b) show performance in terms of total execu-
tion time in milliseconds and scalability with an increasing number
of threads. In both benchmarks, the DQ implementations perform
and scale best. While most implementations are on par with DQ up
to ten threads, only the BS and US k-FIFO queue implementations
scale as much as DQ. Despite its thread-local storage BAG scales
negatively because the connectivity of the graph makes it likely to
hit already processed nodes and thus requires work-stealing. Note
that RP is not shown because RP, due to its synchronous behavior,
cannot handle a workload where producers are also consumers.

Mandelbrot Benchmark

The Mandelbrot benchmark renders an image by dividing it into
blocks of 4x4 pixels that are distributed by producer threads
through a shared queue or pool to consumer threads for parallel
processing. For each producer there are four consumers. We distin-
guish low and high computational load scenarios by using images
whose blocks are mostly rendered either relatively fast or relatively
slow, respectively.

Figures 4(c) and 4(d) show performance in terms of total execu-
tion time in milliseconds and scalability with an increasing number
of threads. Best performance and scalability is achieved by TL-RR
and 1-RA followed by the remaining DQ and the BS and US k-
FIFO implementations. In the high computational load scenario all
DQ implementations show identical performance and scalability.
The BS and US k-FIFO implementations also perform and scale
competitively.

5.3 Relating Performance and Non-Determinism

We study the microbenchmark introduced in Section 5.1 in terms
of the performance index, actual-time distance, zero-time distance,
and linearization difference metrics introduced in Section 2. For
this purpose we instrumented all implementations such that the in-
vocations, responses, and linearization points of all queue and pool
operations are time-stamped using the globally synchronized TSC
register of x86 processors which may be read with low overhead.
Note that time-stamping linearization points may only be approxi-
mative but still close enough for our purposes. Since the computa-
tional complexity of determining actual- and zero-time distances is

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 10 20 30 40 50 60 70 80

a
ve

ra
g
e
 p

e
rf

o
rm

a
n
ce

 in
d
e
x

(l
e
ss

 is
 b

e
tt
e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 5. Average performance index of the low contention
producer-consumer microbenchmark (c “ 2000)

proportional to the length of histories we nevertheless had to mod-
ify the microbenchmark by limiting each thread to perform only ten
thousand rather than ten million queue or pool operations. We only
present the results of the high contention microbenchmark since
they are similar to the results of the low contention microbench-
mark except for the performance index where we show the results
of the low contention microbenchmark because they are more dis-
tinguished. Again, the presented data is averaged over five runs.

Figure 5 shows the average performance index for the low
contention microbenchmark. The data correlates with the actual
performance shown in Figure 3. For example, TL-RR and 1-RA,
which scale best, have the lowest performance index, and LB and
WF, which are the slowest, have the highest performance index.

Figure 6 shows the actual-time distance for the high contention
microbenchmark. The strict FIFO queue implementations show
low non-zero values since time-stamping linearization points is
only approximative. The ED and BAG pools show the highest
actual-time distance, followed by TL-RR and 1-RA. All other
queue implementations show an actual-time distance of less than
fifty.

8

DQ

k-FIFO (k≥0)
TL-RR DQ
2-RR DQ
1-RR DQ

Pools

1-RA DQ
2-RA DQ

Semantics

ED
BAG
RP

[Afek et al.’11,’10]
[Sundell et al.’11]

[Related Work]
Our Stuff

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p
e

r
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(a) High contention producer-consumer microbenchmark (c “ 250)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p
e

r
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(b) Low contention producer-consumer microbenchmark (c “ 2000)

Figure 3. Performance and scalability of producer-consumer microbenchmarks with an increasing number of threads on a 40-core (2 hyper-
threads per core) server machine

processed all neighbors it dequeues another vertex. The algorithms
terminate when the shared queue or pool is empty.

Figures 4(a) and 4(b) show performance in terms of total execu-
tion time in milliseconds and scalability with an increasing number
of threads. In both benchmarks, the DQ implementations perform
and scale best. While most implementations are on par with DQ up
to ten threads, only the BS and US k-FIFO queue implementations
scale as much as DQ. Despite its thread-local storage BAG scales
negatively because the connectivity of the graph makes it likely to
hit already processed nodes and thus requires work-stealing. Note
that RP is not shown because RP, due to its synchronous behavior,
cannot handle a workload where producers are also consumers.

Mandelbrot Benchmark

The Mandelbrot benchmark renders an image by dividing it into
blocks of 4x4 pixels that are distributed by producer threads
through a shared queue or pool to consumer threads for parallel
processing. For each producer there are four consumers. We distin-
guish low and high computational load scenarios by using images
whose blocks are mostly rendered either relatively fast or relatively
slow, respectively.

Figures 4(c) and 4(d) show performance in terms of total execu-
tion time in milliseconds and scalability with an increasing number
of threads. Best performance and scalability is achieved by TL-RR
and 1-RA followed by the remaining DQ and the BS and US k-
FIFO implementations. In the high computational load scenario all
DQ implementations show identical performance and scalability.
The BS and US k-FIFO implementations also perform and scale
competitively.

5.3 Relating Performance and Non-Determinism

We study the microbenchmark introduced in Section 5.1 in terms
of the performance index, actual-time distance, zero-time distance,
and linearization difference metrics introduced in Section 2. For
this purpose we instrumented all implementations such that the in-
vocations, responses, and linearization points of all queue and pool
operations are time-stamped using the globally synchronized TSC
register of x86 processors which may be read with low overhead.
Note that time-stamping linearization points may only be approxi-
mative but still close enough for our purposes. Since the computa-
tional complexity of determining actual- and zero-time distances is

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 10 20 30 40 50 60 70 80

a
ve

ra
g

e
 p

e
rf

o
rm

a
n

ce
 in

d
e

x
(l
e

ss
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 5. Average performance index of the low contention
producer-consumer microbenchmark (c “ 2000)

proportional to the length of histories we nevertheless had to mod-
ify the microbenchmark by limiting each thread to perform only ten
thousand rather than ten million queue or pool operations. We only
present the results of the high contention microbenchmark since
they are similar to the results of the low contention microbench-
mark except for the performance index where we show the results
of the low contention microbenchmark because they are more dis-
tinguished. Again, the presented data is averaged over five runs.

Figure 5 shows the average performance index for the low
contention microbenchmark. The data correlates with the actual
performance shown in Figure 3. For example, TL-RR and 1-RA,
which scale best, have the lowest performance index, and LB and
WF, which are the slowest, have the highest performance index.

Figure 6 shows the actual-time distance for the high contention
microbenchmark. The strict FIFO queue implementations show
low non-zero values since time-stamping linearization points is
only approximative. The ED and BAG pools show the highest
actual-time distance, followed by TL-RR and 1-RA. All other
queue implementations show an actual-time distance of less than
fifty.

8

Algorithm Maximum partial Relaxation bound k
queue imbalance

d-RA DQ unbounded unbounded
b-RR DQ b+n (b�1+n)⇥ (p�1)
LRU DQ 2 p�1

Table 1: Maximum partial queue imbalance and k for the DQ
algorithms where n is the number of threads.

this case, dequeue returns the element (line 12). The MS dequeue
method is slightly different from the standard MS dequeue oper-
ation since it also returns the current tail pointer of the par-
tial queue, which is saved in a thread-local array of size p called
tail old when the queue is empty (line 14). If all partial queues
have been found to be empty, the second pass of the emptiness
check begins (line 15). If a partial queue is found to have a tail
pointer that differs from the tail pointer saved in tail old at least
one new element has been enqueued into that queue. In this case,
dequeue retries to find a non-empty partial queue starting with that
queue (line 17 and 18). Otherwise, dequeue returns null (line 20).

Load Balancers

We use two load balancers in our experiments called d-RA and b-
RR. The d-RA load balancer randomly selects d � 1 queues out of
the p partial queues and then returns (the index of) the queue with
the least elements among the d queues when called by an enqueue
operation. Symmetrically, the load balancer returns the queue with
the most elements when called by a dequeue operation. However,
for better performance, the number of elements in partial queues
is only approximated by computing the differences between ABA
counters of the queues’ head and tail pointers non-atomically. The
d-RA load balancer has already been described elsewhere [15].

The b-RR load balancer maintains b � 1 pairs of shared round-
robin counters that are associated with threads such that each thread
is permanently assigned to exactly one pair and all pairs have
approximately the same number of threads assigned. If b is equal
to or greater than the number of threads, the pairs are thus thread-
local. In this case, we call the load balancer TL-RR. The counters
in a pair keep track of which partial queue was selected for the most
recent enqueue and dequeue operation, respectively, called by any
of the threads assigned to the pair. Upon an enqueue or dequeue
operation the respective counter is atomically incremented by a
fetch-and-add 2 instruction and returned identifying in round-
robin fashion (the index of) the partial queue to be used for the
operation.

Table 1 shows for load-balanced (and LRU) DQ the maximum
difference in the number of elements that may be enqueued in any
of the partial queues at any time, which is unbounded for d-RA
and bounded for b-RR, however, only by involving the number of
threads. The LRU DQ algorithm which we discuss next provides a
stronger, configurable bound. These imbalance bounds imply that
b-RR and LRU DQ are linearizable with respect to a k-out-of-order
queue specification for k given in Table 1. Note that if operations
are invoked sequentially 1-RR DQ implements strict FIFO queue
semantics.

3.2 Least-recently-used Distributed Queue Algorithm

Listing 2 shows the pseudo code of the least-recently-used dis-
tributed queue algorithm. The key invariant maintained by the al-
gorithm is that the maximum difference of the ABA counters of

2 fetch-and-add is a CPU instruction that atomically increments the value
of a memory location and returns the old value.

Listing 2: Lock-free LRU distributed queue algorithm
1 enqueue(element):
2 start = random();
3 whi le true:
4 aba_index , aba_count = lowest_aba_tail(start);
5 f o r i in 0 to p-1:
6 index = (aba_index + i) % p;
7 current_tail = get_tail(DQ[index]);
8 i f current_tail.aba == aba_count &&
9 DQ[index].try_MS_enqueue(element , current_tail):

10 re turn ;
11

12 dequeue():
13 start = random();
14 whi le true:
15 aba_index , aba_count = lowest_aba_head(start);
16 check_emptiness = true;
17 clear(empty_queue);
18 f o r i in 0 to p-1:
19 index = (aba_index + i) % p;
20 current_head = get_head(DQ[index]);
21 i f current_head.aba == aba_count:
22 element , current_tail =
23 DQ[index].try_MS_dequeue(current_head);
24 i f element == FAILED:
25 check_emptiness = false;
26 e l s e i f element == null:
27 tail_old[index] = current_tail;
28 empty_queue[index] = true;
29 e l s e :
30 re turn element;
31

32 i f check_emptiness && there_is_any(empty_queue):
33 f o r i in 0 to p-1:
34 i f empty_queue[i] &&
35 (get_tail(DQ[i]) != tail_old[i]):
36 start = i;
37 break;
38 i f i == p-1:
39 re turn null;

the head pointers of the p partial queues is at most one. The same
holds for the ABA counters of the tail pointers. Moreover, the algo-
rithm always enqueues into a partial queue whose tail pointer has
an ABA counter with the lowest value among the ABA counters
of the tail pointers of all partial queues. Similarly, the algorithm
always dequeues from a partial queue whose head pointer has an
ABA counter with the lowest value, which implies the imbalance
bound in Table 1. Note that the ABA counters of the head/tail point-
ers may only differ by one but we anyway speak of the lowest value
here.

The enqueue method (line 1) starts by calling a random number
generator that returns the index start of one of the p partial
queues (line 2). Then, by calling the lowest aba tail method,
the partial queues are checked, beginning at start and wrapping
around at p�1, for a queue whose tail pointer has an ABA counter
with the lowest value among the ABA counters in the tail pointers
of all partial queues. The lowest aba tail method returns the
index of such a queue and the ABA counter of its tail pointer
which are then stored in aba index and aba count, respectively
(line 4). Note that as soon as two different ABA counters are
found the search may stop since the ABA counter with the lower
value is guaranteed to contain the lowest value because of the
algorithm’s invariant. After finding aba count the algorithm again
iterates over all partial queues starting at aba index (lines 5 and 6).
Since there may be multiple queues whose tail pointers have ABA
counters with the same value as aba count, all such queues are
candidates for enqueueing the element (lines 7 and 8). Using the
MS algorithm the try MS enqueue method enqueues the element
into the queue at index if the tail pointer of the queue is still

short description of paper 5 2012/12/3

LRU DQ:

max difference of
tail/head

ABA counters
is one!

->
there are two

partitions of MS queues
with lowest/highest

ABA counters
->

enqueue/dequeue
@one_of_lowest

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p
e

r
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(a) High contention producer-consumer microbenchmark (c “ 250)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p
e

r
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(b) Low contention producer-consumer microbenchmark (c “ 2000)

Figure 3. Performance and scalability of producer-consumer microbenchmarks with an increasing number of threads on a 40-core (2 hyper-
threads per core) server machine

processed all neighbors it dequeues another vertex. The algorithms
terminate when the shared queue or pool is empty.

Figures 4(a) and 4(b) show performance in terms of total execu-
tion time in milliseconds and scalability with an increasing number
of threads. In both benchmarks, the DQ implementations perform
and scale best. While most implementations are on par with DQ up
to ten threads, only the BS and US k-FIFO queue implementations
scale as much as DQ. Despite its thread-local storage BAG scales
negatively because the connectivity of the graph makes it likely to
hit already processed nodes and thus requires work-stealing. Note
that RP is not shown because RP, due to its synchronous behavior,
cannot handle a workload where producers are also consumers.

Mandelbrot Benchmark

The Mandelbrot benchmark renders an image by dividing it into
blocks of 4x4 pixels that are distributed by producer threads
through a shared queue or pool to consumer threads for parallel
processing. For each producer there are four consumers. We distin-
guish low and high computational load scenarios by using images
whose blocks are mostly rendered either relatively fast or relatively
slow, respectively.

Figures 4(c) and 4(d) show performance in terms of total execu-
tion time in milliseconds and scalability with an increasing number
of threads. Best performance and scalability is achieved by TL-RR
and 1-RA followed by the remaining DQ and the BS and US k-
FIFO implementations. In the high computational load scenario all
DQ implementations show identical performance and scalability.
The BS and US k-FIFO implementations also perform and scale
competitively.

5.3 Relating Performance and Non-Determinism

We study the microbenchmark introduced in Section 5.1 in terms
of the performance index, actual-time distance, zero-time distance,
and linearization difference metrics introduced in Section 2. For
this purpose we instrumented all implementations such that the in-
vocations, responses, and linearization points of all queue and pool
operations are time-stamped using the globally synchronized TSC
register of x86 processors which may be read with low overhead.
Note that time-stamping linearization points may only be approxi-
mative but still close enough for our purposes. Since the computa-
tional complexity of determining actual- and zero-time distances is

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 10 20 30 40 50 60 70 80

a
ve

ra
g

e
 p

e
rf

o
rm

a
n

ce
 in

d
e

x
(l
e

ss
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 5. Average performance index of the low contention
producer-consumer microbenchmark (c “ 2000)

proportional to the length of histories we nevertheless had to mod-
ify the microbenchmark by limiting each thread to perform only ten
thousand rather than ten million queue or pool operations. We only
present the results of the high contention microbenchmark since
they are similar to the results of the low contention microbench-
mark except for the performance index where we show the results
of the low contention microbenchmark because they are more dis-
tinguished. Again, the presented data is averaged over five runs.

Figure 5 shows the average performance index for the low
contention microbenchmark. The data correlates with the actual
performance shown in Figure 3. For example, TL-RR and 1-RA,
which scale best, have the lowest performance index, and LB and
WF, which are the slowest, have the highest performance index.

Figure 6 shows the actual-time distance for the high contention
microbenchmark. The strict FIFO queue implementations show
low non-zero values since time-stamping linearization points is
only approximative. The ED and BAG pools show the highest
actual-time distance, followed by TL-RR and 1-RA. All other
queue implementations show an actual-time distance of less than
fifty.

8

Segmented Queues (SQ)
[Afek,Korland,Yanovsky 2010]

Head k-Segment

enqueue

Tail k-Segment

Search
Used

dequeue

Search
Empty

-> BS, US k-FIFO Queues
[_,Lippautz,Payer 2012]

Emptiness Check?
->

Not Relaxed!

Listing 1.1. Lock-free bounded-size (BS) and unbounded-size (US) k-FIFO queue al-
gorithms. Gray highlighted code is only used in the BS version

1 bool enqueue(item):

2 while true:

3 tail_old = get_tail();

4 head_old = get_head();

5 item_old , index = find_empty_slot(tail_old , k, TESTS);

6 if tail_old == get_tail():

7 if item_old.value == EMPTY:

8 item_new = atomic_value(item , item_old.counter + 1);

9 if CAS(&tail_old[index], item_old , item_new):

10 if committed(tail_old , item_new , index):

11 return true;

12 else:

13 if queue_full(head_old , tail_old):

14 if segment_not_empty(head_old , k) && head == get_head():

15 return false;

16 advance_head(head_old , k);

17 advance_tail(tail_old , k);

18

19 bool committed(tail_old , item_new , index):

20 if tail_old[index] != item_new:

21 return true;

22 head_current = get_head();

23 tail_current = get_tail();

24 item_empty = atomic_value(EMPTY , item_new.counter + 1);

25 if in_queue_after_head(tail_old , tail_current , head_current):

26 return true;

27 else if not_in_queue(tail_old , tail_current , head_current):

28 if !CAS(&tail_old[index], item_new , item_empty):

29 return true;

30 else: //in queue at head

31 head_new = atomic_value(head_current.value , head_current.counter + 1);

32 if CAS(&head , head_current , head_new):

33 return true;

34 if !CAS(&tail_old[index], item_new , item_empty):

35 return true;

36 return false;

37

38 item dequeue():

39 while true:

40 tail_old = get_tail();

41 head_old = get_head();

42 item_old , index = find_item(head_old , k);

43 if head_old == head:

44 if item_old.value != EMPTY:

45 if head_old.value == tail_old.value:

46 advance_tail(tail_old , k);

47 item_empty = atomic_value(EMPTY , item_old.counter + 1);

48 if CAS(&head_old[index], item_old , item_empty):

49 return item_old.value;

50 else:

51 if head_old.value == tail_old.value && tail_old == get_tail():

52 return null;

53 advance_head(head_old , k);

(line 9). If the insertion is successful the method verifies whether the insertion is also
valid by calling the committed method (line 10), as discussed below. If any of these
steps fails a retry is performed. If no empty slot is found in the current tail k-segment
the enqueue method tries to increment tail by k using CAS (line 17) and then retries.
Hence in the worst-case only TESTS slots may be used in a k-segment if TESTS < k.

4

enqueue

dequeue

Listing 1.1. Lock-free bounded-size (BS) and unbounded-size (US) k-FIFO queue al-
gorithms. Gray highlighted code is only used in the BS version

1 bool enqueue(item):

2 while true:

3 tail_old = get_tail();

4 head_old = get_head();

5 item_old , index = find_empty_slot(tail_old , k, TESTS);

6 if tail_old == get_tail():

7 if item_old.value == EMPTY:

8 item_new = atomic_value(item , item_old.counter + 1);

9 if CAS(&tail_old[index], item_old , item_new):

10 if committed(tail_old , item_new , index):

11 return true;

12 else:

13 if queue_full(head_old , tail_old):

14 if segment_not_empty(head_old , k) && head == get_head():

15 return false;

16 advance_head(head_old , k);

17 advance_tail(tail_old , k);

18

19 bool committed(tail_old , item_new , index):

20 if tail_old[index] != item_new:

21 return true;

22 head_current = get_head();

23 tail_current = get_tail();

24 item_empty = atomic_value(EMPTY , item_new.counter + 1);

25 if in_queue_after_head(tail_old , tail_current , head_current):

26 return true;

27 else if not_in_queue(tail_old , tail_current , head_current):

28 if !CAS(&tail_old[index], item_new , item_empty):

29 return true;

30 else: //in queue at head

31 head_new = atomic_value(head_current.value , head_current.counter + 1);

32 if CAS(&head , head_current , head_new):

33 return true;

34 if !CAS(&tail_old[index], item_new , item_empty):

35 return true;

36 return false;

37

38 item dequeue():

39 while true:

40 tail_old = get_tail();

41 head_old = get_head();

42 item_old , index = find_item(head_old , k);

43 if head_old == head:

44 if item_old.value != EMPTY:

45 if head_old.value == tail_old.value:

46 advance_tail(tail_old , k);

47 item_empty = atomic_value(EMPTY , item_old.counter + 1);

48 if CAS(&head_old[index], item_old , item_empty):

49 return item_old.value;

50 else:

51 if head_old.value == tail_old.value && tail_old == get_tail():

52 return null;

53 advance_head(head_old , k);

(line 9). If the insertion is successful the method verifies whether the insertion is also
valid by calling the committed method (line 10), as discussed below. If any of these
steps fails a retry is performed. If no empty slot is found in the current tail k-segment
the enqueue method tries to increment tail by k using CAS (line 17) and then retries.
Hence in the worst-case only TESTS slots may be used in a k-segment if TESTS < k.

4

k-FIFO (k≥0)
TL-RR DQ
2-RR DQ
1-RR DQ

(SQ)
RD

LRU DQ
BS, US

[Afek et al.’10]

configurable k

Pools

1-RA DQ
2-RA DQ

Semantics

ED
BAG
RP

[Afek et al.’11,’10]
[Sundell et al.’11]

FIFO
LB MS
WF FC

[Kogan et al.’11]
[Incze et al.’10]

[Related Work]
Our Stuff

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p
e

r
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(a) High contention producer-consumer microbenchmark (c “ 250)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p
e

r
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(b) Low contention producer-consumer microbenchmark (c “ 2000)

Figure 3. Performance and scalability of producer-consumer microbenchmarks with an increasing number of threads on a 40-core (2 hyper-
threads per core) server machine

processed all neighbors it dequeues another vertex. The algorithms
terminate when the shared queue or pool is empty.

Figures 4(a) and 4(b) show performance in terms of total execu-
tion time in milliseconds and scalability with an increasing number
of threads. In both benchmarks, the DQ implementations perform
and scale best. While most implementations are on par with DQ up
to ten threads, only the BS and US k-FIFO queue implementations
scale as much as DQ. Despite its thread-local storage BAG scales
negatively because the connectivity of the graph makes it likely to
hit already processed nodes and thus requires work-stealing. Note
that RP is not shown because RP, due to its synchronous behavior,
cannot handle a workload where producers are also consumers.

Mandelbrot Benchmark

The Mandelbrot benchmark renders an image by dividing it into
blocks of 4x4 pixels that are distributed by producer threads
through a shared queue or pool to consumer threads for parallel
processing. For each producer there are four consumers. We distin-
guish low and high computational load scenarios by using images
whose blocks are mostly rendered either relatively fast or relatively
slow, respectively.

Figures 4(c) and 4(d) show performance in terms of total execu-
tion time in milliseconds and scalability with an increasing number
of threads. Best performance and scalability is achieved by TL-RR
and 1-RA followed by the remaining DQ and the BS and US k-
FIFO implementations. In the high computational load scenario all
DQ implementations show identical performance and scalability.
The BS and US k-FIFO implementations also perform and scale
competitively.

5.3 Relating Performance and Non-Determinism

We study the microbenchmark introduced in Section 5.1 in terms
of the performance index, actual-time distance, zero-time distance,
and linearization difference metrics introduced in Section 2. For
this purpose we instrumented all implementations such that the in-
vocations, responses, and linearization points of all queue and pool
operations are time-stamped using the globally synchronized TSC
register of x86 processors which may be read with low overhead.
Note that time-stamping linearization points may only be approxi-
mative but still close enough for our purposes. Since the computa-
tional complexity of determining actual- and zero-time distances is

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 10 20 30 40 50 60 70 80

a
ve

ra
g

e
 p

e
rf

o
rm

a
n

ce
 in

d
e

x
(l
e

ss
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 5. Average performance index of the low contention
producer-consumer microbenchmark (c “ 2000)

proportional to the length of histories we nevertheless had to mod-
ify the microbenchmark by limiting each thread to perform only ten
thousand rather than ten million queue or pool operations. We only
present the results of the high contention microbenchmark since
they are similar to the results of the low contention microbench-
mark except for the performance index where we show the results
of the low contention microbenchmark because they are more dis-
tinguished. Again, the presented data is averaged over five runs.

Figure 5 shows the average performance index for the low
contention microbenchmark. The data correlates with the actual
performance shown in Figure 3. For example, TL-RR and 1-RA,
which scale best, have the lowest performance index, and LB and
WF, which are the slowest, have the highest performance index.

Figure 6 shows the actual-time distance for the high contention
microbenchmark. The strict FIFO queue implementations show
low non-zero values since time-stamping linearization points is
only approximative. The ED and BAG pools show the highest
actual-time distance, followed by TL-RR and 1-RA. All other
queue implementations show an actual-time distance of less than
fifty.

8

operation

(Enhanced) Concurrent History
Sequence of Time-stamped Invocation and Response Events

as well as Time-stamped Linearization Points (Approximative)

time

invocation response

linearization point
enqueued
element

dequeued
element

?

dequeue -> 2

Measuring
“Out-of-Order Distance”

timelinearization points

dequeue -> 1

2head 1 Distance: 01?

The Actual-Time Linearization
of a concurrent history

is
the sequence of its operations

ordered by
their linearization points

The Actual-Time Distance
of a concurrent history

is
the average

out-of-order distance
of

its actual-time linearization

Actual-Time Distance
measures

re-ordering
due to

semantical relaxation!

 10

 100

 1000

1 10 20 30 40 50 60 70 80

e
xe

cu
tio

n
 t

im
e

 in
 m

s
 (

lo
g

sc
a

le
,

le
ss

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

LRU DQ (p=80)
1-RR DQ (p=80)

2-RR DQ (p=80)
TL-RR DQ (p=80)

1-RA DQ (p=80)
2-RA DQ (p=80)

(a) Spanning tree benchmark

 10

 100

 1000

1 10 20 30 40 50 60 70 80

e
xe

cu
tio

n
 t

im
e

 in
 m

s
 (

lo
g

sc
a

le
,

le
ss

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

LRU DQ (p=80)
1-RR DQ (p=80)

2-RR DQ (p=80)
TL-RR DQ (p=80)

1-RA DQ (p=80)
2-RA DQ (p=80)

(b) Transitive closure benchmark

 100

 1000

 10000

100000

5 20 40 60 80

e
xe

cu
tio

n
 t

im
e

 in
 m

s
(l
o

g
sc

a
le

,
le

ss
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(c) Mandelbrot benchmark with low computational load

 1000

 10000

100000

5 20 40 60 80

e
xe

cu
tio

n
 t

im
e

 in
 m

s
(l
o

g
sc

a
le

,
le

ss
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(d) Mandelbrot benchmark with high computational load

Figure 4: Macrobenchmarks for performance and scalablity with an increasing number of threads on a 40-core (2 hyper-threads per core)
server machine

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

2 10 20 30 40 50 60 70 80

a
ct

u
a

l-
tim

e
 d

is
ta

n
ce

 (
lo

g
sc

a
le

,
le

ss
 is

 b
e

tt
e

r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 6: Actual-time distance of the high contention producer-
consumer microbenchmark (c = 250)

queue implementations show an actual-time distance of less than
fifty.

Figure 7 shows the zero-time distance, again for the high con-
tention microbenchmark, zoomed-in for better resolution cutting
off ED, BAG, TL-RR, and 1-RA whose data is anyway similar to
the data in Figure 6. Here, even strict FIFO queue implementations
show values greater than zero. In particular, LB and MS show zero-
time distances of up to 25, similar to how a 25-relaxed FIFO queue
implementation could behave. The values for FC and WF are nev-
ertheless still low. Again, except for ED, BAG, TL-RR, and 1-RA,
all implementations show a zero-time distance of less than fifty.

Figure 8 shows the linearization difference, i.e., the difference
between the zero-time distance, shown in Figure 7, and the actual-
time distance, shown in Figure 6. The FC, WF, pool, and DQ
implementations show a low linearization difference which in-
creases slowly with the number of threads. The 1-RA implemen-
tation shows a linearization difference of less than one even with
80 threads, which means that operations are executed nearly in the
same order as they were invoked. The LB, MS, RD, SQ, and BS
and US k-FIFO implementations, however, show linearization dis-
tances that increase significantly faster with the number of threads
compared to any other implementation.

short description of paper 9 2012/12/3

dequeue -> 2

Invocation vs. Linearization

time

dequeue -> 1

2head 1 1Distance:

invocation events

The Zero-Time Linearization
of a concurrent history

is
the sequence of its operations

ordered by
their invocation events

The Zero-Time Distance
of a concurrent history

is
the average

out-of-order distance
of

its zero-time linearization

Zero-Time Distance
measures

re-ordering
due to

semantical relaxation
and

linearizability!

 0

 10

 20

 30

 40

 50

2 10 20 30 40 50 60 70 80

ze
ro

-t
im

e
 d

is
ta

n
ce

 (
le

ss
 is

 b
e
tt
e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 7: Zero-time distance of the high contention producer-
consumer microbenchmark, zoomed-in for better resolution cutting
off ED, BAG, TL-RR, and 1-RA (c = 250)

 0

 5

 10

 15

 20

 25

 30

2 10 20 30 40 50 60 70 80

lin
e
a
ri
za

tio
n
-d

iff
e
re

n
ce

 (
le

ss
 is

 b
e
tt
e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 8: Linearization difference of the high contention producer-
consumer microbenchmark (c = 250)

6. Conclusion

We demonstrate practically, by providing the DQ relaxed queue
algorithms, and theoretically, by studying the trade-off of relax-
ation vs. performance, that relaxing the semantics of concurrent
queues leads to performance and scalability. Moreover, it does not
necessarily lead to more observed non-determinism. Hence, well-
performing relaxed concurrent queues may be just as applicable as
strict ones in terms of observed behavior and certainly preferrable
in terms of performance and scalability.

References

[1] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable producer-
consumer pools based on elimination-diffraction trees. In Proc. Euro-
pean Conference on Parallel Processing (Euro-Par), pages 151–162.
Springer, 2010.

[2] Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability: Relaxed
consistency for improved concurrency. In Proc. Conference on Prin-
ciples of Distributed Systems (OPODIS), pages 395–410. Springer,
2010.

[3] Y. Afek, M. Hakimi, and A. Morrison. Fast and scalable rendezvous-
ing. In Proc. International Conference on Distributed Computing
(DISC), pages 16–31, Berlin, Heidelberg, 2011. Springer-Verlag.

[4] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. Michael, and
M. Vechev. Laws of order: expensive synchronization in concurrent
algorithms cannot be eliminated. In Proc. of Principles of Program-
ming Languages (POPL), pages 487–498. ACM, 2011.

[5] D. Bader and G. Cong. A fast, parallel spanning tree algorithm
for symmetric multiprocessors (smps). Journal of Parallel and Dis-
tributed Computing, 65:994–1006, 2005.

[6] E. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard: a scalable
memory allocator for multithreaded applications. In Proc. Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 117–128. ACM, 2000.

[7] R. Colvin and L. Groves. Formal verification of an array-based
nonblocking queue. In Proc. Conference on Engineering of Complex
Computer Systems (ICECCS), pages 507–516. IEEE, 2005.

[8] D. Dice and O. Otenko. Brief announcement: multilane - a concurrent
blocking multiset. In Proc. Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 313–314. ACM, 2011.

[9] A. Haas, C. Kirsch, M. Lippautz, and H. Payer. How fifo is your
concurrent fifo queue? In Proc. OOPSLA Workshop on Relaxing
Synchronization for Multicore and Manycore Scalability (RACES).
ACM, 2012.

[10] T. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quan-
titative relaxation of concurrent data structures. In Proc. Symposium
on Principles of Programming Languages (POPL). ACM, 2013.

[11] M. Herlihy and J. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(3):463–492, 1990.

[12] D. H. I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proc. Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages 355–364. ACM,
2010.

[13] C. Kirsch, H. Payer, H. Röck, and A. Sokolova. Brief announcement:
Scalability versus semantics of concurrent FIFO queues. In Proc.
Symposium on Principles of Distributed Computing (PODC). ACM,
2011.

[14] C. Kirsch, M. Lippautz, and H. Payer. Fast and scalable k-fifo queues.
Technical Report 2012-04, Department of Computer Sciences, Uni-
versity of Salzburg, June 2012.

[15] C. Kirsch, H. Payer, H. Röck, and A. Sokolova. Performance, scalabil-
ity, and semantics of concurrent FIFO queues. In Proc. International
Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP), LNCS. Springer, 2012.

[16] A. Kogan and E. Petrank. Wait-free queues with multiple enqueuers
and dequeuers. In Proc. Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 223–234. ACM, 2011.

[17] B. Mandelbrot. Fractal aspects of the iteration of z ! lz(1� z) for
complex l and z. Annals of the New York Academy of Sciences, 357:
249–259, Dec. 1980.

[18] A. Melton, B. S. Schröder, and G. E. Strecker. Lagois connections -
a counterpart to galois connections -. Theoretical Computer Science,
136:79–107, 1993.

[19] M. Michael and M. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proc. Symposium on
Principles of Distributed Computing (PODC), pages 267–275. ACM,
1996.

[20] N. Shavit. Data structures in the multicore age. Communications
ACM, 54:76–84, March 2011.

[21] H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas. A lock-
free algorithm for concurrent bags. In Proc. Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 335–344, New York,
NY, USA, 2011. ACM.

short description of paper 10 2012/12/3

Linearization Difference
(difference of zero- and
actual-time distance)

measures
re-ordering

due to
linearizability!

 0

 10

 20

 30

 40

 50

2 10 20 30 40 50 60 70 80

ze
ro

-t
im

e
 d

is
ta

n
ce

 (
le

ss
 is

 b
e
tt
e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 7: Zero-time distance of the high contention producer-
consumer microbenchmark, zoomed-in for better resolution cutting
off ED, BAG, TL-RR, and 1-RA (c = 250)

 0

 5

 10

 15

 20

 25

 30

2 10 20 30 40 50 60 70 80

lin
e
a
ri
za

tio
n
-d

iff
e
re

n
ce

 (
le

ss
 is

 b
e
tt
e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 8: Linearization difference of the high contention producer-
consumer microbenchmark (c = 250)

6. Conclusion

We demonstrate practically, by providing the DQ relaxed queue
algorithms, and theoretically, by studying the trade-off of relax-
ation vs. performance, that relaxing the semantics of concurrent
queues leads to performance and scalability. Moreover, it does not
necessarily lead to more observed non-determinism. Hence, well-
performing relaxed concurrent queues may be just as applicable as
strict ones in terms of observed behavior and certainly preferrable
in terms of performance and scalability.

References

[1] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable producer-
consumer pools based on elimination-diffraction trees. In Proc. Euro-
pean Conference on Parallel Processing (Euro-Par), pages 151–162.
Springer, 2010.

[2] Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability: Relaxed
consistency for improved concurrency. In Proc. Conference on Prin-
ciples of Distributed Systems (OPODIS), pages 395–410. Springer,
2010.

[3] Y. Afek, M. Hakimi, and A. Morrison. Fast and scalable rendezvous-
ing. In Proc. International Conference on Distributed Computing
(DISC), pages 16–31, Berlin, Heidelberg, 2011. Springer-Verlag.

[4] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. Michael, and
M. Vechev. Laws of order: expensive synchronization in concurrent
algorithms cannot be eliminated. In Proc. of Principles of Program-
ming Languages (POPL), pages 487–498. ACM, 2011.

[5] D. Bader and G. Cong. A fast, parallel spanning tree algorithm
for symmetric multiprocessors (smps). Journal of Parallel and Dis-
tributed Computing, 65:994–1006, 2005.

[6] E. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard: a scalable
memory allocator for multithreaded applications. In Proc. Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 117–128. ACM, 2000.

[7] R. Colvin and L. Groves. Formal verification of an array-based
nonblocking queue. In Proc. Conference on Engineering of Complex
Computer Systems (ICECCS), pages 507–516. IEEE, 2005.

[8] D. Dice and O. Otenko. Brief announcement: multilane - a concurrent
blocking multiset. In Proc. Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 313–314. ACM, 2011.

[9] A. Haas, C. Kirsch, M. Lippautz, and H. Payer. How fifo is your
concurrent fifo queue? In Proc. OOPSLA Workshop on Relaxing
Synchronization for Multicore and Manycore Scalability (RACES).
ACM, 2012.

[10] T. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quan-
titative relaxation of concurrent data structures. In Proc. Symposium
on Principles of Programming Languages (POPL). ACM, 2013.

[11] M. Herlihy and J. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(3):463–492, 1990.

[12] D. H. I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proc. Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages 355–364. ACM,
2010.

[13] C. Kirsch, H. Payer, H. Röck, and A. Sokolova. Brief announcement:
Scalability versus semantics of concurrent FIFO queues. In Proc.
Symposium on Principles of Distributed Computing (PODC). ACM,
2011.

[14] C. Kirsch, M. Lippautz, and H. Payer. Fast and scalable k-fifo queues.
Technical Report 2012-04, Department of Computer Sciences, Uni-
versity of Salzburg, June 2012.

[15] C. Kirsch, H. Payer, H. Röck, and A. Sokolova. Performance, scalabil-
ity, and semantics of concurrent FIFO queues. In Proc. International
Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP), LNCS. Springer, 2012.

[16] A. Kogan and E. Petrank. Wait-free queues with multiple enqueuers
and dequeuers. In Proc. Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 223–234. ACM, 2011.

[17] B. Mandelbrot. Fractal aspects of the iteration of z ! lz(1� z) for
complex l and z. Annals of the New York Academy of Sciences, 357:
249–259, Dec. 1980.

[18] A. Melton, B. S. Schröder, and G. E. Strecker. Lagois connections -
a counterpart to galois connections -. Theoretical Computer Science,
136:79–107, 1993.

[19] M. Michael and M. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proc. Symposium on
Principles of Distributed Computing (PODC), pages 267–275. ACM,
1996.

[20] N. Shavit. Data structures in the multicore age. Communications
ACM, 54:76–84, March 2011.

[21] H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas. A lock-
free algorithm for concurrent bags. In Proc. Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 335–344, New York,
NY, USA, 2011. ACM.

short description of paper 10 2012/12/3

Thank you

